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Abstract

Data augmentation is one of the most effective tech-
niques for regularizing deep learning models and improv-
ing recognition performance in various tasks and domains.
However, this holds for standard in-domain settings, in
which the training and test data follow the same distribu-
tion. For the out-of-domain case, where the test data fol-
low a different and unknown distribution, the best recipe
for data augmentation is unclear. In this paper, we show
that for out-of-domain and domain generalization settings,
data augmentation can provide a conspicuous and robust
improvement in performance. To do that, we propose a
simple training procedure: (i) use uniform sampling on
standard data augmentation transformations; (ii) increase
the strength transformations to account for the higher data
variance expected when working out-of-domain, and (iii)
devise a new reward function to reject extreme transfor-
mations that can harm the training. With this procedure,
our data augmentation scheme achieves a level of accu-
racy comparable to or better than state-of-the-art meth-
ods on benchmark domain generalization datasets. Code:
https://github.com/Masseeh/DCAug

1. Introduction

The main assumption of commonly used deep learning
methods is that all examples used for training and testing
models are independently and identically sampled from the
same distribution [44]. In practice, such an assumption does
not always hold, and this can limit the applicability of the
learned models in real-world scenarios [22].

To tackle this problem, domain generalization (DG) [5]
aims to predict data distributions different from those seen
during training. In particular, we assume access to multiple
datasets during training, each containing examples about
the same task but collected under a different domain or en-

Figure 1. A conceptual illustration of our method. The inner and
outer circles represent the space of weak (safe) and wider (possibly
harmful) augmentations, respectively. Our method can automati-
cally select for each combination of data samples and augmenta-
tion a wider transformation (when safe) or reject it when unsafe.
This is achieved with the help of a reward function (represented as
the yellow color gradient) that compares the diversity and the con-
sistency of an augmented sample (see Section 4 for more details).
In the illustration, given an image x, we present two possible aug-
mentation paths. For the blue path, the wide augmentation has a
high diversity and high consistency, and therefore, it is selected
(green box). For the purple path, although the wide augmenta-
tion has high diversity, it also has low consistency. Therefore the
transformation is rejected (red box), and the weak transformation
is used instead as augmentation.

vironment. One effective approach for DG is to increase
the diversity of the training data [50]. Data augmentation,
which is a widely used approach for generating additional
training data [24, 35, 43], is especially beneficial since it
can help to approximate the true distribution of the dataset.
However, choosing augmentations often depends on the un-
derlying dataset. While learning the right data augmenta-
tion for in-domain setting (same distribution between train-
ing and test) has been explored in research [8, 9, 33, 42],
there is currently little research on good augmentations for
domain generalization and how to leverage domain infor-
mation to make the augmentations more effective.
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In this work, we investigate those questions. First, we
show that data augmentation is also helpful for domain gen-
eralization, but to cover the different training domains and
hopefully the target domain the proposed transformations
need to be stronger than for in-domain tasks. However,
too strong transformations could harm the learning process
(see Figure 1). To fully exploit more robust transformations
without harming the learning, we select diverse and chal-
lenging samples that provide helpful training information
without losing the sample’s original semantics. We intro-
duce a reward function consisting of diversity and semantic
consistency components and use it to select for each sam-
ple the best augmentation between a weak but safe and a
strong but diverse augmentation. Thus, the proposed algo-
rithm should be able to select which augmentation is better
for each sample for training a model that can generalize to
unknown data distributions.
The main contributions of this paper are as follows:
(1) We show that while commonly used augmentation-
based techniques for in-domain settings are quite powerful
for DG, we can increase the performance further by expand-
ing the range of transformations. Consequently, we achieve
superior results compared to most approaches relying on
domain-invariant representation.
(2) With the new expanded range, it is easier to produce
harmful transformations, therefore, we introduce a data
augmentation schema that selects the optimal augmentation
strategy between a weak yet safe and a diverse yet strong
augmentation technique.
(3) Experimental on common benchmark datasets show the
benefits of our proposed method achieving an accuracy that
is better than state-of-the-art methods for DG.

2. Related Works
Data Augmentation: There has been extensive research

on data augmentation for computer vision tasks. Horizon-
tal flips and random cropping or translations of images are
commonly used for natural image datasets such as CIFAR-
10 [23], and ImageNet [38]. At the same time, elastic dis-
tortions and scalings are more common on MNIST dataset
[49]. While data augmentation usually improves model
generalization, if too strong, it might sometimes hurt per-
formance or induce unexpected biases. Thus, one must
manually find effective augmentation policies based on do-
main knowledge and model validation. To alleviate this
issue, researchers propose various methods to automati-
cally search efficient augmentation strategies for model in-
domain generalization [8, 16, 18, 29, 53, 55]. AutoAugment
(AA) [8] is the pioneering work on automating the search
for the ideal augmentation policy, which uses Reinforce-
ment Learning (RL) to search for an optimal augmenta-
tion policy for a given task. Unfortunately, this search pro-
cess requires extensive computing power to several thou-

sands of GPU hours. Many subsequent works adopt Au-
toAugment search space for their policy search [50]. In
particular, [28, 32] propose methods to shorten the dura-
tion of the policy search for data augmentation while main-
taining similar performance. Alternatively, other works re-
sort to different guided search techniques to accelerate the
search. Lim et al. [29] uses a Bayesian optimization ap-
proach, [16] uses an online search during the training of the
final model, and [18] employs an evolutionary algorithm to
search for the optimal augmentation policy also in an on-
line fashion. Adversarial AutoAugment (Adv. AA) [53] is
another slightly cheaper method that uses multiple workers
and learns the augmentation policy that leads to hard sam-
ples measured by target loss during training. However, all
of these sophisticated approaches are comparable to Ran-
dAugment (RA), which uses the augmentation search space
introduced in [9], but with a uniform sampling policy in
which only the global magnitude of the transformations and
the number of applied transformations are learned on a vali-
dation set. TrivialAugment (TA) [33] and UniformAugment
[30] further push the RA method to the extreme and propose
to use a truly search-free approach for data augmentations
selection, yet achieving test set accuracies that are on-par
or better than the more complex techniques previously dis-
cussed. However, all the mentioned methods use the search
space of AutoAugment, which is already designed to not
excessively distort the input image. To control the space of
data augmentation, Gong et al. [13] regularize augmenta-
tion models based on prior knowledge while Wei et al. [46]
use knowledge distillation to mitigate the noise introduced
by aggressive AA data augmentation policies. Suzuki [42]
proposes an online data augmentation optimization method
called TeachAugment that introduces a teacher model into
the adversarial data augmentation and makes it more infor-
mative without the need for careful parameter tuning. How-
ever, all the mentioned methods are designed for standard
in-domain settings and do not consider the generalization
problem for unknown domains as in domain generalization
problems.

Domain Generalization: Learning domain-invariant
features from source domains is one of the most popular
methods in domain generalization. These methods aim at
learning high-level features that make domains statistically
indistinguishable (domain-invariant). Ganin et al. [12] pro-
pose Domain Adversarial Neural Networks (DANN), which
uses GAN, to enforce that the features cannot predict the
domain. Albuquerque et al. [1] build on top of DANN by
considering one-versus-all adversaries that try to indicate to
which training domain each example belongs. Later work,
consider several ways to enforce invariance, such as mini-
mizing the maximum mean discrepancy (MMD) [26], en-
forcing class-conditional distributions across domains [27],
and matching the feature covariance (second-order statis-
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tics) across training domains at some level of representa-
tion [41]. Although popular, enforcing invariance is chal-
lenging and often too restrictive. As a result, Arjovsky et
al. [2] propose to enforce the optimal classifier for different
domains. GroupDRO [39] proposes to minimize the worst-
case training loss by putting more mass on samples from the
more challenging domains at train time. Bui et al. [6] use
meta-learning and adversarial training in tandem to disen-
tangle features in the latent space while jointly learning both
domain-invariant and domain-specific features in a unified
framework. However, Zhao et al. [54] show that learning
an invariant representation, in addition to possibly ignor-
ing signals that can be important for new domains, is not
enough to guarantee target generalization. Furthermore, as
evidenced by the strong performance of ERM [15], these
methods are either too strong to optimize reliably or too
weak to achieve their goals [51].

Data Augmentation for Domain Generalization: An-
other effective strategy to address domain generalization
[15, 47] is by using data augmentation. These methods fo-
cus on manipulating the inputs to assist in learning general
representations. Zhou et al. [55] use domain information for
creating an additive noise to increase the diversity of train-
ing data distribution while preserving the semantic informa-
tion of data. Yan et al. [48] use mixup to blend examples
from the different training distributions. In RSC [19], the
authors iteratively discard the dominant features from the
training data, aiming to improve generalization. This ap-
proach is inspired by the style transfer literature, where the
feature statistics encode domain-related information. Sim-
ilarly, MixStyle [56] synthesizes novel domains by mixing
the feature statistics of two instances. SagNets [34] pro-
pose disentangling style encodings from class categories
to prevent style-biased predictions and focus more on the
contents. The performance of these methods depends on
whether the augmentation can help the model to learn in-
variance in the data.

In this work, we build upon observations from [15, 47,
52], which show that data augmentation plays a vital role in
improving out-of-distribution generalization. Our approach
uses uniform sampling and a rejection reward, inspired by
TrivialAugment [33] and TeachAugment [42], respectively.
This combination leads to the proposal of an effective data
augmentation strategy for domain generalization.

3. Revisiting Random Data Augmentation for
Domain Generalization

3.1. Problem Definition

We study the problem of Multi-Source Domain Gen-
eralization for classification. During training, we as-
sume access to N datasets containing examples about
the same task but collected under a different domain or

environment, D = {1, 2, .., N}. Let S be a training
dataset containing samples from all training domains, S =
{(x1, y1, d1), (x2, y2, d2) . . . , (xM , yM , dM )}, with M =
|S|. Here, xi ∈ X refers to an image, yi ∈ Y is the
class label, and di ∈ D is the domain label. Then, the
goal of the domain generalization task is to learn a mapping
fθ : X → Y parametrized by θ that generalizes well to an
unseen domain, d̂ /∈ D. In addition, we also consider a do-
main classifier hϕ : X → D parametrized by ϕ that learns to
recognize the domain of a given sample from S. As a base-
line optimization problem, we consider the simple empirical
risk minimization (ERM), which minimizes the average loss
over all samples, θ∗ = argminθ

1
M

P
(x,y)∈S L(fθ(x), y),

where L(·) is the cross-entropy loss function.

3.2. Data Augmentation Search Space

A well-known approach to achieving domain generaliza-
tion is transforming the training samples during the learning
process to gain robustness against unseen domains [8, 33].
These transformations come from a predefined set of possi-
ble data augmentations that operate within a given range
of magnitudes. We consider as standard transformations
Tweak : X → Xweak the random flip, crop, and slight color-
jitter augmentations that are safe, i.e., do not destroy image
semantics. Such weak transformations are used in every
training step. On top of standard transformation, we may
also apply more transformations selected from either data
augmentation search space Default from RandAugment [9]
or Wide from TrivialAugment (TA) [33]. Here, we use ge-
ometric transformations (ShearX/Y, TranslateX/Y, Rotate)
and color-based transformations (Posterize, Solarize, Con-
trast, Color, Brightness, Sharpness, AutoContrast, Equalize,
and Grey). However, unlike TA, we expand the magnitude
ranges and construct Twider : Xweak → Xwider to include
more aggressive data augmentation (see 6 from supplemen-
tary materials). For sampling transformations, we follow
the TA procedure, which involves randomly sampling an
operation and magnitude from the search space for each im-
age.

3.3. Motivation for Wider Range

Random augmentation over a set of predefined transfor-
mations, as in TA, despite being very simple, is compet-
itive to the state-of-the-art Data Augmentation in standard
in-domain settings. In Table 1, we consider the performance
of TA, RandAugment, and AutoAugment for domain gen-
eralization. As can be seen, such DA methods are already
improving over ERM [44]. However, for domain gener-
alization, we expect that more aggressive transformations
can push the representation outside the training domains
and help to adapt to new domains. As shown in Table 1,
the uniform sampling strategy of TA, but with wider trans-
formations, further improves over the rest of the methods.
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Method Search Space
Dataset

PACS VLCS OfficeHome TerraInc DomainNet Avg.

ERM as in [44] Weak 84.2±0.1 77.3±0.1 67.6±0.2 47.8±0.6 44.0±0.1 64.2
RandAugment [9] Default 86.1±0.8 78.7±0.7 67.8±0.4 44.7±1.4 44.0±0.2 64.3
TA [33] Wide 85.5±1.1 78.6±0.5 68.0±0.2 47.8±1.6 43.8±0.2 64.7
AutoAugment [8] Default 85.8±0.5 78.7±0.8 68.4±0.2 48.0±1.3 43.7±0.2 64.9
TA (Ours) Wider 85.6±0.8 78.6±0.4 68.9±0.4 48.3±0.8 43.7±0.3 65.0

Table 1. Different strategies of data augmentation. We compare different search space ranges traditionally used and wider ones. TA with
a wider search space leads to better average out-of-domain accuracy. Our experiments are repeated three times. For details about datasets
and training procedures (see section 5).
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Figure 2. Sample transformations from TA with wide and wider
search space on PACS dataset. For each transformation, the first
row shows the range of transformed samples with wide search
space and the second row with wider. We see that the wider space
can lead to more variety but also extreme and detrimental transfor-
mations that do not keep the semantics of the image. This moti-
vates us to use wider transformations but find a way to reject the
extreme ones.

However, as shown in Figure 2, stronger augmentations can
easily lead to extreme transformations that do not keep the
semantics of the image. Thus, this work aims to improve
this strong baseline by proposing a mechanism to reject
those extreme augmentations. For more details about the
used datasets and the training procedures, see section 5.

4. Rejecting Extreme Transformations

For each given input, we generate a weakly augmented
version using standard transformation (i.e., using only a
flip and a crop and slight color-jitter) and an enormously
augmented version using Twider transformation as defined

in the previous section. We then define a reward function
R(x, z) that, given an input x and metadata, either domain
label d or class label y, provides a measurement of the qual-
ity for the transformed sample. Then, maximizing such a re-
ward function allows selecting which augmentation is more
suitable for the training:

x̃ =

�
Twider(x) if R(Twider(x), z) ≥ R(Tweak(x), z)
Tweak(x) otherwise

(1)

4.1. Augmentation Reward

Intuitively, for domain generalization, a good augmenta-
tion creates challenging samples that provide useful train-
ing information without losing the sample’s original mean-
ing (i.e., the sample’s class). We use the teacher-student
paradigm to achieve this goal and introduce a unified re-
ward function consisting of diversity and semantic consis-
tency components for selecting the appropriate augmenta-
tion. Considering x̃ as an augmented sample, the reward
function is defined as:

R(x̃, z) = (1− λ)Rdiv(x̃, z)− λRcon(x̃, z) (2)

where λ is the balancing coefficient between diversity and
consistency. Here, z refers to either the domain of the sam-
ple d or the class label y, and it is specified in the following
sections for every term of the proposed reward. In the previ-
ous equation, the Rdiv term enforces diversity in the data by
exploring the augmentations of the input, while Rcon keeps
the semantic meaning of augmented sample x̃.

4.2. Diverse Student and Consistent Teacher

To make our idea work, we must ensure that the diversity
reward considers the latest changes in the model. Thus, as
a reward for diversity, we use the cross-entropy loss L of a
classifier h with parameters ϕ trained to detect the domain
of the image x:

Rdiv(x, d) = L(hϕ(x), d) (3)
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Figure 3. Overview of DCAugdomain procedure for rejecting extreme augmentations. After calculating Rdiv and Rcon for Tweak and
Twider our method selects the transformation with the highest reward (green box). It updates the label classifier fθ and domain student
hϕ using the transformed input x̃. DCAuglabel and TeachDCAuglabel also follow the same procedure by replacing d and hϕ by y and fθ
respectively (see 10 from supplementary materials for more visual changes of the selected images).

Algorithm 1 DCAug Training Procedure

Input: source domains S, label classifier fθ, domain clas-
sifier hϕ, transformations Tweak and Twider, learning
rate η.

Output: label classifier fθ or fθ̃.
1: for minibatch (x, y, d) in training dataset S do
2: x̂1 ← Tweak(x)
3: x̂2 ← Twider(x̂1)
4: select x̂ according to Eq. 1
5: θ ← θ − η∇θ[L(fθ(x̂, y)]
6: if DCAuglabel then
7: θ̃ = (1− β)θ + βθ̃
8: else if DCAugdomain then
9: ϕ ← ϕ− η∇ϕ[L(hϕ(x̂, d)]

10: ϕ̃ = (1− β)ϕ+ βϕ̃
11: end if
12: end for

In this way, the reward would avoid favoring multiple times
the same samples because they are already included in the
model. At the same time, the consistency reward needs to
be robust because we must classify those samples correctly.
To do that, an exponential moving average (EMA) of our
domain classifier ϕ̃ is used as a consistent teacher:

ϕ̃ = (1− β)ϕ+ βϕ̃

Rcon(x, d) = L(hϕ̃(x), d)
(4)

where β defines the smoothness of the moving average and
is fixed at 0.999 for all experiments, we call this approach
DCAugdomain.

Alternatively, in situations where the domain meta-data
d is unavailable, we can rewrite Eqs. 3 and 4 by using the
label classifier fθ as the teacher and student, and the class
label as ground truth. The method is referred to hereafter as

DCAuglabel and uses the rewards terms:

Rdiv(x, y) = L(fθ(x), y)
Rcon(x, y) = L(fθ̃(x), y)

(5)

being θ̃ the exponential moving average (EMA) of θ. This
method also allows us to use θ̃ instead of θ as the final clas-
sifier, which usually results in a more robust model [3].
We call this special variant TeachDCAuglabel. Figure 3
shows an overview of the DCAug procedure. For each it-
eration, our training schema comprises two phases. In the
first phase, we freeze θ,ϕ parameters and select the most
appropriate transformation based on our reward function R.
In the second phase, we update θ,ϕ using a gradient de-
scent procedure. The full algorithm of the DCAug training
procedure is presented in Algorithm 1.

5. Experiments

Dataset. Following DomainBed benchmark [15], we
evaluate our method on five diverse datasets. PACS [25]
is a 7-way object classification task with 4 domains and
9,991 samples. VLCS [11] is a 5-way classification task
with 4 domains and 10,729 samples. This dataset mostly
contains real photos. The distribution shifts are subtle and
simulate real-life scenarios well. OfficeHome [45] is a 65-
way classification task depicting everyday objects with 4
domains and a total of 15,588 samples. TerraIncognita [4] is
a 10-way classification problem of animals in wildlife cam-
eras, where the 4 domains are different locations. There are
24,788 samples. This represents a realistic use case where
generalization is indeed critical. DomainNet [36] is a 345-
way object classification task with 6 domains. With a total
of 586,575 samples, DomainNet is larger than most of the
other evaluated datasets in both samples and classes.

Evaluation protocols and implementation details. All
performance scores are evaluated by leave-one-out cross-
validation, averaging all cases that use a single domain as
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Method Category
Dataset

PACS VLCS OfficeHome TerraInc DomainNet Avg.

ERM [44] Baseline 84.2±0.1 77.3±0.1 67.6±0.2 47.8±0.6 44.0±0.1 64.2
MMD [26]

Domain-Invariant

84.7±0.5 77.5±0.9 66.4±0.1 42.2±1.6 23.4±9.5 58.8
IRM [2] 83.5±0.8 78.6±0.5 64.3±2.2 47.6±0.8 33.9±2.8 61.6
GroupDRO [39] 84.4±0.8 76.7±0.6 66.0±0.7 43.2±1.1 33.3±0.2 60.7
DANN [12] 83.7±0.4 78.6±0.4 65.9±0.6 46.7±0.5 38.3±0.1 62.6
CORAL [41] 86.2±0.3 78.8±0.6 68.7±0.3 47.6±1.0 41.5±0.1 64.5
mDSDI [6] 86.2±0.2 79.0±0.3 69.2±0.4 48.1±1.4 42.8±0.2 65.1
DDAIG [55]

Data Augmentation

83.1 - 65.5 - - -
MixStyle [56] 85.2±0.3 77.9±0.5 60.4±0.3 44.0±0.7 34.0±0.1 60.3
RSC [19] 85.2±0.9 77.1±0.5 65.5±0.9 46.6±1.0 38.9±0.5 62.7
Mixup [48] 84.6±0.6 77.4±0.6 68.1±0.3 47.9±0.8 39.2±0.1 63.4
SagNets [34] 86.3±0.2 77.8±0.5 68.1±0.1 48.6±1.0 40.3±0.1 64.2
DCAugdomain (Ours) 86.1±0.9 78.9±0.5 68.8±0.4 48.7±0.8 43.7±0.3 65.2
DCAuglabel (Ours) 86.1±0.7 78.6±0.4 68.3±0.4 49.3±1.5 43.8±0.2 65.2
TeachDCAuglabel (Ours) 88.4±0.2 78.8±0.4 70.4±0.2 51.1±1.1 46.4±0.1 67.0

Table 2. Comparison with domain generalization methods Out-of-domain accuracies on five domain generalization benchmarks are pre-
sented. We highlight the best overall result. For each category, we also report the average accuracy per dataset. Accuracies other than our
methods (DCAug) are from [7, 15]. Our experiments are repeated three times.

the target (test) domain and the others as the source (train-
ing) domains. We employ DomainBed training and eval-
uation protocols [15]. In particular, for training, we use
ResNet-50 [17] pre-trained on the ImageNet [38] as the de-
fault backbone. The model is optimized using Adam [21]
optimizer. A mini-batch contains all domains and 32 ex-
amples per domain. For the model hyperparameters, such
as learning rate, dropout rate, and weight decay, we use
the same configuration as proposed in [7]. We follow [7]
and train models for 15000 steps on DomainNet and 5000
steps for other datasets, corresponding to a variable number
of epochs dependent on dataset size. Every experiment is
repeated three times with different seeds. We leave 20%
of source domain data for validation. We use training-
domain validation for the model selection, in which, for
each random seed, we choose the model, maximizing the
accuracy of the validation set. The balancing coefficient of
our method, λ, is coarsely tuned on the validation with three
different values: [0.2, 0.5, 0.8].

5.1. Main Results

In this section, we compare three variations of our
model, DCAugdomain, DCAuglabel and TeachDCAuglabel

with and without domain meta-data (as explained in section
4.2), with 11 related methods in DG. Those methods are
divided into two families: data augmentation and domain-
invariant representation. For data augmentation, we com-
pare with Mixup [48], MixStyle [56], DDAIG [55], SagNets

[34] and RSC [19]. For invariant representation learning,
we compare with IRM [2], GroupDRO [39], CORAL [41],
MMD [26], DANN [12] and mDSDI [6]. We also included
ERM as a strong baseline as shown in [15].

Table 2 shows the overall performance of DCAug and
other methods on five domain generalization benchmarks
on a classification task. The full result per dataset and the
domain are provided in the supplementary material. From
the table, we observe that, as shown in [20], most methods
struggle to reach the performance of a simple ERM adapted
to multiple domains, and only a few methods manage to ob-
tain good results on all datasets. TeachDCAuglabel, which
essentially is the moving average version of DCAuglabel,
while being simple, manages to rank among the first
on all datasets, outperforming all data augmentation and
domain-invariant methods. Furthermore, DCAugdomain

and DCAuglabel manage to outperform all data augmenta-
tion methods and obtain comparable results with the best
domain-invariant methods which underlines the importance
of good data augmentation for DG. Another important ob-
servation is that as the dataset size increased, from PACS
with 9,991 samples to DomainNet with 586,575 samples
(see section 5), most of the methods, especially from the
domain-invariant family struggled to show any performance
increase compared to the ERM baseline. This poor perfor-
mance is probably due to the large size and larger number
of domains of TerraIncognita and DomainNet which makes
all approaches that try to artificially increase the general-
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ization of the algorithm not profitable. On the other hand,
our approach manages to keep the performance close or bet-
ter (in the case of TerraIncognita) to ERM. Recently, a new
method based on ensembling models [37] trained with dif-
ferent hyperparameters has reached an average accuracy of
68 on the evaluated datasets. However, this approach does
not belong to the studied methods and is orthogonal to them.
Compared to ERM, DCAug has a small additional compu-
tational cost. In particular, DCAugdomain, other than up-
dating the parameters of both domain and label classifier
for each sample, computes the loss of the domain classi-
fier twice without the need to calculate the gradients (see C
from supplementary materials for full characterization.)

5.2. Empirical analysis of DCAug
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Figure 4. Evolution over epochs of Weak vs Wider augmentations
on the four domains of the PACS dataset. The title of each plot
shows the domain, out-of-domain accuracies, and the average ra-
tio of each augmentation for the entire training run. In the plots, we
see that for Cartoon and Sketch, the two domains that are farther
from the pre-trained model on ImageNet and with lower perfor-
mance, strong transformations are preferred over weak ones.

Rejection rate of strong augmentations. We study the
evolution of the rejection rate of strong augmentations over
epochs on the PACS dataset. We use the same balancing
hyperparameter λ as in the main experiments. For each do-
main, we show the selection of weak and strong augmenta-
tions for the entire training. As we observe in Figure 4, the

rejecting rate is domain-dependent. As models have been
pre-trained on ImageNet [38], we can see that our method
selects weak and strong augmentations equally for domains
that are closer to the pre-trained dataset (Art and Photo).
However, for Cartoon and Sketch, which are far from Im-
ageNet, we observe that our method uses more strong aug-
mentations. This observation is in line with other works
that suggest the effect of data augmentations diminishes if
the training data already covers most of the variations in the
dataset [31, 47].

Measuring diversity and consistency. Following [14],
we compare the diversity and consistency (affinity) of the
transformation space that our proposed approach induces
with TA (Wide), TA (Wider), and ERM. Intuitively, con-
sistency measures the level of distortion caused by a given
data augmentation schema on the target dataset. Here, in
our case, we use the in-domain validation and out-domain
test set to measure in and out-domain performance, respec-
tively. On the other hand, diversity is a model-dependent
element and captures the difficulty of the model to fit the
augmented training data (see D from supplementary mate-
rials for precise definitions). As shown in Figure 5, neither
of the two extremes, TA (Wider) as the most diverse and
ERM with standard data augmentations as the most consis-
tent, is sufficient for the best final performance. However,
all of our proposed approaches provide a good trade-off be-
tween consistency and diversity, which results in the best
absolute performance for both in-domain and out-domain.

In-domain performance. The in-domain performance
of Autoaugment, RandAugment, TA (Wide), TA (Wider) is
investigated, and our proposed methods are in Table 3. It
has the exact opposite ranking compared to Table 1, which
shows that aggressive data augmentation can indeed harm
the in-domain performance. Our method, however, has
proven to be highly effective in both cases, demonstrating
that by limiting the scope of transformation, we can achieve
optimal outcomes that combine the best of both worlds.

Diverse domain and consistent label. Given that our
final target is to select a transformation that creates chal-
lenging samples with diverse domains without losing the
sample’s original meaning, one might want to use the do-
main classifier and label classifier to satisfy this goal. In
particular, we can write a variation of our reward functions
as follows:

Rdiv(x, d) = L(hϕ(x), d)

Rcon(x, y) = L(fθ(x), y),
(6)

in which the diversity is measured in terms of domain labels
d, and the consistency in class labels y. This formulation re-
sembles the reward function used in [55], although for dif-
ferent purposes. We also derive another variation to this re-
ward function, which uses the EMA version of each model.
Also, for these rewards, we tune the hyperparameter λ to
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Figure 5. Consistency and diversity for different methods for in-domain (left) and out-of-domain (right) settings on the PACS dataset.
Color represents the classification accuracy on the test set. For high accuracy, we need a good trade-off between diversity and consistency.

Method Search Space
Dataset

PACS VLCS OfficeHome TerraInc DomainNet Avg.

AutoAugment [8] Default 97.3±0.2 87.0±0.1 82.9±0.3 90.1±0.2 62.2±0.1 83.9
TA (Ours) Wider 97.6±0.1 87.2±0.1 83.4±0.3 89.7±0.1 62.0±0.1 84.0
RandAugment [9] Default 97.3±0.2 87.1±0.2 82.8±0.3 91.2±0.1 62.4±0.4 84.2
TA [33] Wide 97.6±0.2 87.2±0.1 83.8±0.4 90.9±0.2 62.7±0.1 84.4
DCAugdomain (Ours) Wider 97.5±0.2 87.1±0.1 83.5±0.3 91.6±0.2 62.8±0.1 84.5
DCAuglabel (Ours) Wider 97.6±0.2 87.3±0.2 83.4±0.4 91.3±0.2 62.8±0.1 84.5
TeachDCAuglabel (Ours) Wider 98.1±0.2 87.5±0.2 84.1±0.4 92.5±0.1 65.6±0.1 85.6

Table 3. In-domain accuracies of our methods on five domain generalization benchmarks. Our experiments are repeated three times.

find the best balance between diversity and consistency. As
reported in Table 4, these two formulation variants are inef-
fective. In particular, since the task of domain classification
is significantly easier than the target task, finding a good
balance between these two turns out to be difficult [40].

6. Conclusion

In this work, a method is introduced to improve the per-
formance of data augmentation when multiple domains are

Diversity Consistency OOD Accuracy

L(hϕ(x), d) L(fθ(x), y) 81.8
L(hϕ̃(x), d) L(fθ̃(x), y) 80.1
L(fθ(x), y) L(fθ̃(x), y) 86.1
L(hϕ(x), d) L(hϕ̃(x), d) 86.1

Table 4. Variations of our reward function on PACS dataset. hϕ̃

and fθ̃ refer to the EMA version of their corresponding models.
Our methods are highlighted in the table.

available at training time, yet the distribution of the test do-
main is different from those and unknown. In this setting,
we show that the state-of-the-art in-domain augmentation
of TrivialAugment [33] based on uniform sampling of pre-
defined transformation is beneficial, helping to improve re-
sults for a baseline based on ERM, which is effective for do-
main generalization [15]. Then, we propose to further im-
prove results by increasing the magnitude of those transfor-
mations while preserving the random sampling. This makes
sense for domain generalization as we want to learn an un-
known domain. Finally, we propose a rejection scheme that
removes extreme and harmful transformations during train-
ing based on a reward function that compares the perfor-
mance of a label classifier with its exponential moving av-
erage. These contributions allowed our method to achieve
equal or better performance than state-of-the-art methods
on five challenging domain generalization datasets with a
minimum intervention in the standard ERM pipeline.
Acknowledgments: This work was supported by Distech
Controls Inc., the Natural Sciences and Engineering Re-
search Council of Canada, the Digital Research Alliance of
Canada, and MITACS.
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