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Abstract

Semantic segmentation is a fundamental task in visual
scene understanding. We focus on the supervised set-
ting, where ground-truth semantic annotations are avail-
able. Based on knowledge about the high regularity of real-
world scenes, we propose a method for improving class pre-
dictions by learning to selectively exploit information from
neighboring pixels. In particular, our method is based on
the prior that for each pixel, there is a seed pixel in its close
neighborhood sharing the same prediction with the former.
Motivated by this prior, we design a novel two-head net-
work, named Offset Vector Network (OVeNet), which gen-
erates both standard semantic predictions and a dense 2D
offset vector field indicating the offset from each pixel to
the respective seed pixel, which is used to compute an al-
ternative, seed-based semantic prediction. The two predic-
tions are adaptively fused at each pixel using a learnt dense
confidence map for the predicted offset vector field. We
supervise offset vectors indirectly via optimizing the seed-
based prediction and via a novel loss on the confidence
map. Compared to the baseline state-of-the-art architec-
tures HRNet and HRNet+OCR on which OVeNet is built,
the latter achieves significant performance gains on three
prominent benchmarks for semantic segmentation, namely
Cityscapes, ACDC and ADE20K. Code is available at
https://github.com/stamatisalex/0OVeNet.

1. Introduction

Semantic segmentation is one of the most central tasks
in computer vision. In particular, it is the task of assign-
ing a class to every pixel in a given image. It has lots
of applications in a variety of fields, such as autonomous
driving [9,30], robotics [3,065], and medical image process-
ing [1,57], where pixel-level labeling is critical.

The adoption of convolutional neural networks (CNNs)
[47] for semantic image segmentation has led to a tremen-
dous improvement in performance on challenging, large-
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Figure 1. The semantic content of real-world scenes has a high
degree of regularity. We propose a semantic segmentation method
which can exploit this regularity, by learning to selectively lever-
age information from neighboring seed pixels. Our proposed Off-
set Vector Network (OVeNet) can improve upon state-of-the-art ar-
chitectures [68] by estimating the offset vectors to such seed pixels
and using them to refine semantic predictions.

scale datasets, such as Cityscapes [21], MS COCO [42] and
ACDC [58]. Most of the related works [14, 17,51, 68, 76]
focus primarily on architectural modifications of the em-
ployed networks in order to better combine global context
aggregation and local detail preservation, and use a simple
loss that is computed on individual pixels. The design of
more sophisticated losses [32,49,77] that take into account
the structure which is present in semantic labelings has re-
ceived significantly less attention. Many supervised tech-
niques utilize a pixel-level loss function that handles pre-
dictions for individual pixels independently of each other.
By doing so, they ignore the high regularity of real-world
scenes, which can eventually profit the final model’s per-
formance by leveraging information from adjacent pixels.
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Thus, these methods misclassify several pixels, primarily
near semantic boundaries, which leads to major losses in
performance.

Based on knowledge about the high regularity of real
scenes, we propose a method for improving class predic-
tions by learning to selectively exploit information from
neighboring pixels. In particular, the general nature of this
idea is applicable on SOTA models like HRNet [68] or HR-
Net + OCR [77] and can extend these models by adding a
second head to them capable of achieving this goal.

The architecture of our Offset Vector Network (OVeNet)
is shown in Fig. 2. In particular, following the base architec-
ture of the backbone model (e.g HRNet or HRNet + OCR),
the first head of our network outputs the initial pixel-level
semantic predictions. In general, two pixels p and q that
belong to the same category share the same semantic out-
come. If the pixels belong to the same class, using the label
of q for estimating class at the position of p results in a
correct prediction.

We leverage this property by learning to identify seed
pixels which belong to the same class as the examined pixel,
whenever such pixels exist, in order to selectively use the
prediction at the former for improving the prediction at the
latter. This idea is motivated by a prior which states for ev-
ery pixel p associated with a 2D semantically segmented
image, there exists a seed pixel q in the neighborhood of
p which shares the same prediction with the former. In or-
der to predict classes with this scheme, we need to find the
regions where the prior is valid. Furthermore, in order to
point out the seed pixels in these regions, we must predict
the offset vector o(p) = q — p for each pixel p.

As a result, we design a second head that generates a
dense offset vector field and a confidence map. The pre-
dicted offsets are used to resample the class predictions
from the first head and generate a second class prediction.
The outcomes from the two heads are fused adaptively us-
ing the learnt confidence map as fusion weights, in order
to down-weigh the offset-based prediction and rely primar-
ily on the basic class prediction in regions where the prior
is not valid. Thanks to using seed pixels for prediction,
our network classifies several pixels with incorrect initial
predictions, e.g., boundary pixels, to the correct classes.
Thus, it improves the shape as well as the form of the cor-
responding segments, leading to more realistic results. Last
but not least, we propose a confidence loss which super-
vises the confidence map explicitly and further improves
performance. An illustrative example of this concept is de-
picted in Fig. 1, where OVeNet outperforms the baseline
HRNet [68] model, since it enlarges correctly the road and
the car segment (red and yellow frame correspondingly) and
reduces the total number of misclassified pixels.

We evaluate our method extensively on 3 primary
datasets, each serving a specific purpose. For semantic

segmentation in driving scenes, we focus on two bench-
marks: Cityscapes [21] and ACDC [58]. Additionally, we
broaden our evaluation by incorporating the ADE20K [86,

] dataset, which covers a diverse range of images span-
ning various indoor and outdoor scenes. We imple-
ment our offset vector branch both on HRNet [68] and
HRNet+OCR [78]. Our approach significantly improves
the initial models’ output predictions by achieving better
mean and per-class results. We conduct a thorough qualita-
tive and quantitative experimental comparison to show the
clear advantages of our method over previous SOTA tech-
niques.

2. Related Work

Semantic segmentation architectures. Fully convolu-
tional networks [59, 60] were the first models that re-
architected and fine-tuned classification networks to direct
dense prediction of semantic segmentation. They gen-
erated low-resolution representations by eliminating the
fully-connected layers from a classification network (e.g
AlexNet [34], VGGNet [62] or GoogleNet [63]) and then
estimating coarse segmentation maps from those represen-
tations. To create medium-resolution representations [ 13—

, 36, 76], fully convolutional networks were expanded
using dilated/atrous convolutions, which replaced a few
strided convolutions and their associated ones. Following,
in order to restore high-resolution representations from low-
resolution representations an upsample process was used.
This process involved a subnetwork that was symmetric to
the downsample process (e.g VGGNet [62]), and included
skipping connections between mirrored layers to transform
the pooling indices (e.g. DeconvNet [51]). Other methods
include duplicating feature maps, which is used in architec-
tures like U-Net [57] and Hourglass [8,20,22,31,50,64,73,

] or encoder-decoder architectures [2,55]. Lastly, the pro-
cess of asymmetric upsampling [7, 18,29,41,54,66,71,81]
has also been extensively researched.

The models’ representations were then enhanced to in-
clude multi-scale contextual information [10, 11, 82]. PSP-
Net [83] utilized regular convolutions on pyramid pooling
representations to capture context at multiple scales, while
the DeepLab series [14, 15] used parallel dilated convolu-
tions with different dilation rates to capture context from
different scales. Recent research [26, 35, 74] proposed ex-
tensions, such as DenseASPP [74], which increased the
density of dilated rates to cover larger scale ranges, or
HS3 [5], which supervised intermediate layers in a seg-
mentation network to learn meaningful representations by
varying task complexity. Other studies [17, 25, 38] used
encoder-decoder structures to exploit the multi-resolution
features as the multi-scale context. Here belongs the HRNet
[68], the baseline model of our method. HRNet connects
high-to-low convolution streams in parallel. It ensures that
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high-resolution representations are maintained throughout
the entire process and creates dependable high-resolution
representations with accurate positional information by re-
peatedly merging the representations from various resolu-
tion streams. Applying additionally the OCR [77] method,
HRNet + OCR is one of the leading models in the task of
semantic segmentation.

Lately, transformers have been successful in computer
vision tasks demonstrating their effectiveness. ViT [23] was
the first attempt to use the vanilla transformer architecture
[67] for image classification without extensive modifica-
tion. Unlike later methods, such as PVT [69] and Swin [46],
that incorporated vision-specific inductive biases into their
architectures, the plain ViT suffers inferior performance on
dense predictions due to weak prior assumptions. To tackle
this problem, the ViT-Adapter [19] was introduced, which
allowed plain ViT to achieve comparable performance to
vision-specific transformers and achieves the SOTA perfor-
mance on this task.

Semantic segmentation loss functions. Image segmenta-
tion has highly correlated outputs among the pixels. Con-
verting pixel labeling problem into an independent prob-
lem can lead to problems such as producing results that
are spatially inconsistent and have unwanted artifacts, mak-
ing pixel-level classification unnecessarily challenging. To
solve this problem, several techniques [16, 33,45, 85] have
been developed, such as integrating structural information
into segmentation. For instance, Chen et al. [14] utilized
denseCRF [33] for refining the final segmentation result.
Following, Zheng et al. [85] and Liu et al. [45] made the
CRF module differentiable within the deep neural network.
Other methods that have been used to encode structures in-
clude pairwise low-level image cues like grouping affinity
(e.g. SPNs [44], Affinity CNNs [48]) and contour cues
[4, 12]. InverseForm [0] is another boundary-aware loss
term using an inverse-transformation network, which effi-
ciently learns the degree of parametric transformations be-
tween estimated and target boundaries. GANs [56] are an
alternative for imposing structural regularity in the neural
network output. However, these methods may not work
well in cases where there are changes in visual appearance
or may require expensive iterative inference procedures.
Thus, Ke et. al. [32] introduced AAFs, which are easier
to train than GANs and more efficient than CRF without
run-time inference. There has been also proposed another
loss function [49] suitable for in real time applications that
pulls the spatial embeddings of pixels belonging to the same
instance together.

Offset Vector-Based methods are essential for image anal-
ysis tasks that involve adjacent pixels. In particular, they
can effectively exploit the information contained in neigh-
bouring pixels, handle image distortions and noise, and im-
prove the accuracy of various image analysis tasks. They

can be used in applications such as depth estimation [52,53]
or semantic segmentation [49,79]. Non-local SPNs [52] en-
hance depth completion by iteratively refining initial depth
predictions using non-local neighbors. Based on knowledge
about the high regularity of real 3D scenes, P3Depth [53]
is another method used for 3D depth estimation that learns
to selectively leverage information from coplanar pixels to
improve the predicted depth. In semantic segmentation,
SegFix [79] is a model-agnostic post-processing scheme
that improved the boundary quality for the segmentation
result. Motivated by the empirical observation that the la-
bel predictions of interior pixels are more reliable, SegFix
replaced the originally unreliable predictions of boundary
pixels by the predictions of interior pixels. OVeNet pro-
vides another perspective to use offset vectors and structure
modeling by matching the relations between neighbouring
pixels in the label space. Although our approach is inspired
by the P3Depth idea, we focus on a different task in the
2D world which is semantic segmentation. Moreover, the
key difference between our method and SegFix is the tim-
ing of when they are applied. Essentially, OVeNet integrates
the offset vector learning process into the model training,
while SegFix applies the offset correction as a separate post-
processing step.

3. Method

In this section, we will analyze our method shown in Fig.
2. Firstly, in Sec. 3.1 we give some basic notation and ter-
minology of semantic segmentation. As we mentioned be-
fore in Sec. 1, our network estimates semantic labels by
selectively combining information from each pixel and its
corresponding seed pixel. The intuition and the advantages
of using seed pixels to improve the initial prediction of a
model are described analytically in Sec. 3.2. Lastly, in Sec.
3.3 we introduce an additional confidence loss, which fur-
ther enhances our method.

3.1. Terminology

Semantic segmentation requires learning a dense map-
ping fo : I(u,v) — S(u,v) where I is the input image with
spatial dimensions H x W, S is the corresponding output
prediction map of the same resolution, (u,v) are pixel co-
ordinates in the image space and 6 are the parameters of the
mapping f. In supervised semantic segmentation, a ground-
truth semantically segmented map H is available for each
image during training. The aim is to optimize the function
parameters 6 such that the predicted output map is as close
as possible to the ground-truth map across the entire train-
ing set T'. This can be achieved by minimizing the differ-
ence between the predicted and ground-truth images:

min > L(fo(D), H) (1)

(I,H)eT
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Figure 2. Overview of OVeNet. OVeNet is a two-headed network. The first head outputs semantic logits (C), while the second head
outputs a dense offset vector field (o) identifying positions of seed pixels along with a confidence map (F'). The logits are passed through a
softmax function and output the initial class prediction (S;) of the model. Then, the offset vectors are used to resample the logits from the
first head and generate a second class prediction (Ss). The two predictions are adaptively fused using the confidence map resulting in the
final prediction Sy. For the visualization of the offset vectors we use the optical flow color coding from [28]. Smaller vectors are lighter

and color represents the direction.

where L is a loss function that penalizes variations between
the prediction and the ground truth.

3.2. Seed Pixel Identification

Let us assume we have one pixel p which belongs to
segment of a semantically segmented image. By definition,
every other pixel on this segment has the same class value.
Thus, ideally, in order to get all of the class values accurate,
the network only has to predict the class at one of these
pixels, q. This pixel can be interpreted as the seed pixel
that describes the segment-class. Finally, we let the network
find this seed pixel and the corresponding region.

Let us define a prior which is a relaxed version of the
previous idea.

Definition 1 For every pixel p associated with a 2D seman-
tically segmented image, there exists a seed pixel q in the
neighborhood of p which shares the same prediction with
the former.

In general, there may be numerous seed pixels for p or
none at all. Given that the Definition 1 holds, semantic seg-
mentation task for p can be solved by identifying q. For
this reason, we let our network predict the offset vector
o(p) = q—p. Thus, we design our model so that it features

a second, offset head and let this offset head predict a dense
offset vector field o(u,v). The two heads of the network
share a common main body and then they follow different
paths. We resample the initial logits C, being predicted by
the first head, using the estimated offset vector field via:

Cs(p) = C(p +o(p)) (2)

To manage fractional offsets, bilinear interpolation is used.
The resampled logits are then used to compute a second se-
mantic segmentation prediction:

Ss(u,v) = h(Cs(u,v),u,v)
= Ss(p) = Si(p+o(p)) (€)

based on the seed locations. In our experiment, h =
softmazx.

Due to the fact that the prior is not always correct, the
initial semantic prediction .S; may be preferred to the seed-
based prediction S;. To account for such cases, the sec-
ond head additionally predicts a confidence map F'(u,v) €
[0, 1], which represents the model’s confidence in adopting
the predicted seed pixels for semantic segmentation via S;.
By adaptively fusing .S; and S,, the confidence map is used

to compute the final prediction:
Sy(p) = (1= F(p))Si(p) + F(p)Ss(p) 4
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We apply supervision to each of Sy, Sy, and S; in our
model, by optimizing the following loss:

Lsemantic = ﬁ(Sf, H) + HE(SS, H) + )\E(S“ H) (5)

with k and X being hyperparameters and H denoting the GT
train ids of each class for each pixel. In this way, we encour-
age the initial model’s head to output an accurate represen-
tation across all pixels, even when they have a high confi-
dence value, and the offset vector head to learn high confi-
dence values for pixels for which Definition 1 holds and low
confidence values for pixels for which the prior does not.

Nonetheless, there is a downside to this approach. Since
the model is not supervised directly on the offsets, it has
the potential to predict zero offsets across the board. This
implies S5 and Sy predictions equivalent to S;. Since the
initial predictions .S; are erroneously smoothed around se-
mantic boundaries due to the regularity of the mapping fy
in the case of neural networks, this undesirable behavior
is avoided in practice. We opt for predicting non-zero off-
sets that point away from the boundary. Such a non-zero
offset utilizes a seed pixel for S located further from the
border and diminishes inaccuracies stemming from smooth-
ing. Furthermore, these non-zero offsets extend from the
boundaries into the inner sections of regions with smooth
segments, aiding the network in forecasting non-trivial off-
sets, thanks to the regularity of the mapping that forms the
offset vector field. Thus, pixels on either side of the bound-
ary have a lower Lgemantic value.

3.3. Confidence-Based Loss

Our confidence loss is based on the concept that given
a pixel coordinate, its surrounding pixels should be in the
same segment. For each pixel p, we define the confidence
loss as follows:

L;(P) = —Lup)=H(p+o(p)) l0g F(P)
— Lr(p)£H(pto(p)) log(1 — F(p))  (6)

This idea is motivated by the fact that the confidence
value should be large for pixels whose offset vector points
to seed pixels with the same class. Similarly, the confidence
value should be small for pixels whose offset vector points
to seed pixels with a different class.

To sum up, the complete loss is:

['ﬁnal = Esemantic + Ef (7)

4. Experiments

To evaluate the proposed method, we carry out com-
prehensive experiments on the Cityscapes, ACDC and
ADE20K datasets. Experimental results demonstrate that

our method, compared to the baseline state-of-the-art archi-
tectures HRNet [68] and HRNet + OCR [78] on which it
is built, achieved higher performance, outperforming these
baselines. In the following, we first introduce the datasets,
evaluation metrics and implementation details in Sec. 4.1.
We then compare our method to SOTA approaches in Sec.
4.2. Finally, we perform a series of ablation experiments on
Cityscapes in Sec. 4.3.

4.1. Experimental Setup

In this section, we present the Cityscapes, ACDC and
ADE20K datasets, which are used to evaluate our approach.
Evaluation on these datasets is performed using standard
semantic segmentation metrics explained below.
Cityscapes [2 1] is a challenging urban scene understanding
dataset. There are 30 classes from which only 19 classes
are used for parsing evaluation. Around 5000 high qual-
ity pixel-level finely annotated images and 20000 coarsely
annotated images make up the collection. The finely anno-
tated 5000 images are divided into 2975, 500, 1525 images
for training, validation and testing respectively.

ACDC [58] is a demanding dataset, used for training and
testing semantic segmentation methods on adverse visual
conditions. There are 4006 images divided evenly between
four frequent unfavorable conditions: fog, dark, rain, and
snow and 19 semantic classes, coinciding exactly with the
evaluation classes of the Cityscapes dataset. It includes
1600 training and 406 validation images with public anno-
tations and 2000 test images with annotations withheld for
benchmarking purposes.

ADE20K [86] is a challenging scene parsing dataset which
covers a diverse range of images depicting various indoor
and outdoor scenes. It consists of 20210 images as the train-
ing set and 2000 images as the validation set. There are
totally 150 semantic classes, including categories like sky,
road, grass and discrete objects like person, car, bed.
Evaluation Metrics. The mean of class-wise intersection
over union (mloU) is adopted as the evaluation metric. In
addition to the mean of class-wise intersection over union
(mloU), we report other three scores on the test set: IoU
category (cat.), iloU class (cla.) and iloU category (cat.)
Implementation Details. Our network consists of two
heads. The first head outputs 19 channels, one for each
class. The second head outputs three channels: one for
each coordinate of the offset vectors and one for confi-
dence. These two heads follow the structure of HRNet.
Both OVeNet and the baseline HRNet are initialized with
pre-trained ImageNet [34] weights. This initialization is
important to achieve competitive results as in [68]. Fol-
lowing the same training protocol as in [68], the data are
augmented by random cropping (from 1024 x 2048 to 512
x 1024 in Cityscapes and from 1080 x 1920 to 540 x 960
in ACDC), random scaling in the range of [0.5, 2], and ran-
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dom horizontal flipping.We use the SGD optimizer with a
base learning rate of 0.01, a momentum of 0.9 and a weight
decay of 0.0005. The number of epochs used for training
is 484. For lowering the learning rate, a poly learning rate
policy with a power of 0.9 is applied. The offset vectors are
restricted via a tanh layer to have a maximum length of 7
in normalized image coordinates. After an ablation study
shown in Sec. 4.3, we set 7, A and p to 0.5 by default and
branching is applied at the last (4*") stage of HRNet. The
confidence map is predicted through a sigmoid layer. For
Si, Ss and Sy predictions, Ohem Cross Entropy Loss [61]
is used. We first experimented with predicting .S;, Ss and Sf
directly, but this led to inferior results. On the other hand,
our final model for which we report performance in the pa-
per outputs the S;, S, Sy logits. In addition, the confidence
based loss is applied using the final semantic prediction Sy.

4.2. Comparison with the State of the Art

Cityscapes. The results on Cityscapes are shown below.
We achieve better results on Cityscapes than both the ini-
tial HRNet and HRNet + OCR model under similar train-
ing time, outperforming prior SOTA methods based on HR-
Net backbones. Table 1 compares our method with SOTA
methods on the Cityscapes test set. All the results are with
six scales and flipping. Two cases w/o using coarse data
are evaluated: one is about the model learned on the train
set, and the other on the train + val set. Our offset vector
model excels in both cases with performance gains of 1.4%
in mloU, 2.4% in iloU cat. 0.4% in IoU cat. and 1.4%
in iloU cat. over the HRNet model learned only on train
set and a gain of 0.5% in mIoU over the HRNet + OCR
model learned on both train + val set. The OVeNet model
which is built on HRNet and trained on the training set out-
performs the HRNet baseline model which is trained on the
training + val set. Table 2 thorougly compares our approach
with HRNet’s per-class results. Our method achieves better
results in the majority of classes. Our offset vector-based
model learns an implicit representation of different objects
which can benefit the overall semantic segmentation esti-
mation capability of the network. Regarding val set results,
HRNet achieves 81.8% mloU while OVeNet built on it sur-
passes it reaching 82.4% mloU .

Qualitative results on Cityscapes support the above find-
ings, as shown in Fig. 3. To be more specific, from left
to right, we depict the RBG input image, GT image, CC-
Net’s [27], DANet’s [24], HRNet’s [78] and our model’s
prediction. Specifically, our model demonstrates successful
classification of incorrectly predicted pixels (identified by a
red and a blue frame) in the first example. In the second
example, OVeNet exhibits superior performance compared
to previous models, as it accurately expands the sidewalk
and the pole depicted in the blue and yellow frames, respec-
tively. Furthermore, not only does it successfully eliminate

Table 1. Semantic segmentation results on Cityscapes test set..
We compare our method against SOTA methods as in [68].D-
ResNet-101 = Dilated-ResNet-101. By default, OVeNet is built
on HRNet, unless stated otherwise.

| backbone | mIoU iloU cla. IoU cat. iloU cat.

Model learned on the t rain set

PSPNet [82] D-ResNet-101 78.4  56.7 90.6 78.6
PSANet [84] D-ResNet-101 78.6 - - -
HRNet [68] HRNetV2-W48 | 80.4  59.2 91.5 80.8
OVeNet ‘ HRNetV2-W48 ‘ 81.8 61.6 91.9 82.2
Model learned on the t rain+val set

DeepLab [10] D-ResNet-101 70.4 42.6 86.4 67.7
RefineNet [40] ResNet-101 73.6  47.2 87.9 70.6
DSSPN [37] D-ResNet-101 76.6  56.2 89.6 77.8
ResNet38 [70] WResNet-38 78.4  59.1 90.9 78.1
PADNet [72] D-ResNet-101 80.3 58.8 90.8 78.5
CFNet [80] D-ResNet-101 79.6 - - -
Auto-DeepLab [43] - 80.4 - - -
DenseASPP [82] WDenseNet-161 | 80.6  59.1 90.9 78.1
CCNet [27] D-ResNet-101 81.4 - - -
DANet [24] D-ResNet-101 81.5 - - -
HRNet [68] HRNetV2-W48 | 81.6  61.8 92.1 82.2
HRNet + OCR [78] HRNetV2-W48 | 81.9 62.0 92.0 82.5

OVeNet (HRNet + OCR) ‘ HRNetV2-W48 ‘ 82.4 61.6 91.9 82.2

discontinuities in the pink frame, but it also predicts a bet-
ter representation of the bicycle’s shape. As far as the last
two examples are concerned, our model shrinks the false
predictions of HRNet on sidewalk, pole and bus segments
resulting in a superior prediction compared to the HRNet
baseline. To sum up, OVeNet surpasses the performance of
HRNet.
ACDC. We also outperform initial HRNet and prior SOTA
methods under similar training time. Table 4 compares our
approach with SOTA models not only on all methods but
also on different conditions of the ACDC test set. OVeNet
improves the initial HRNet model by 2.5% mloU in ”All”
conditions. Additionally, we can observe from the per class
results shown on Table 3 on different conditions, that our
approach outperforms HRNet in the vast majority of classes
as well as in the total mIoU score. Specifically, in foggy
images, small-instance classes like person, rider and bicycle
perform poorly because of contrast reduction and resolution
issues due to distant instances. There is also a huge perfor-
mance boost of approximately 10% and 15% on the bus”
and “truck” class respectively. Moreover, it is more difficult
to separate classes at night that are often dark or poorly lit,
such as buildings, vegetation, traffic signs, and the sky. This
behaviour is observed also in offset vector performance as
they have small values when the visibility is limited. Lastly,
during night and snow conditions, road and sidewalk perfor-
mance is at its lowest, which can be attributed to misunder-
standing between the two classes as a result of their similar
look. As for val set results, HRNet achieves 75.5% mloU
while our OVeNet surpasses it reaching 75.9% mloU.
Qualitative results on ACDC support the above findings,
as shown in Fig. 4. To be more specific, in the first column,
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Figure 3. Qualitative results of selected examples on Cityscapes.From left to right: RGB Input Image, GT, CCNet [27], DANet [24],

HRNet [68], OVeNet. Best viewed on a screen and zoomed in.

Table 2. Per Class Results on Cityscapes test set

z 3 ® 3 g g o g 2

2 9 = = g 2 = g o) g - 2 5 S ” = 2 =
Method E§ ¥ £ § & T 2 % ¢ 5 & 2 ® § & £ E & £ nmou
HRNet [65] 08.73 87.49 93.65 56.48 6157 71.57 78.76 81.81 93.99 7411 95.68 87.05 73.72 96.35 69.04 82.52 76.93 70.88 78.02 80.40
OVeNet 98.74 87.41 93.79 61.65 64.00 71.35 78.98 81.65 94.00 73.42 95.81 87.99 74.36 96.42 74.76 87.70 82.83 T1.77 T7.86 81.82
HRNet + OCR 98.77 87.85 93.72 57.75 63.92 71.74 78.56 81.77 94.06 73.69 95.68 88.04 74.61 96.46 76.40 88.78 84.63 71.79 78.63 81.90
OVeNet (HRNet + OCR) 98.79 87.47 93.86 62.97 64.41 70.80 78.45 8113 93.99 73.31 95.72 88.08 74.90 96.47 76.95 89.95 88.48 71.87 78.43 82.42

Figure 4. Qualitative results of selected examples on ACDC.
From top to bottom: RGB, GT, HRNet [68], OVeNet. Best viewed
on a screen and zoomed in.

we can underline that our model tries to enlarge correctly
the sidewalk segments in both red and green frames and
reduces the erroneous terrain segment predicted by HRNet.
As far as the second example is concerned, HRNet classifies
incorrectly the sign of the house as traffic sign (red frame).
On the contrary, our model corrects not only this mistake,
but also a discontinuity occurring in the yellow frame. Last
but not least, regarding the last set of materials, our offset
vector-based model eliminates correctly the sidewalk area
(red frame), which does not exist in the ground truth.

ADE20K. We also achieve far better results than HRNet

[68] under similar training time. HRNet achieves 44.6%
mloU, 80.7% PixelAcc and 58.2% MeanAcc while OVeNet
surpasses it, reaching 45.3% mloU, 81.3% PixelAcc and
58.7% MeanAcc.

Qualitative results on ADE20K support the above find-
ings, as shown in Fig. 5. To be more specific, in the first
column, we can underline that our model tries to enlarge
correctly the wall and carpet segments (blue and yellow
frames). Regarding the second example, our model corrects
HRNet’s false prediction on the sign but also a discontinuity
occurring in the road. Regarding the last example, although
our offset vector-based model has some false prediction in
the bridge segment (yellow frame), it corrects many erro-
neously classified pixels leading to a better total prediction.

4.3. Ablation study

In order to experimentally confirm our design choices
for the offset vector-based model, we performed an abla-
tion study, as shown in Table 5. We trained and evaluated 7
different variants on Cityscapes. The performance of each
model variation in relation to the ground-truth images was
calculated by means of the mloU. At first, we initialized
both heads of the network with the pre-trained Imagenet
weights and set the offset vector length equal to 0.5. Sec-
ondly, we froze both main body’s and initial head’s weights.
The frozen part of our model was initialized with the cor-
responding Cityscapes final pre-trained weights. The only
part trained was the second head, which was initialized with
pre-trained ImageNet weights. As shown in Table 5, al-
though the performance of our model is higher than the ini-
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Table 3. Per Class Results on ACDC test set. OVeNet is built on HRNet.
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Figure 5. Qualitative results of selected examples on ADE20K.
Up to down: RGB, GT, HRNet [68], OVeNet. Best viewed on a
screen and zoomed in.

tial single-head model’s one, it still remains lower than the
case where both heads are trained simultaneously. Then, we
deactivated the “Frozen” feature and changed the offset vec-
tor’s length logarithmically, setting it either to 1 or 0.2. We
observed that in both cases the performance is lower than
that for 0.5. This is due to the fact that larger offset vectors
point to more distant objects that may affect erroneously
the final prediction, while smaller vectors do not exploit
too much information from neighboring classes. Further-
more, we deactivated the OHEM Cross Entropy Loss and
enabled the simple Cross Entropy Loss. As expected, the
performance of the model was lower. OHEM penalizes high
loss values more and leads to a better training of the model.
Lastly, HRNet [68] consists of 4 stages. In all the previ-
ous cases, branch occurred in the last (4?) stage so as not
to overload the new network with many extra parameters.
When branching in the 37 stage, the performance did not

Table 4. Comparison of the models on different conditions of
ACDC.

Method Fog Night Rain Snow All
RefineNet [39] 65.7 55.5 68.7 65.9 65.3
DeepLabv2 [14] 54.5 45.3 59.3 57.1 55.3
DeepLabv3+[17] 69.1 60.9 741 69.6 70.0
HRNet [68] 69.3 60.6 745 71.5 70.5
OVeNet 72.1 62.8 76.6 74.1 73.0

Table 5. Ablation study of components of our method. “Fr”:
Frozen main body’s and initial head’s weights initialized with HR-
Net’s final Cityscapes weights, “Br”: Branch, “7”: Offset Vector
Length, “OHEM”: OHEM Cross Entropy.

Fr Br T OHEM‘ mloU

v 81.83

4 0.5 v 82.40

v 4 05 v 82.01
4 1 v 81.79

4 0.2 v 82.30

4 0.2 81.96

3 0.2 v 82.20

improve.

5. Conclusion

All in all, we have presented OVeNet, a supervised
model for semantic segmentation, which selectively ex-
ploits information from neighboring pixels to improve ini-
tial semantic predictions. OVeNet excels both in global and
per-class performance across most classes on three widely
used semantic segmentation benchmarks. By correcting
misclassified pixels, it reduces discontinuities and improves
the shapes of segments, leading to more realistic results.
This is a highly relevant contribution for real-world appli-
cations that depend on semantic segmentation, such as au-
tonomous cars or medical imaging and diagnostics.
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