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Abstract

Monitoring a fleet of robots requires stable long-term
tracking with re-identification, which is yet an unsolved
challenge in many scenarios. One application of this is the
analysis of autonomous robotic soccer games at RoboCup.
Tracking in these games requires handling of identically
looking players, strong occlusions, and non-professional
video recordings, but also offers state information estimated
by the robots. In order to make effective use of the informa-
tion coming from the robot sensors, we propose a robust
tracking and identification pipeline. It fuses external non-
calibrated camera data with the robots’ internal states us-
ing quadratic optimization for tracklet matching. The ap-
proach is validated using game recordings from previous
RoboCup World Cup tournaments.

1. INTRODUCTION

Robust tracking with stable object identification is a
crucial component in many robot applications. Previous
works in related tasks use robot-mounted sensors in order
to achieve the task in various settings [7, 10, 14, 40]. A re-
lated task in a different setting is analyzing motions of dy-
namic agents (e.g., humans in sports) through a fixed exter-
nal camera [26,27,47,48]. In this work, we propose to fuse
information from both types of sensors to robustly track hu-
manoid robots in entire soccer game videos. Although the
problem is closely related to automated game analytics, the
availability and use of internal robot sensors brings its own
unique applications, challenges and opportunities.

We focus on matches in the RoboCup Standard Plat-
form League (SPL), where humanoid NAO robots from
two teams compete fully autonomously in soccer matches.
Robocup is an international annual competition where
teams program different robots to compete in soccer. The
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long term goal of the project is to have a team of humanoid
robots that can win against the winners of the World Cup
in compliance with the official rules of FIFA. One of the
main platforms in the competition is the SPL where two
teams score using five NAO robots each. The actions per-
formed by the robots are autonomous and the first team
to score 10 goals or the team with the highest number of
goals after twenty minutes are announced the winners. The
teams can only make changes to the software present in the
NAO robots and no modifications to the hardware are al-
lowed. Making game analytics available in this league can
help teams improve their gameplay by providing an objec-
tive way of comparing the performance of their algorithms.

Our problem differs in multiple ways from the well-
known tracking and identification problem game analytics:
RoboCup games are recorded with non-professional uncal-
ibrated camera equipment, robots look identical except for
their jerseys, jersey numbers are too small to detect reli-
ably, and human referees often occlude a significant part of
the scene. These specifics introduce unique and non-trivial
challenges into our long-term tracking task. In particular,
the re-identification by recognition becomes virtually infea-
sible which is not the case in standard game analytics.

Like previous methods, we start with the tracking of in-
dividual robots. Different tracking methods can be used,
however, our tracklets are obtained solely from visual fea-
tures and do not extend to the whole duration of the game.
We, therefore, opt for the use of the internal states of the
robot in order to extract more useful attributes, which we
call features. As we show in the paper, these attributes can
be efficiently used in order to match the different tracklets
with the robot tracks. In this work, we formulate the track-
ing problem as a biquadratic optimization where the internal
states of the robots are used to provide different costs, used
to collate the different tracklets. Overall, we propose a long-
term tracking pipeline consisting of the following modules:

1. Camera calibration, to estimate camera intrinsics, in-
cluding distortion, and the extrinsic camera pose rela-
tive to the playing field.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Overview of the proposed approach. The pipeline includes the processed raw video as well as the robot states as the inputs.
The processed raw video provides the tracklets from Tracktor and the jersey/team classification as inputs to the optimizer. The robot states
used as inputs are the self-localization and fallen state. Another important component that facilitates fusion of these inputs is the camera
calibration module. The multi-modal inputs are fed into the global optimizer in order to generate the final track results.

2. Short-term object tracking, to generate tracklets using
Tracktor [4] with a Faster-RCNN [38] object detector
pretrained on MS-COCO and finetuned on our dataset.

3. Long-term object tracking, to match tracklets to player
identity by optimizing a quadratic problem, which
fuses visual detections from the external camera and
the robot’s own self-localization and status messages.

4. Optimizing the long-term tracking performance by
fine-tuning the weights associated with the cost terms.

Furthermore, we open-source our code for future research1.

2. Related Work

Multi Object Tracking (MOT) approaches the task of
tracking all objects belonging to a given set of categories.
These often include pedestrians [13, 23, 32] and vehicles
in datasets containing videos from fixed surveillance cam-
eras [13] or vehicle mounted moving cameras [9, 11, 42].
In joint tracking and detection approaches, the object de-
tector is a fundamental part of the tracking pipeline. One
of these approaches is Tracktor [4], which we use as one
building block in our pipeline. Tracktor utilizes the bound-
ing box refinement module of Faster R-CNN [38] to prop-
agate the bounding boxes of all tracks through a video se-
quence. More recently, Meinhardt et al. [31] proposed a

1https://github.com/nomadz-ethz/spl-player-tracking-release

transformer architecture in the joint detection and track-
ing framework. To achieve high performance in challeng-
ing scenarios such as scenes with moving cameras or ob-
ject occlusions, additional motion-compensation [4] and re-
identification [20,29,57] modules are often integrated in the
tracking pipeline.

Another large group of trackers follows the tracking
by detection paradigm, where tracking is performed us-
ing the detections provided by a separate object detector.
In this scenario, a data association problem needs to be
solved, wherein approaches include fully deep learning-
based methods [8, 12, 54, 58] as well as optimization based
approaches [16, 17, 39, 44, 55]. Closest to our data associa-
tion formulation is Qtrack [55], which proposes to solve a
quadratic tracking association problem using quantum com-
puting. While we solve a similar optimization problem, our
formulation allows for a larger problem size as tracklets are
matched. Furthemore, our formulation at the same time in-
tegrates player identification into the tracking problem.

Person re-identification is a core component of many
tracking approaches, as it provides strong cues to match
pedestrians after occlusions or crossing paths. A com-
mon paradigm in this context is metric learning [24,33,50],
where features are learned together with a metric that mea-
sures the similarity between objects. This aims at jointly
finding an embedding space and corresponding learned
metric to distinguish between different pedestrians. Us-
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ing a GAN and disentanglement of appearance and pose,
Zheng et al. [57] are able to extend the domain covered dur-
ing training.

However, training data for re-identification raises strong
privacy protection concerns which have recently led to a
movement towards training the module on primarily syn-
thetic data. In this context, PersonX [43] and Bak et al. [3]
are notable examples that use a small set of models to gen-
erate training data. To push to surpass the scale of human-
generated data, RandPerson [49] and ClonedPerson [53]
further propose to automate this pipeline by generating ran-
domized character clothing. In our setting, re-identification
based trackers are strongly limited by the similarity of dif-
ferent robots, as well as the low amount of training data that
is available for the resulting fine-grained task. Thus, we
employ an extension of DeepSort [50, 51] as our baseline,
which combines location information and a deep appear-
ance feature into a single optimization problem.

Game Analytics One of the main problems in game ana-
lytics is tracking and identification of players in videos [28,
47, 52]. MOTs are the first key components of the pipeline,
which provide candidate detections of the players. Other
components include team detection [52] or a combination of
team and jersey identification [15]. The work by Maglo et
al. [30] uses detection followed by association of tracklets
in sports videos using player re-identification. In this case,
tracklet association is also learned as the method does not
have other inputs including spatial locations for the associa-
tion. [27] on the other hand, uses the estimated spatial image
locations of the players for the task. However, as our prob-
lem is different from standard game analytics formulations,
the solutions presented in previous works [26, 30, 45, 47]
are not directly applicable to our task. Specifically, a key
problem that is not approached, is the full integration of the
3D environment as well as 3D localization of the players in
player tracking and identification.

Camera Calibration Exploiting the known 3D environ-
ment during tracking and identity assignment requires ac-
curate camera intrinsics and extrinsics, where identifying
these parameters is performed by camera calibration. Stan-
dard calibration processes generally provide accurate in-
trinsic parameters [56] using multiple views of a cali-
bration pattern. Alternative approaches without calibra-
tion patterns use minimal point correspondences [36] or a
robot’s known motion for camera calibration [37] by evalu-
ating 3D-2D correspondences with the Direct Linear Trans-
form [1]. Similarly, Scaramuzza et al. [41] uses a 3D laser
sensor to obtain highly accurate camera intrinsics. In con-
trast to this, our application has to work with a single pose
video, where the factory-calibrated intrinsics are further
known to be inaccurate. Furthermore, dynamic scenes and

texture-less regions lead to poor point correspondences. To
alleviate these challenges, our approach utilizes the tech-
nique proposed by Alvarez et al. [2], which minimizes an
energy objective based on rectifying straight lines that are
present on the soccerfield.

Particle Swarm Optimization A core component of our
method is the fusion of different sources of information
through optimization. In such scenarios, the best objec-
tive weights of the optimization problem are often obtained
using an exhaustive grid search. However, this process
is computationally expensive and requires discretizing the
search space. As an alternative, meta-heuristic algorithms
such as simulated annealing [21] and particle swarm op-
timization (PSO) [35] have shown good results in various
domains [18, 19]. In our work, the PSO algorithm is used
for the constrained optimization of the weights for different
cost terms.

3. Method
In this section, we detail our pipeline for consistent

player tracking and identification. Figure 1 provides an
overview of the key components in our target application.
Our pipeline consists of three parts. First, the camera intrin-
sics and extrinsics are estimated using field features, such as
lines and corners, whose dimensions and relative positions
are known a priori. Then, player tracklets are generated and
the jersey color is estimated for each tracklet. Additional in-
formation, such as the players’ self-estimated position and
game state are extracted from the game logs. The final step
associates each tracklet with a specific robot player. We
perform this crucial step by optimizing a binary quadratic
program. The performance is further improved by finding
the best cost weighting using PSO. In the following, each
component is described in detail.

3.1. Data and Application

We consider RoboCup Soccer SPL matches between
teams of 5 NAO robots, where data is acquired from an
external camera as well as the game-log. The game-log
is generated by the Game Controller, which communicates
the game state (start, end, free-kick, player penalties) to
the players through WiFi. Furthermore, each player is re-
quired to send a heartbeat network packet including its es-
timated position to the Game Controller at 1Hz. These
are logged by the Game Controller together with the game
states. In addition, players can exchange information with
their team members by broadcasting network packets at
a fixed rate. These are also captured and logged by the
Game Controller. Our dataset is composed of 8 annotated
5000-frame sequences recorded with a wide-angle camera
at 30 FPS and the Game Controller logs of the correspond-
ing matches. The sequences were extracted from videos
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recorded at RoboCup 2019 and 2022, and the frame times-
tamps have been synchronized with the Game Controller
logs. The annotations include the bounding box, jersey
color and number of each active player which is visible on
the field in each frame. The object detection and image clas-
sification models and the optimizer’s weights are trained on
five of these sequences. The remaining three sequences are
used for evaluation.

3.2. Camera Calibration and Pose Estimation

Accurate camera calibration and pose estimation is es-
sential in our method to locate robots in the image on the
field and to remove false positive detections outside the field
boundaries. Estimating the radial distortion coefficients is
especially important in this case due to the barrel distortion
introduced by the wide angle lens.

We assume a static camera over the sequence, which is
the setup used for all RoboCup game recordings. We, there-
fore, use the known geometry and dimensions of the field
lines for the camera calibration. The main pre-requisite for
the task is to establish clean images with clear correspon-
dences between the target frame and the known 3D geom-
etry. Due to moving robots and humans on the field, oc-
clusions are present. We resolve these and obtain a clean
unoccluded view of the field by computing the median im-
age over the whole sequence.

Widely used calibration algorithms that are implemented
in common computer vision toolboxes require either multi-
ple views of a flat calibration target [56] or several accu-
rate 2D-3D correspondences of non-coplanar points on the
calibration target. In our application, however, the former
approach is not applicable due to the lack of camera mo-
tion. We further observe that the later algorithms, based
on 2D-3D correspondence fail to jointly estimate distortion
coefficients, intrinsics and extrinsics. This is due to the low
number of available calibration points and missing good ini-
tial estimate of the distortion coefficients. Therefore, we
approach the problem in two steps:

First, we estimate radial distortion coefficients by lever-
aging the fact that field lines should be straight. Groups
of points belonging to the same field lines are selected and
used to formulate the optimization problem according to Al-
varez et al. [2].

In the second step, extrinsics are computed and the focal
lengths are refined if needed. To this end, we leverage the
known 3D soccer field landmarks, specifically the line inter-
section positions. After undistorting the median image us-
ing the parameters estimated in the previous step, line seg-
ments are detected with the SOLD2 [34] line detector. To
filter out initial false positives, a mask of the field area is es-
timated using color thresholding. Lines are then further re-
fined with morphological dilation followed by the Spaghetti
algorithm [6] for connected component labeling. The re-

maining line segments are merged into large and straight
field lines by clustering them based on their proximity of
endpoints and collinearity [46].

Intersections are computed from the detected and post-
processed lines, which provides the required 2D-3D point
correspondences to the ground truth 3D field coordinates.
Altogether, we obtain 7 reliable point pairs in each of the
videos. In order to compute the camera poses, the P3P [22]
algorithm followed by a non-linear refinement step is uti-
lized. Although the non-linear refinement can potentially
further improve the intrinsics, we find that the intrinsics are
already accurate enough for our purpose at this stage.

3.3. Multi Object Tracker

To generate bounding box tracklets, we use Tracktor [4]
with Faster-RCNN [38] with Feature Pyramid Networks
(FPN) and a ResNet-50 backbone. We initialize the model
with MS-COCO [25] pre-trained weights and fine-tune it on
the training sequences of our dataset to detect robot play-
ers. Since during matches players often occlude each other
for several seconds, we set the patience of the tracker to 1
and use conservative thresholds for the NMS step to pre-
vent tracklets from switching from one player to another. In
this way, when players cluster in one area of the field and
occlude each other, several short-lived tracklets are initial-
ized. Our optimizer is then able to robustly combine these
into longer tracks.

Subsequently, the trajectory of each player tracklet is
converted to field coordinates, (x, y). We approximate the
position of the robots’ feet by the midpoint of the lower side
of each bounding box. This point is then projected to field
coordinates using the camera pose estimated during calibra-
tion to obtain 2D positions in field coordinates. Each result-
ing projected tracklet j is smoothed using a Kalman filter
with a constant velocity model.

3.4. Jersey Color Detection

In the SPL, 9 distinct jersey colors are used. These col-
ors, known for each match, provide a strong signal to asso-
ciate tracklets with players from either team. We thus train
a VGG16 network to detect jersey colors for each tracklet
and assign a score for each of the team colors. As the colors
of the two playing teams are known, only predictions for
these are considered at this stage.

3.5. Robot States

The Game Controller logs include several sources of in-
formation about the state of the active players at every point
in the game. In our formulation, we make use of informa-
tion from the following states to match tracklets to players:

Self Localization: The robots calculate their position on
the field based on the field landmarks they observe with the
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onboard cameras. The estimated positions are often suffi-
ciently accurate and can be correlated with tracklet trajec-
tories to provide a strong signal for identification. How-
ever, relying on this signal alone is not possible, as they
can diverge arbitrarily far from the true value due to dras-
tic changes in lighting conditions or other factors like the
players losing track when falling over.
Fallen Robot: The robots use the IMU information and
heuristics to determine when they fall. In the external cam-
era, when a player falls, its bounding box has an aspect ratio
higher than 1. Therefore, a player tracklet whose bounding
box has an aspect ratio higher than a given threshold for a
certain number of consecutive frames is considered to be a
fallen player tracklet, which can be matched to the robots’
internal states and provides another strong signal.
Penalties: In RoboCup soccer, the robots are penalized and
removed from the field if they fail to follow the game rules,
e.g. if they commit a foul or suddenly start leaving the field.
These events are used to add constraints to the problem to
prevent the optimizer from matching an active tracklet to a
penalized player.

3.6. Global optimization

Even though there are at most 10 active robots in the
considered soccer matches, occlusions and distractors cause
Tracktor to split the tracks into a large number of track-
lets. Therefore, we frame the long-term tracking problem
as an assignment of tracklets to a fixed number of player
tracks. It is modeled as a constrained quadratic binary opti-
mization problem. We denote the index set of player tracks
I = {1, ..., N} (with N = 10) and generated tracklets
J = {1, ...,M}. The objective is to minimize:

H(x) =
∑
i∈I

∑
j∈J

xi,j(Ou +
∑
l∈L

wlcli,j)

+
∑
i∈I

∑
j∈J

∑
k∈J

xi,jxi,k(
∑
p∈P

wpcpj,k),
(1)

where xi,j ∈ {0, 1} are binary optimization variables, with
xi,j = 1 meaning tracklet j is assigned to track i, L and
P is the number of unary and pairwise cost functions, cli,j
the unary (tracklet-to-track) costs, and cpi,j,k the pairwise
(tracklet-pair-to-track) costs. The scalars wl, wp are the
cost weights and the scalars Ou denote the offsets. The off-
sets are negative to penalize the trivial solution of assigning
nothing (xi,j = 0 ∀i, j).

To prevent generating invalid tracking solutions, the fol-
lowing constraints are implemented. The first set of con-
straints ∑

i∈I

xi,j ≤ 1,∀j ∈ J, (2)

prevents assigning a single tracklet to multiple tracks. The

second set of constraints is implemented to avoid merging
temporally overlapping tracklets

xi,jxi,k = 0 ∀i ∈ I, ∀(j, k) ∈ J × J : Tj ∩ Tk ̸= ∅,

where Tj , Tk represent the set of frames in which detections
exist for tracklets j and k respectively.

3.7. Cost terms

Our formulation uses two types of cost terms: 1) Unary
cost terms are a measure for the fit between tracklets and
tracks. 2) Pairwise cost terms measure the fit between pairs
of tracklets. Overall, we utilize the following cost-terms:
Self-localization - During the matches each robot sends its
estimated position on the field (x, y) once per second. The
signal is linearly interpolated between timestamps and the
distance to the position estimated from the external cam-
era is computed. Averaged over each tracklet, this provides
a strong prior for the assignment problem. To encourage
matching a tracklet to a player’s track when its trajectory is
close to the player’s communicated trajectory, we define the
following cost term:

cloci,j =
βloc

|Tj |
∑
t∈Tj

||τ̂ tj − τ̃i(t)|| (3)

where βloc is a scaling factor.
Jersey color detection - Let p̄Hj and p̄Aj be the mean prob-
abilities of tracklet j belonging to a player of the Home or
Away teams respectively. We encourage matching tracklets
to the correct team with:

cteami,j =

{
1− p̄Hj if i ∈ IH

1− p̄Aj if i ∈ IA
(4)

Fallen robot state - Fallen player tracklets detected with the
heuristic described above can be easily matched to fallen
player events in the Game Controller logs. Given a fallen
robot event reported by player i recorded in a given time
frame, for each fallen robot tracklets detected in the same
time frame we add a fixed cost term cfallen = 1 to discour-
age matching these tracklets to other players.
Duration - To filter out false positive tracklets, which are
usually short, we use the following cost term to encourage
matching with longer tracklets:

cdurationi,j = min(1,
µ

Tj
) (5)

where µ is a tunable threshold.
Global trajectory continuity - A pair of consecutive non-
overlapping tracklets (j, k) is more likely to belong to the
same track if the earlier tracklet ”ends near” the start of the
later tracklet. We extrapolate the pose of the earlier tracklet
j from its end position using a constant velocity model:
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τ̂j(t) = (x̂
tj,f
i , ŷ

tj,f
i )⊤ + (t− tj,f)(v̂

tj,f
i , ŵ

tj,f
i )⊤ (6)

We define the following pairwise cost term based on the
distance to the start of any temporally close tracklet:

cconti,j,k = ||τ̂j(tk,i)− τ̂
tk,i
k ||

∀i ∈ I, (j, k) ∈ J × J : 0 < tk,i − tj,f < θcont
(7)

where tj,f = max(Tj), tk,i = min(Tk), θ̂
tk,i
k is the earli-

est pose of tracklet k, and θcont is a tunable parameter.

3.8. Optimization of Cost Weighting

The weights for each cost term and the offsets define
the optimization problem and thus the performance of the
tracking results. Assigning a high weight to a cost term en-
sures that the optimizer pays more attention to that attribute,
while the offsets implement an error threshold for tracklet
assignment. We use PSO to optimize the weights for the
cost terms using the ground truth training data to maximize
the metrics. For this work, the initial particles are initialized
randomly over the search space. The weights correspond-
ing to the different cost terms and the offsets are the values
represented by each particle. At each step, the values of the
particles that correspond to the cost terms are updated such
that they are non-negative and their sum is normalized to
1. This ensures that no redundant information is modeled.
At the same time, the value corresponding to the offset for
each particle is kept negative. In this work, 50 particles are
initialized randomly and the optimization is run for 100 it-
erations. The cognitive parameter and the social parameter,
which control a particle’s affinity to its best position and the
global best position are kept at 2 for the whole run. The
objective function is the average of the MPIR for all the
sequences and the optimization aims to maximize it. The
search stops when the number of iterations are completed
or when all particles have converged to the same position.

3.9. Reference Method: DeepSORT

While our task provides information beyond what com-
mon tracking pipelines are able to utilize, it is important to
quantify the performance relative to existing trackers. To
fulfill the task of long-term tracking and player identifica-
tion we augment the DeepSORT tracker [50,51] by a greedy
tracklet matching algorithm.

DeepSORT is an extension of the optimization-based
SORT algorithm [5] that integrates appearance information
from a pre-trained network to create a deep association met-
ric. This metric combines motion and appearance cues to
establish measurement-to-track associations during track-
ing. Motion cues are integrated through Kalman filtering

Time
Frame

30 150 300 900 1800 3600 5400

MPIR 42.45 42.31 40.08 43.75 38.40 38.51 38.51

Table 1. DeepSort Performance with different re-identification
time.

and data association is performed using the Hungarian al-
gorithm.

While DeepSORT can handle occlusions by using the
re-identification module, it commonly is only able to do so
over short timeframes. We, therefore, combine it with a
greedy tracklet matching approach. Any tracklet which has
not been assigned is matched with the spatialy closest inac-
tive track. Furthermore, constraints are applied to prevent
multiple tracklets being assigned to the same track if they
have any time overlap. At the start of each run, the total
number of robots which are present in that session is pro-
vided for initialization. This provides additional privileged
information and can bound the maximum number of tracks
which are generated.

Furthermore, a pure tracking pipeline like DeepSORT
is able to generate long-term tracks, but cannot detect the
ID of each robot. To circumvent this issue, we manu-
ally assign the first tracklet appearing for each robot to the
corresponding ground-truth ID, which forms an oracle ap-
proach for identification i.e. a perfect tracker would also
perform perfect identification using this approach. While
this provides additional information beyond what is used in
our method, it allows us to compare our method to a fair
tracking-baseline that uses the best-possible identification
approach.

Finally, to allow for a well performing baseline and fair
comparison, we tune the DeepSort baseline re-identification
time over the test set. Table 1 shows the different metrics for
different values of re-identification time. The algorithm’s
performance shows an increase with the increase in the
number of frames within the reidentification window. How-
ever, when it is too high, the performance degrades, as the
initial tracklets are more likely to contain ID-switches and
therefore contain errors that cannot be corrected later.Based
on this, we select a maximum re-identification time of
900 frames corresponding to 30s of video for our baseline
method.

4. Experimental Results
We evaluate our approach over a test set of 3 sequences

of 5000 frames recorded at 30 frames per second. Each
video covers a different game, thus testing our approach
with different levels of player self-localization accuracy,
team colors, and environmental conditions. Since we are
primarily interested in correctly identifying players in ev-
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Method MPIR

ours 88.11
Oracle Deepsort [51] 43.76

Table 2. Results on the testset for our approach and the extended
deepsort baseline. All values are provided in percent.
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88.11 15.39 51.14 76.48 86.22 76.27 83.33

Table 3. The ablation study evaluates the influence of removing
different information used to match tracklets to tracks. All num-
bers are provided in percent MPIR on the testset.

ery frame, commonly used MOT metrics such as MOTA
are not relevant, as they do not measure player identifica-
tion performance. Therefore, we define an ad-hoc metric
more suited to our problem setting, the Mean Player Identi-
fication Recall (MPIR). For each frame t in a sequence, we
match the bounding boxes predicted by the tracker to the
ground truth based on an IoU-threshold of 0.5. We denote
with TPt the number of correctly identified bounding boxes
and with FNt the number of incorrectly identified bounding
boxes. The tracking metrics then read as:

MPIR =
1

T

T∑
t=1

TPt

TPt + FNt
. (8)

Table 3 shows the Mean Player Identification Recall
(MPIR), the ratio of times each player has been identified
correctly. The first column shows our full approach. Subse-
quent columns show ablations, with each feature removed
separately. The cost weightings are optimized using PSO
for each scenario. Figures 2 and 3 provide a visual rep-
resentation of the results obtained with our algorithm on a
sequence from a match played at RoboCup 2019.

Figure 2. Visualization of robots identified by the tracker. The
tracking result is represented by bounding boxes and IDs at their
top. Ground truth positions are represented by green crosses and
corresponding green IDs.

Figure 3. Top-view of Figure 2. The dotted lines represent the
players’ self-localization trajectories. The red lines are the track-
let trajectories in field coordinates. For each tracklet, the original
ID and the matched player ID are shown. The purple arrows con-
nect each tracklet trajectory to the self-localization trajectory of
the player to which the tracklet has been matched.

4.1. Ablation Study

We perform an ablation study and depict results in Ta-
ble 3. With all features, we achieve 88.11% MPIR. Remov-
ing the robot self localization has the strongest impact with
15.39% MPIR remaining, while removing the fallen robot
flag results in the least performance drop. This is expected
since the self-localization is an important attribute that pro-
vides information about the position of the robot in the field
and consequently the image. The fallen robot flag is noisy,
as it relies on the robot’s IMU and an approximate heuristic
to detect whether the robot has fallen in the video.

Figure 4. Feature weights for ablated features.
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Seq
#

Self-
Local.

Jersey Track
Time

Fallen Traj.
cont.

Offset

6 0.27 0.16 0.34 0.02 0.22 -0.19
7 0.20 0.0 0.4 0.04 0.36 -0.45
8 0.35 0.28 0.23 0.0 0.14 -0.2

Table 4. Cost weights optimized individually for each sequence in
the test set with PSO.

4.2. Feature Importance

We further analyze each feature’s importance through
the weights obtained from the PSO optimizer, where a
higher weight indicates higher importance. Figure 4 shows
the importance of the features in each column for the ab-
lations represented by each row of the table. The first row
corresponds to the full model and each following row to one
of the ablations where a single feature weight is set to zero.

While the weighting of different features needs to be
handled with care due to their scaling, we can compare
the weights of the same feature in different ablations di-
rectly. Strong weights are assigned to the self-localization
and tracklet duration, which provide strong indicators for
matching and tracklet confidence. Removing these fea-
tures shows that weighting is redistributed: While in the
full model the noisy fallen robot events are not used, they
are incorporated when no self-localization information is
available. In this case, the primary source of information to
match tracklets to robot IDs is missing but can be replaced
by matching the fallen robots.

4.3. Explainability

Using several sequences for the optimization of cost
weights yields weights which can generalize to new data.
However, since the matches are played by different teams
which have non-identical algorithms running on the robots,
the weights might be suboptimal for some matches. By
searching for the parameters which yield the best results on
a single sequence, we can further understand the shortcom-
ings and types of noise exhibited by each team. This further
allows us to better understand and explain the inner work-
ings of the proposed algorithm. For this purpose, we use
PSO to optimize the weights individually for each sequence
in the test set to find the optimal cost weights. Then we
compare the resulting parameters, reported in Table 4, with
qualitative observations on the game-videos itself. We dis-
cuss the outcome of this analysis in the following.
Sequence 6 - In this sequence, the self-localization cost is
given a relatively high weight. This sequence was extracted
from the 2022 championship final between the top teams in
the league and it was played under ideal lighting conditions,
so the players’ self-localization is accurate. Thus, a higher
weight on this feature is expected. However, throughout

this sequence, several players are penalized and manually
moved outside of the field, which causes their internal posi-
tion estimate to diverge and match less closely the tracklet
trajectories. The jersey color detection is also assigned a
comparatively high weight. The jersey colors of the two
teams differ strongly and are detected accurately.

Finally, we can observe that tracklet duration is also
given high importance. In this sequence, the players are
completely occluded by the referees at several points in
the sequence, during which many short-lived false-positive
tracklets are created. However, since the players are dis-
tributed evenly on the field the rest of the time, there are
also several long-lived tracklets. Since matching these cor-
rectly can significantly affect the metrics, prioritizing this
feature helps the identification process.
Sequence 7 - In this sequence, the self-localization weight
bears the lowest weight of all three sequences. This is be-
cause the self-localization is accurate for one of the teams,
but is often very noisy and incorrect for the other. The
players are rarely occluded by the referees and the play-
ers do not often cluster in one part of the field as often seen
these matches. As a result, there are several long lived and
very accurate tracklets, hence the higher importance given
to tracklet duration. The large offset term is most likely
related to the low occurrence of tracklet switching and de-
tection false positives, the optimization. Hence, this term
discourages the optimizer from discarding tracklets.
Sequence 8 - In this sequence, the self-localization has
a high weight. Self-localization is accurate for one team
(black jersey), but is rather unreliable for the other team
(yellow jersey) because of a software malfunction causing
the players to often report their position to be in the center
of field. However, several players of the later team are pe-
nalized for the game for most of the sequence, which means
no tracklets are assigned to them due to the constraints. As a
result, most of the tracklets represent the black team, result-
ing in a good self-localization performance, which makes it
an important feature. Jersey color detection also carry high
importance in this sequence. This is because the jersey col-
ors of the two teams are strongly distinct and easy to detect,
such that team detection can easily help differentiate track-
lets belonging to players of different teams.

5. Conclusion
In this work, we presented a sensor fusion based method

for tracking multiple similar humanoid robots. We utilize
information from both visual data and their own sensors
by combining tracklets using a quadratic optimization tech-
nique. The method allows automated tracking of robots
over a long time on a stationary video sequence. Open
points that we will investigate in the future include the eval-
uation in more complex environments as well as the inter-
polation of tracks during occlusions.
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