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Abstract

In modern dentistry, teeth localization, segmentation,
and labeling from intra-oral 3D scans are crucial for
improving dental diagnostics, treatment planning, and
population-based studies on oral health. However, creat-
ing automated algorithms for teeth analysis is a challeng-
ing task due to the limited availability of accessible data for
training, particularly from the point of view of deep learn-
ing. This study extends the self-supervised learning frame-
work of the mesh masked autoencoder (MeshMAE) trans-
former. While the MeshMAE loss measures the quality of
reconstructed masked mesh triangles, the loss of the pro-
posed DentalMAE evaluates the predicted deep embeddings
of masked mesh triangles. This yields a better generaliza-
tion ability on a very limited number of 3D dental scans, as
documented by our results on teeth segmentation of intra-
oral scans. Our results show that masking-based unsuper-
vised learning methods may, for the first time, provide con-
vincing transfer learning improvements on 3D intra-oral
scans, increasing the overall accuracy over both MeshMAE
and prior self-supervised pre-training.

1. Introduction

Computer-aided design (CAD) tools have gained signifi-
cant popularity in modern dentistry, especially in orthodon-
tic or prosthetic CAD systems, for accurate treatment plan-
ning. Advanced intra-oral scanners (IOS) are widely used to
obtain precise digital surface models of dentition. The IOSs
produce 3D surface reconstructions of the teeth either in the
form of a point cloud or in a mesh format, or both. These
models are invaluable in simulating teeth extraction, move-
ment, deletion, and rearrangement, enabling dentists to pre-
dict treatment outcomes with greater ease. Consequently,
digital teeth models have the potential to alleviate dentists’
time-consuming and tedious tasks.

Tooth segmentation from intra-oral scans is a key step in
computer-aided dentistry. It can help in recognizing and
classifying different dental/oral conditions like gingivitis,
caries, and white lesions. While tooth segmentation and la-

beling is a first step in digital dentistry, it is difficult due to
the inherent similarities between teeth shapes and the am-
biguity surrounding their positions on jaws. Furthermore,
variations in teeth position and shape across different indi-
viduals present additional challenges in this process. Other
challenges involved in tooth mesh segmentation, such as -
crowded teeth, misaligned teeth, and missing teeth. The
size of teeth can also vary widely across meshes. The sec-
ond and third molars may evade capturing due to their be-
ing in the deep intra-oral regions. Or the second/third molar
might not be fully formed. Different teeth and gum con-
ditions, like recession, enamel loss, etc, can also alter the
appearance of the teeth significantly.

Furthermore, the manual process of segmenting and la-
beling teeth is a time-consuming task that can potentially
miss important data. This has led to a growing interest in
leveraging computer vision and computer science to auto-
mate these processes. Multiple automatic tooth mesh seg-
mentation algorithms have been proposed [37,44,50]. They
include convolutional neural networks (CNNs) for teeth
segmentation from 3D intra-oral scans [14–16, 40, 49, 52].
Recently, the use of CNNs in the analysis of medical images
has experienced significant growth due to advancements in
computational hardware, algorithms, and expansion in the
amount of data [19]. However, CNNs are constrained in
their overall capability due to the inherent inductive biases
they possess [7].

Recent advancements in self-supervised learning have
demonstrated the effectiveness of masked image modeling
(MIM) [3, 10, 39] as a pre-training strategy for the Vision
Transformer (ViT) [7] and the hierarchical Vision Trans-
former using shifted windows (Swin) [1, 2, 20]. MIM in-
volves the masking and subsequent reconstruction of image
patches, allowing the network to infer the masked regions
by leveraging contextual information. We believe that the
ability to aggregate contextual information is crucial in the
context of 3D dental scan analysis. Among various MIM
frameworks, the Masked Autoencoder (MAE) [10] stands
out as a simple yet effective approach. MAE employs an
encoder-decoder architecture, with a ViT encoder that re-
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ceives only visible tokens and a lightweight decoder that
reconstructs the masked patches using the encoder’s patch-
wise output and trainable mask tokens.

This paper introduces a novel approach to teeth segmen-
tation in 3D dental scans called Dental Masked Autoen-
coder (DentalMAE) based self pre-training, which works
for 3D dental meshes analysis. We apply DentalMAE
pre-training on the same dataset, referred to as the train
set, which is used for the downstream task. We term this
approach self pre-training, which is particularly advanta-
geous in scenarios where acquiring suitable pre-training
data is challenging. Additionally, self pre-training elimi-
nates the domain discrepancy between the pre-training and
fine-tuning stages by unifying the training data. Our exper-
iments focus on teeth segmentation in 3D intra-oral scans
[4].

Specifically, We extend the self-supervised learning
framework of the mesh masked autoencoder (MeshMAE)
transformer [17]. While the MeshMAE loss measures the
quality of reconstructed masked mesh triangles, the loss
of the proposed DentalMAE evaluates the predicted deep
embeddings of masked mesh triangles. After pre-training,
the decoder is discarded, and the encoder is applied to
the downstream task, i.e., teeth segmentation. We com-
pare three ViT Transformer initializations, including our
proposed DentalMAE, MeshMAE [17], and a mesh trans-
former without any self-pre-training. The experimental
results demonstrate that DentalMAE self-pre-training sig-
nificantly enhances dental scan segmentation performance
compared to the baselines. Our main contributions are
threefold:

• We utilize self-supervised learning with masked au-
toencoders to alleviate the problem of small data for
3D intra-oral scans.

• We replace the MeshMAE reconstruction of masked
mesh patches with the reconstruction of mesh patch
embeddings. Hence our loss is simply the L2 distance
between the predicted and computed embeddings over
the masked patches, which is much simpler than the
loss used by MeshMAE.

• Our proposed method leads to a significant perfor-
mance improvement. DentalMAE outperforms all
state-of-the-art methods on the tooth mesh segmenta-
tion task.

2. Related work

Most of the existing research in this field can be cate-
gorized into two groups: approaches based on handcrafted
features and approaches based on learning.
2.1. Handcrafted features-based approaches

Previous methods primarily focused on extracting man-
ually designed geometric features to segment 3D dental

scans. These methods can be classified into three types:
surface curvature-based methods, contour line-based meth-
ods, and harmonic field-based methods. Surface curvature
is particularly useful for describing tooth surfaces and iden-
tifying tooth/gum boundaries in IOS. Zhao et al. [50] pro-
posed a semi-automatic teeth segmentation method based
on curvature thresholding, followed by gum separation and
identification of 3D teeth boundary curves. Another ap-
proach by Yuan et al. [45] used minimum surface curvature
calculation to extract individual teeth regions and separate
them. Wu et al. [37] presented a morphological skeleton-
based method for teeth segmentation in IOS, utilizing area
growing operations. Similarly, Kronfeld et al. [12] intro-
duced a system that detects tooth-gingiva boundaries using
active contour models. Contour line-based methods involve
manual selection of tooth boundary landmarks, followed by
contour line generation based on geodesic information, as
demonstrated in studies such as Sinthanayothin et al. and
Yaqi et al. [31, 42]. Harmonic field methods require less
user interaction, as they allow a limited number of surface
points to be selected prior to the segmentation process, as
seen in studies by Zou et al. [54] and Liao et al. [18].

However, these approaches have limitations in achiev-
ing robust and fully automated segmentation of dental
3D scans. Setting the optimal threshold for surface
curvature-based methods is challenging, and they are sen-
sitive to noise. Incorrect threshold selection can signifi-
cantly impact segmentation accuracy, leading to over- or
under-segmentation. Moreover, the manual threshold se-
lection makes these methods unsuitable for fully auto-
matic segmentation. Contour line-based methods are time-
consuming, difficult to use, and rely heavily on human in-
teraction. Harmonic field techniques involve complex and
computationally intensive preprocessing steps.

2.2. Learning-based approaches

Recent advancements in deep learning techniques have
shifted the focus of teeth segmentation from handcrafted
features to learned features. It is now widely recognized that
data-driven feature extraction, using techniques like convo-
lutional neural networks (CNNs), outperforms handcrafted
features in various computer vision tasks, including ob-
ject detection [30] and image classification [35]. The same
applies to 3D teeth segmentation and labeling. Learning-
based approaches can be divided into two main categories
based on the input data: 2D image segmentation and 3D
mesh segmentation.

For 2D image segmentation, CNNs have been exten-
sively used to extract relevant features. Cui et al. [6] intro-
duced a two-stage deep supervised neural network architec-
ture for tooth segmentation and identification in Cone-Beam
Computed Tomography (CBCT) images. They employed
an autoencoder CNN to extract edge maps from CBCT
slices, which were then fed into a Mask R-CNN network
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for tooth segmentation and recognition. Similarly, Miki et
al. [23] fine-tuned a pre-trained AlexNet network on CBCT
dental slices for automatic teeth classification. Rao et al.
[29] proposed a symmetric fully convolutional residual neu-
ral network for tooth segmentation in CBCT images. They
incorporated dense conditional random field techniques and
a deep bottleneck architecture for teeth boundary smooth-
ing and segmentation enhancement, respectively. Zhang et
al. [48] isomorphically mapped 3D dental scans into a 2D
harmonic parameter space and used a CNN based on the
U-Net architecture for tooth image segmentation.

Learning-based methods applied directly to 3D dental
meshes have also been explored. Sun et al. [32] used
a graph CNN-based architecture called FeaStNet for au-
tomated tooth segmentation and labeling from 3D dental
scans. They extended this architecture to propose an end-to-
end graph convolutional network-based model that achieved
tooth segmentation and dense correspondence in 3D den-
tal scans. Xu et al. [41] introduced a multi-stage frame-
work based on a deep CNN architecture for 3D dental mesh
segmentation. They employed two independent CNNs for
teeth-gingiva and inter-teeth labeling. Zanjani et al. [47]
proposed an end-to-end deep learning system based on the
PointNet network architecture for semantic segmentation
of individual teeth and gingiva from point clouds. They
also used a secondary neural network as a discriminator
in an adversarial learning setting to refine teeth labeling.
Lian et al. [16] modified the PointNet architecture by in-
corporating graph-constrained learning modules to extract
multi-scale local contextual features for teeth segmentation
and labeling in 3D intra-oral scans. Tian et al. [33] intro-
duced a preprocessing step that encoded input 3D scans us-
ing sparse voxel octree partitioning. They then employed
three-level hierarchical CNNs for the segmentation process
and another two-level hierarchical CNNs for teeth recog-
nition. Other studies, such as Cui et al. [5] and Zanjani
et al. [46], proposed pipeline-based architectures combin-
ing multiple CNNs for teeth localization, segmentation, and
labeling. Ma et al. [21] suggested a deep neural network
architecture for pre-detected teeth classification based on
adjacency similarity and relative position feature vectors,
explicitly modeling spatial relationships between adjacent
teeth.

Zhao et al. [53] proposed an end-to-end network utiliz-
ing graph attentional convolution layers and a global struc-
ture branch for fine-grained local geometric feature extrac-
tion and global feature learning from raw mesh data. These
features were fused to perform segmentation and labeling
tasks. In another study, Zhao et al. [51] introduced a two-
stream graph convolutional network (TSGCN). The first
stream captured coarse structures of teeth from 3D coor-
dinate information, while the second stream extracted dis-
tinctive structural details from normal vectors. To address

the reliance on expensive point-wise annotations in current
learning-based methods, Qiu et al. [27] presented the Den-
tal Arch (DArch) method for 3D tooth segmentation using
weak low-cost annotated data. The DArch consists of two
stages: tooth centroid detection and segmentation. It gen-
erates the dental arch using Bezier curve regression and re-
fines it using a graph-based convolutional network (GCN).

To the best of our knowledge, there have been no stud-
ies in the literature that specifically employ transformer
models, such as the Vision Transformer (ViT) [7], for 3D
dental scan analysis. Additionally, the application of self-
supervised learning techniques to ViT on intra-oral scans is
also unprecedented.

Transformer models, originally introduced in natural
language processing tasks [34], have shown remarkable
success in various computer vision domains, including im-
age classification, object detection, and image segmenta-
tion. The ViT architecture, in particular, has gained atten-
tion for its ability to effectively process 2D images by lever-
aging self-attention mechanisms.

However, the application of transformer models to 3D
dental scans and the use of self-supervised learning tech-
niques on intra-oral scans have not been explored in the ex-
isting literature. This indicates a research gap and an oppor-
tunity to investigate the potential benefits and challenges of
utilizing ViT and self-supervised learning in the context of
3D dental scan analysis.

By applying self-supervised learning to ViT on intra-oral
scans, it becomes possible to mitigate the limited number of
available intra-oral scans. This can help overcome the limi-
tations of traditional supervised learning approaches, which
rely heavily on large data for training. Self-supervised
learning enables the model to learn from the inherent struc-
ture and properties present in the data, leading to improved
generalization and potentially reducing the need for exten-
sive manual labeling.

The application of transformer models and self-
supervised learning techniques to 3D dental scans, specif-
ically intra-oral scans, has the potential to advance the field
by providing new insights and improved performance in
tasks such as segmentation, labeling, and analysis of den-
tal structures. Further research in this direction could pave
the way for more accurate and efficient automated dental
scan analysis, benefiting various clinical applications and
oral healthcare practices.

3. Methods

In this paper, we use the Mesh Transformer framework
for tooth mesh segmentation, which extends the Vision
Transformer to mesh analysis. We propose a novel self-
supervised learning pre-training strategy, which is based
on mesh masked autoencoding. Fig. 1 illustrates the Den-
talMAE framework. DentalMAE divides the input mesh
into non-overlap patches, these patches are embedded us-
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Figure 1. The teeth segmentation pipeline for DentalMAE self-pre-training. Initially, the input mesh is divided into non-overlap
patches. These patches are then embedded using an MLP. During the pre-training phase, the patch embeddings are randomly masked,
and only the visible embeddings are utilized by the transformer. Subsequently, the masked embeddings are combined with the encoded
embeddings and sent to the decoder. The objective of the decoder is to reconstruct the vertices and face features of the masked patches,
followed by the prediction of the patch embeddings of the masked patches. The L2 loss is used to compare the masked patch embeddings.
After the completion of pre-training, the decoder is discarded, and the encoder is employed for segmentation.

ing an MLP, and certain random patches are replaced with
mask tokens. Only the visible patches are utilized by the
ViT encoder. Subsequently, the mask tokens are combined
with the encoded embeddings and are input to the decoder.
The primary objective of the decoder is to reconstruct the
vertices and face features of the masked patches, followed
by the prediction of the patch embeddings of the masked
patches. We do the two-stage process of reconstructing ver-
tices and face features followed by computing embeddings
because it performs better than directly predicting the em-
beddings as shown in the supplementary materials. Com-
pared to MeshMAE [17], its loss measures the quality of
reconstructed masked mesh triangles, while the loss of the
proposed DentalMAE evaluates the predicted deep embed-
dings of masked mesh triangles. Following the pre-training
phase, the decoder is discarded, and the encoder is em-
ployed for the specific task of tooth segmentation.
3.1. Mesh Transformer

Mesh Patch Split. The faces of a 3D mesh establish con-
nections between vertices, allowing us to utilize geometric
information from each face to represent their features. Sim-
ilar to SubdivNet [11], we define a 10-dimensional vector
for each face fi comprising the face area (1-dim), three in-
terior angles of the triangle (3-dim), face normal (3-dim),
and three inner products between the face normal and three
vertex normals (3-dim).

Transformers, with their self-attention-based architec-
tures, simplify the process of designing feature aggregation

operations for 3D meshes. However, applying self-attention
to all faces incurs a prohibitively high computational cost
due to quadratic complexity. To overcome this, the faces
are grouped into non-overlapping patches before applying
transformers. Unlike regular image data that can be divided
into grid-like patches, mesh data is irregular, and faces are
typically unordered.

To address this challenge, we utilize a ”re-meshing” step
to regularize and hierarchically structure the original mesh.
We employ the MAPS algorithm [13] to simplify the mesh
into a coarser base mesh with a varying number of faces
N faces within a specific range (96  N  256 in our
experiments). Although less accurate in shape representa-
tion, the resulting base mesh serves as a foundation. To
refine it, we further subdivide all faces in the base mesh t

times in a 1-to-4 manner, resulting in a more detailed mesh
called t�mesh. By grouping the faces of the t�mesh cor-
responding to the same face in the base mesh, we create
non-overlapping patches. In our implementation, we per-
form three subdivisions, yielding patches consisting of 64
faces each. The process is illustrated in Fig. 2.

Transformer Backbone. The transformer serves as the
backbone network for the Mesh Transformer. It consists
of multi-headed self-attention layers and feedforward net-
work (FFN) blocks. To represent each patch, we concate-
nate the feature vectors of the constituent faces belonging to
that patch. The order of concatenation is determined by the
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Figure 2. The remeshing operation involves several steps. Initially, the input mesh undergoes a simplification process. Subsequently,
a mapping is established between the original mesh and the base mesh. The base mesh is then subdivided three times, and the newly
generated vertices are projected back onto the input mesh.

re-meshing process, which guarantees a consistent and pre-
dictable face order. Consequently, an MLP is employed to
project the feature vector of each patch into a representation
denoted as {ei}gi=1, where g denotes the number of patches.
These representations serve as inputs to the transformer.

In addition to shape information captured by the in-
put features, transformer-based methods often rely on po-
sitional embeddings to provide spatial information. Since
mesh data contains 3D spatial coordinates for each face, we
leverage the center 3D coordinates of the faces to compute
the positional embeddings. To accomplish this, we calcu-
late the center point coordinates {ci}gi=1 for each patch and
apply an MLP to obtain the positional embedding {pi}gi=1
associated with each patch.

Formally, the input embeddings X = {xi}gi=1 are de-
fined as the combination of the patch embeddings E =
{ei}gi=1 and positional embeddings P = {pi}gi=1. This
results in an overall input sequence denoted as H

0 =
x1, x2, ..., xg . The encoder network consists of L lay-
ers of transformer blocks, and the output of the last layer
H

L = h
L
1 , ..., h

L
g represents the encoded representations of

the input patches.

3.2. Mesh Pre-training Task

In this section, we provide a detailed description of the
mesh pre-training task, which employs a masked modeling
strategy based on the Mesh Transformer architecture. The
task aims to predict deep embeddings of masked mesh trian-
gles from embeddings of visible mesh triangles. We outline
the components of the pre-training task, including the en-
coder and decoder networks, masked sequence generation,
and prediction.

Encoder and Decoder. The encoder and decoder net-
works used in the pre-training task are composed of several

transformer blocks. The Mesh Transformer serves as the en-
coder, consisting of 12 layers, while a lightweight decoder
with 6 layers is employed. During pre-training, a prede-
fined masking ratio is applied to randomly mask a subset
of patches in the input mesh. The visible patches are fed
into the encoder, and a shared mask embedding is used to
replace the masked embeddings in the input before feed-
ing them into the decoder. The positional embeddings are
added to both the masked and visible patches to provide lo-
cation information. It is important to note that the decoder is
only used during pre-training for mesh reconstruction tasks,
while the encoder is utilized in downstream tasks.

Masked Sequence Generation. Mesh embeddings, rep-
resented by E, have corresponding indices denoted as I .
Following the MAE approach, we randomly mask a sub-
set of patches by sampling indices Im from I with a ra-
tio r. Masked embeddings are represented as Em, while
unmasked embeddings are denoted as Eum. We replace
the masked embeddings Em with a shared learnable mask
embedding Emask without altering their positional embed-
dings. Finally, the corrupted mesh embeddings Ec are
formed by combining Eum with the sum of Emask and po-
sitional embeddings pi for each index i in Im. These cor-
rupted embeddings are then inputted into the encoder for
further processing.

Prediction. MeshMAE [17] recovers the shape of the
masked patches as the reconstruction target. It predicts 3D
relative coordinates of vertices to match the ground truth
positions, where the reconstruction loss is calculated using
the Chamfer distance [8] between the predicted relative co-
ordinates and the ground truth relative coordinates. It also
predicts the face-wise features using a linear layer behind
the decoder. It uses face-wise mean squared error (MSE)
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loss to evaluate the reconstruction effect of the features.
The overall optimization objective of MeshMAE com-

bines the Chamfer distance loss LCD and the MSE loss
LMSE to L = LMSE+� ·LCD, where � is the loss weight.
In contrast, our loss is simpler in that it does not require any
meta parameter �. We simply compute the L2 loss between
the original and predicted embeddings of the mask triangle
patches.
4. Experiments

4.1. Dataset

We use the public dataset 3D Teeth Seg Challenge 2022
[4]. There are a total of 1800 3D intra-oral scans collected
for 900 patients covering their upper and lower jaws sepa-
rately. They are separated into training (1200 scans, 16004
teeth) and test data (600 scans, 7995 teeth). The task is
tooth segmentation from the 3D dental model. Throughout
the paper, we use the color coding shown in Fig. 3 to visu-
alize the teeth labels. There are 8 different semantic parts,
indicating the central incisor (T7), lateral incisor (T6), ca-
nine/cuspid (T5), 1st premolar/bicuspid (T4), 2nd premo-
lar/bicuspid (T3), 1st molar (T2), 2nd molar (T1), and back-
ground/gingiva (BG).

Figure 3. Tooth segmentation and the corresponding color coding.

4.2. Evaluation metric

We use Dice Score(DSC), Overall Accuracy (OA), sen-
sitivity (SEN), and Positive Predictive Value (PPV) to eval-
uate the performance of our model.
4.3. Implementation details

Data Pre-processing. The dataset is processed by the re-
meshing operation, and the face labels are obtained from the
mapping between the re-meshed data and the raw meshes
using the nearest face strategy.

Data Augmentation. We employ three data augmenta-
tion techniques: 1) random rotation, 2) random translation,
and 3) random rescaling. By applying these techniques, we
generate 40 augmented versions for each data point, result-
ing in the creation of 40 additional samples for every jaw
scan.

Training Details. For pre-training, We utilize ViT-Base
[7] as the encoder network with very slight modification,

e.g., the number of input features’ channels. And follow-
ing [10], we set a lightweight decoder, which has 6 layers.
We employ an AdamW optimizer, using an initial learning
rate of 1e-4 with a cosine learning schedule. The weight
decay is set as 0.05, and the batch size is set as 32. We
set the same encoder network of pre-training in the down-
stream task. For our segmentation task, we utilize two seg-
mentation heads to provide a two-level feature aggregation.
Specifically, we concatenate the output of the encoder with
the feature embedding of each face to provide a fine-grained
embedding. We set the batch size as 32 and employed an
AdamW optimizer with an initial learning rate of 1e-4. The
learning rate is decayed by a factor of 0.1 at 80 and 160
epochs.

5. Results and analysis

5.1. Quantitative results

Table 1 presents the quantitative results of tooth segmen-
tation using various methods, and it clearly shows that Den-
talMAE outperforms other state-of-the-art methods.

Comparing the Dice Scores of ViT with the other meth-
ods, it is evident that ViT achieves higher scores on al-
most all tooth labels (T1-T7) and the background (BG). ViT
achieves Dice Scores ranging from 0.885 to 0.985, indicat-
ing its effectiveness in accurately segmenting tooth struc-
tures. This demonstrates the capability of the Vision Trans-
former to capture relevant features and contextual informa-
tion, leading to improved segmentation results.

The results of ViT+MeshMAE outperform the standard
ViT, indicating further improvements. The combination of
ViT and MeshMAE enhances the segmentation accuracy
and ensures more precise delineation of tooth boundaries.

Our method, DentalMAE, surpasses not only the other
methods but also the standalone ViT and its enhanced ver-
sion MeshMAE. It is evident that our method consistently
achieves the highest Dice Scores across all tooth labels (T1-
T7) and the background (BG). The Dice Scores range from
0.921 to 0.995, highlighting the effectiveness of incorporat-
ing the loss on mask patches embedding for tooth structure
reconstruction.

All ViT variants outperform traditional methods like
PointNet [25], PointNet++ [26], DGCNN [36], and Mesh-
SegNet [16], as well as advanced methods such as Mesh-
SegNet+GCO [16], TSGCNet [49], GAC [52], BAAFNet
[28], pointMLP [22], PCT [9], MBESegNet [14], and Cur-
veNet [38]. It also performs better than state-of-the-art self-
supervised learning methods, Point-MAE [24] and Point-
BERT [43]. This indicates the superiority of our pro-
posed methods in accurately segmenting tooth structures
and surpassing the performance of existing state-of-the-art
approaches.

Table 2 presents additional quantitative results for tooth
segmentation, evaluating various methods based on Overall
Accuracy (OA), Dice Score (DSC), Sensitivity (SEN), and
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Method BG T1 T2 T3 T4 T5 T6 T7

PointNet [25] 0.947 0.793 0.920 0.895 0.925 0.903 0.909 0.933
PointNet++ [26] 0.924 0.780 0.903 0.876 0.883 0.837 0.782 0.837
DGCNN [36] 0.968 0.847 0.944 0.936 0.945 0.941 0.939 0.947
MeshSegNet [16] 0.922 0.712 0.799 0.775 0.860 0.831 0.684 0.794
MeshSegNet+GCO [16] 0.957 0.850 0.904 0.902 0.926 0.879 0.778 0.906
TSGCNet [49] 0.962 0.642 0.915 0.916 0.945 0.937 0.916 0.926
GAC [52] 0.909 0.643 0.819 0.759 0.828 0.846 0.823 0.845
BAAFNet [28] 0.511 0.465 0.677 0.639 0.673 0.655 0.586 0.682
pointMLP [22] 0.975 0.865 0.959 0.950 0.969 0.959 0.945 0.953
PCT [9] 0.789 0.307 0.524 0.459 0.330 0.375 0.459 0.588
MBESegNet [14] 0.818 0.420 0.708 0.695 0.739 0.661 0.556 0.535
CurveNet [38] 0.964 0.783 0.923 0.917 0.939 0.922 0.918 0.939
Point-MAE [24] 0.971 0.802 0.956 0.924 0.949 0.943 0.942 0.948
Point-BERT [43] 0.976 0.835 0.962 0.939 0.952 0.951 0.951 0.957
ViT 0.985 0.885 0.971 0.966 0.959 0.969 0.959 0.968
ViT+MeshMAE 0.990 0.908 0.982 0.976 0.978 0.985 0.961 0.983
Ours 0.995 0.921 0.989 0.988 0.986 0.992 0.974 0.990

Table 1. The tooth segmentation results from different methods in terms of the label-wise Dice Score.

Positive Predictive Value (PPV). The results further confirm
the superior performance of our proposed method, Dental-
MAE, compared to other state-of-the-art techniques.

Method OA DSC SEN PPV

PointNet [25] 0.926 0.903 0.913 0.912
PointNet++ [26] 0.892 0.853 0.864 0.865
DGCNN [36] 0.933 0.915 0.923 0.923
MeshSegNet [16] 0.901 0.873 0.888 0.879
MeshSegNet+GCO [16] 0.931 0.918 0.929 0.911
TSGCNet [49] 0.936 0.895 0.924 0.902
GAC [52] 0.855 0.809 0.818 0.844
BAAFNet [28] 0.601 0.611 0.755 0.594
pointMLP [22] 0.943 0.927 0.936 0.931
PCT [9] 0.629 0.479 0.509 0.586
MBESegNet [14] 0.716 0.642 0.710 0.644
CurveNet [38] 0.939 0.912 0.922 0.923
Point-MAE [24] 0.945 0.927 0.942 0.936
Point-BERT [43] 0.949 0.935 0.948 0.944
ViT 0.955 0.945 0.950 0.957
ViT+MeshMAE 0.971 0.954 0.966 0.983
Ours 0.983 0.970 0.977 0.989

Table 2. The tooth segmentation results from different methods in
terms of the Overall Accuracy, the Dice Score, the Sensitivity, and
the Positive Predictive Value.

Our method, DentalMAE, achieves an OA value of
0.983. This score indicates the overall accuracy of the tooth
segmentation results obtained by our method. It is evident
that DentalMAE outperforms all other SOTA methods.

The Dice Score measures the similarity between the pre-
dicted and ground truth tooth segmentations. In terms of
DSC, our method, DentalMAE, achieves a score of 0.970.
These scores demonstrate the accuracy and overlap of the

segmented tooth structures compared to the ground truth.
Notably, our method consistently outperforms all other
methods, including the top-performing MeshMAE method.

SEN and PPV evaluate the ability of the segmentation
methods to correctly identify tooth structures (SEN) and the
precision of the predicted tooth segmentations (PPV). Our
method exhibits high SEN and PPV scores, with a SEN
value of 0.977, and a PPV value of 0.989. These results
indicate the robustness and accuracy of our method in iden-
tifying tooth structures while minimizing false positives and
false negatives.

Parameter Setting and Masking Strategies. The ex-
periments conducted in Table 3 explore the effects of differ-
ent masking strategies and ratios on teeth segmentation. In
contrast to the high mask ratios commonly used in 3D natu-
ral models [17], the segmentation task for teeth exhibits dis-
tinct preferences regarding the mask ratio. Notably, we con-
sistently observe performance improvements as the mask
ratio decreases from 50% to 20%. This finding suggests that
reducing the mask ratio is beneficial for training the model,
potentially because relevant features in 3D intra-oral mod-
els tend to be smaller in scale.

Additionally, the random masking strategy outperforms
the block and grid strategies, emphasizing its effectiveness
in generating masks during the training process. These find-
ings contribute to our understanding of optimal parameter
settings for teeth segmentation and inform the development
of more accurate and efficient segmentation models in this
domain.
5.2. Qualitative results

Figure 4 presents qualitative examples that showcase the
enhanced performance achieved through pre-training the
ViT mesh transformer with DentalMAE for teeth segmen-
tation. The observed improvements in segmentation align
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Figure 4. Comparison of teeth segmentation of DentalMAE and baselines. The first three rows show samples of the lower jaw, while the
last two rows show the upper jaw.

Mask ratio strategy OA DSC

50% random 0.947 0.936
50% block 0.931 0.930
50% grid 0.943 0.932

40% random 0.955 0.939
30% random 0.959 0.941
20% random 0.971 0.954

10% random 0.958 0.943

Table 3. The influence of Mask Ratios/strategies on teeth segmen-
tation of our DentalMAE.

with the quantitative findings discussed in Section 5.1.

6. Conclusions

We have demonstrated that DentalMAE pre-training im-
proves SOTA segmentation performance on 3D dental scan

analysis. Importantly, DentalMAE self-pre-training out-
performs existing methods on a small dataset, something
that has not previously been explored. Our results also
suggest that parameters, including mask ratio and strategy,
should be tailored when applying masked autoencoders pre-
training to the 3D dental scan domain. Together, these ob-
servations suggest that DentalMAE can further improve the
already impressive performance of mesh ViTs in intra-oral
scan analysis. In future work, we will test the efficacy of
DentalMAE pretraining in prognosis and outcome predic-
tion tasks.
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