
Late to the party? On-demand unlabeled personalized federated learning

Ohad Amosy
Bar Ilan University, Israel

amosy3@gmail.com

Gal Eyal
Bar Ilan University, Israel

Gal Chechik
Bar-Ilan University, Israel
NVIDIA Research, Israel

Abstract

In Federated Learning (FL), multiple clients collaborate
to learn a shared model through a central server while keep-
ing data decentralized. Personalized Federated Learning
(PFL) further extends FL by learning a personalized model
per client. In both FL and PFL, all clients participate in the
training process and their labeled data are used for train-
ing. However, in reality, novel clients may wish to join a
prediction service after it has been deployed, obtaining pre-
dictions for their own unlabeled data.

Here, we introduce a new learning setup, On-Demand
Unlabeled PFL (OD-PFL), where a system trained on a
set of clients, needs to be later applied to novel unlabeled
clients at inference time. We propose a novel approach to
this problem, ODPFL-HN, which learns to produce a new
model for the late-to-the-party client. Specifically, we train
an encoder network that learns a representation for a client
given its unlabeled data. That client representation is fed
to a hypernetwork that generates a personalized model for
that client. Evaluated on five benchmark datasets, we find
that ODPFL-HN generalizes better than the current FL and
PFL methods, especially when the novel client has a large
shift from training clients. We also analyzed the general-
ization error for novel clients, and showed analytically and
experimentally how novel clients can apply differential pri-
vacy

1. Introduction
Federated Learning (FL) is the task of learning a model

over multiple disjoint local datasets, while keeping data de-
centralized [25]. Personalized Federated Learning (PFL)
[38] extends FL to the case where the data distribution
varies across clients. PFL has numerous applications from a
smartphone application that wishes to improve text predic-
tion without uploading user-sensitive data, to a consortium
of hospitals that wish to train a joint model while preserving
the privacy of their patients. Current PFL methods assume
that all clients participate in training and that their data is
labeled , so once a model is trained, a novel client cannot be

Figure 1. The On-demand PFL problem. A set of k clients
c1, . . . , ck are available for training a PFL model, each with their
own distribution Pi(x, y). After training is completed, a new
client appears, with its own distribution Pnew over unlabeled data.
The goal is to create a model fnew that minimizes the loss over the
new client data l(y, fnew(x)).

added.
In many cases, however, a federated model has been

trained and deployed, but then novel clients wish to join.
Often, such novel clients do not have labeled data, and their
data distribution may shift from that of training clients. This
is the case, for example, when a speech recognition feder-
ated model has been deployed and needs to be applied to
new users or when a virus diagnostic has been developed
for some regions or countries, and then needs to be applied
to new populations while the virus spreads. This learn-
ing setup poses a hard challenge to existing approaches.
Non-personalized FL techniques may not generalize well
to novel clients due to domain shift. PFL techniques learn
personalized models but are not designed to handle clients
that were not available during training.

When a novel client joins with its labeled data, there are
various strategies to adapt the pre-trained model to the novel
client. For instance, a FL model can be fine-tuned using
those labels. For PFL, it is less clear which personalized
model should be fine-tuned. [29] used a hypernetwork (HN)
that generates a personalized model for each client, given a
descriptor of client labels. To generalize to a novel client
with labeled data, they fine-tuning the descriptor using the
labeled data through the hypernetwork. While all these ap-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2184

proaches are useful, they cannot handle novel clients that
have no labeled data.

Here, we define a novel problem: performing feder-
ated learning on novel clients with unlabeled data that are
only available at inference time. We call this setup OD-
PFL for On-Demand Unlabeled Personalized Federated
Learning. We propose a novel approach to this problem,
called ODPFL-HN. During training, our architecture learns
a space of personalized models, one for each client, together
with an encoder that maps each client to a point in that
client space. All personalized models are learned jointly
through an HN, allowing us to combine personalized data
effectively. At inference time, a novel client can locally
compute its own descriptor using the client encoder. Then,
it sends the descriptor to the server as input to the HN and
obtains its personalized model.

A key question remains for this approach to succeed:
How to compute a descriptor of a novel unlabeled client?
A key idea is to define a client encoder that maps a dataset
into a descriptor, and train it jointly with the HN. We ex-
plore the properties that this encoder should have. First, its
architecture should implement a function that is invariant
to permutations over its inputs [35]. Furthermore, if ob-
jects in the data adhere to their own symmetries, such as
images, graphs, or point clouds, the encoder architecture
should also be invariant to these symmetries [24]. To the
best of our knowledge, this is the first paper that discusses
learning such invariant descriptors of datasets or clients.

FL is motivated by privacy, but was shown to be vulner-
able [21]. In the OD-PFL setup, novel clients do not expose
data or gradients, so they can better control their privacy.
We show theoretically how differential privacy (DP) can be
applied effectively to a new client and then experimentally
measured how DP affects the accuracy of the personalized
model.

This paper makes the following contributions: (1) A new
learning setup, OD-PFL, learning a personalized model to
novel unlabeled clients at inference time. (2) A new
approach, learn a space of models using an encoder that
maps an unlabeled client to that space, and an architecture
ODPFL-HN based on hypernetworks. (3) A generaliza-
tion bound based on multitask learning and domain adap-
tation, and analysis of differential privacy for a novel client.
(4) Evaluation on five benchmark datasets, showing that
ODPFL-HN performs better than or equal to the baselines.

2. Related work
Federated learning (FL). In FL, clients collaboratively

solve a learning task, while preserving data privacy and
maintaining communication efficiency. By collaborating
through FL, clients leverage the shared pool of knowledge
from other clients in the federation, and can better handle
data scarcity, low data quality, and unseen classes. The lit-

erature on FL is vast and cannot be covered here. We re-
fer the reader to recent surveys [1, 36]. We note that [20]
addresses clients with unlabeled data but does not address
novel (test-time) clients, which is the main focus of this pa-
per.

Personalized Federated Learning (PFL). FL methods
learn a single global model across clients, and this limits
their ability to deal with heterogeneous clients. In contrast,
PFL methods are designed to handle heterogeneity of data
between clients by learning multiple models. [30] separates
PFL methods into data-based and model-based approaches.
Data-based PFL approaches aim to smooth the statistical
heterogeneity of data among different clients, by normaliz-
ing the data [7] or by selecting a subset of clients with min-
imal class imbalance [32]. Model-based PFL approaches
adapt to the diversity of data distributions across clients. As
an example, a server may learn a global model and share it
with all the clients. Then, each client learns its own local
model on top of the global model. We refer the reader to
recent surveys [16, 30].

Novel labeled clients. Several recent studies proposed to
create personalized models for a novel labeled client. [29]
used an HN to produce personalized models for training
clients. Given a novel client, they tuned the embedding
layer of the HN using client labels. In [22], each client
interpolates a global model and a local kNN model is pro-
duced using the labels of the novel clients. [23] modeled
each client as a mixture of distributions using an EM-like
algorithm. A new labeled client uses its labels to calculate
its own personalized mixture. All these methods depend on
having access to labels of the novel client hance do not ap-
ply to the OD-PFL setup. In Sec. 6.2, we test 3 different
ways to apply existing PFL models to our setup and show
that ODPFL-HN outperforms all these variants.

Adapting a model to a new distribution during infer-
ence can be viewed as a variant of domain adaptation (DA)
[14,19,31]. Our on-demand setup can be viewed as an adap-
tation of DA to FL. We emphasize that DA is fundamentally
different from FL, since in FL the data is distributed across
different clients. As a result, DA approaches cannot be ap-
plied directly to the FL setup. To the best of our knowledge,
this is the first paper to address test-time adaptation in a FL
setup.

Differential privacy (DP). The goal of DP is to share in-
formation about a dataset but to avoid sharing information
about individual samples in the dataset. Although privacy
is a key motivation of PFL, private information is exposed
in the process: an adversarial client can infer the presence
of exact data points in the data of other clients, and under
certain conditions even generate the data of other clients.
See a survey for more details [26]. A natural solution is to
use DP to protect client privacy [10]. However, DP adds
noise to the training process and may harm the model per-

2185

Unlabeled
Data of
client 𝑖

𝑥!" !#$
%!

g!

Client encoder
(permutation invariant)

Hypernetwork

𝑓"

Descriptor
of client 𝑖

𝑒"#

Local network
of client 𝑖 𝑥 𝑦%h(⋅	; 𝐰#)

𝐰!

Figure 2. The components of ODPFL-HN. Given a client ci with
mi unlabeled samples, the client encoder gγ produces an embed-
ding êi. Then, the HN fθ predicts weights wi for the local model
hi of client i.

formance. Here, we focus on the privacy of a novel client at
test time, so the trained models remain untouched, and each
novel client can choose its own privacy-accuracy trade-off
at inference time.

3. The Learning Setup
We now formally define the learning setup of OD-PFL.

We follow the notation in [2]. Let X be an input space and
Y an output space. P is a probability distribution over the
data X × Y . Let l be a loss function l : Y × Y → R. H
is a set of hypotheses with h : X → Y . The error of a
hypothesis h over a distribution P is defined by errP (h) =∫
X×Y l(h(x), y)dP (x, y).

In OD-PFL, we train a federation of N clients
c1, . . . , cN , and other, novel, clients are added at inference
time. For simplicity of notation, we consider a single novel
client cnew. Let {Pi}Ni=1 be the data distributions of train-
ing clients, and Pnew the data distribution of the novel client
cnew. Each training client has access to mi IID samples
from its distribution Pi, denoted as Si = {(xij , yij)}

mi
j=1.

The goal of OD-PFL is to use data from training clients
{Si}Ni=1 to learn a mechanism that can assign a hypothesis
hnew ∈ H when given unlabeled data from a novel client
Snew = {xnewj }mj=1. This hypothesis should minimize the
expected error of the novel client. For any distribution of
its data Pnew, that error is defined by errPnew(hnew) =∫
X×Y l(hnew(x), y)dPnew(x, y).

4. Our approach
We introduce OD-PFL to address the challenge of pro-

ducing an “on-demand” personalized model for new unla-
beled clients after a federated model has been deployed.
This task is difficult because the data distribution of a novel
client may differ from that of training clients and is un-
known at training time. Also, the training clients are no

longer available at inference time. To the best of our knowl-
edge, these constraints were not considered in the FL setup
before, and existing methods are not designed to handle this
new setup. Generalizing to a novel client is hard for FL
methods, because they do not specialize. It is hard for PFL
methods, because no single model learned during training
would not necessary fit a novel client. Even if it did, there
is no clear way to select that model, because the novel client
has no labels to use as a selection criteria. Here, we propose
a meta-learning mechanism to produce a model that fits the
new distribution of unlabeled data.

A natural candidate for such a meta-mechanism would
be hypernetworks (HNs). HNs are neural networks that out-
put the weights of another network and can therefore be
used to produce “on-demand” models. Since the weights
of the generated model are a (differentiable) function of
the HN parameters, training the HN is achieved simply by
propagating gradients from the generated (client) model. To
generate a model for a client, the HN should be fed with a
descriptor that summarizes the client dataset. Here we pro-
pose to learn a client encoder that takes as input the un-
labeled data of a client and produces a dense descriptor.
Figure 2 illustrates our approach. Each client feeds its in-
put samples to a client encoder that produces an embedding
vector. Then an HN takes the embedding and produces a
personalized model. During training, the client uses its la-
bels to tune the personalized model and back-propagates the
gradients to the HN and the client encoder. We now describe
our approach in detail.

Client encoding. The goal of client encoding is to map an
entire data set into a dense descriptor. Formally, it maps
unlabeled samples Si = {xij}

mi
j=1 of client i to a descriptor

ei embedded in a representation space E . In essence, the
encoder is expected to map similar datasets to nearby de-
scriptors in a way that balances personalization – of unique
clients, with generalization – across similar clients.

For this mapping to be effective, it should obey sev-
eral properties. First, the embedding should be inductive
and generalizing, in the sense that the embedding function
would later be applied to a novel client at test time and
should generalize to that client. Second, since data sam-
ples form an unordered set, we wish that the encoder obeys
the set symmetries of the data and is invariant to permuta-
tions over samples. Third, the encoder should capture the
full data set. We now discuss our design decisions when
building the encoder.

First, with respect to generalization. One may be
tempted to explicitly regularize the representation such that
similar datasets are mapped to close vectors in the em-
bedding space. However, note that the descriptors are
consumed by the downstream HN. Therefore, training the
two networks jointly, while regularizing their parameters,

2186

should yield a representation that generalizes across clients.
This is because the encoder tunes the representation to fit
the downstream HN.

Second, with respect to permutation invariance, we
tested three architectures. (1) DeepSet (DS) [35]. In DS,
each data point is fed to the same (”siamese”) model and
produces a feature vector. Then, an invariant pooling op-
erator (usually mean) is applied to all outputs, and then
processed by a second model, yielding the final descrip-
tor. (2) DS is invariant to permutations over input samples,
but it does not take into account symmetries of each ele-
ment itself, such as translation invariance in images. We
use Deep Sets for symmetric elements (DSS) [24] to handle
symmetries at both the set level and the element level. (3)
DS and DSS uniformly aggregate information from all in-
dividual elements in the set. Sometimes, it is beneficial to
consider several elements together when computing the de-
scriptor. To capture sample-to-sample interactions, we used
a set transformer (ST) [18]. ST uses attention to aggre-
gate representations of all elements into a single descriptor.
The weight of each element is determined by the context of
other elements in the dataset. We treated the architecture as
a hyperparameter and selected it using the validation set.

Finally, with respect to describing the full dataset. The
simplest approach is to use large batches that contain the
entire dataset as input to the client encoder. We also tested
an alternative approach that can be applied to large datasets
that do not fit in a single batch in memory. In these cases,
we split the data into smaller batches, encoded each batch,
and used the average over batch descriptors as the final de-
scriptor. Note that this resembles a DeepSet architecture
and that when batches are sampled uniformly at random,
would obey in expectation invariance to input permutation.
Hypernetworks. Our goal is to create a personalized model
for a new client at inference time. Assuming that the client
encoder summarized all relevant information to create such
a personalized model. A natural solution is to learn a map-
ping from such descriptors to personalized models, and ap-
ply it to the descriptor of a novel client. This is exactly what
HNs are designed for.

An HN fθ parameterized by θ embodies a mapping from
a client-embedding space to a hypotheses space fθ : E →
H . The HN maps a client with an embedding vector ei to a
personalized model hi = h(·;wi), with wi = fθ(ei).
Training. The client encoder and the HN are trained jointly.
They produce a client descriptor and a personalized model
for every client by optimizing the following loss

L(θ, γ) =

n∑
i=1

mi∑
j=1

l

(
fθ

(
gγ({xij}

mi
j=1)

)(
xij

)
, yij

)
(1)

using training clients (labeled) c1, . . . , cN , where l is a
cross-entropy loss.

Algorithm 1 Training On-demand PFL-HN

initialize θ, γ
for each round t = 1, 2, ... do

i← select a random client out of N clients
ei ← CLIENTENCODING(gγ)
wi ← fθ(ei) . server computes a personal model
∆wi ← CLIENTUPDATE(wi)
apply chain rule to obtain ∆θ and ∆ei from ∆wi
θ ← θ − η∆θ
∆γ ← CLIENTBACKPROP(∆ei)
γ ← γ − η∆γ

function CLIENTENCODING(gγ) //Run on client i
ei ← gγ({xk}mik=1) . client i computes its

embedding
return ei to server

function CLIENTUPDATE(wi) //Run on client i
B ← split {xk}mik=1 into batches
wnewi ← wi
for each local epoch e from 1 to E do

for each batch b ∈ B do
update wnewi using l(h(·;wnewi); b) . training

∆wi ← wnewi − wi
return ∆wi to server

function CLIENTBACKPROP(∆ei) //Run on client i
apply chain rule to obtain ∆γ from ∆ei
return ∆γ to server

Workflow. Algorithm 1 shows the workflow of ODPFL-
HN. During training, in each communication step, we re-
peat these 4 steps: (1) The server selects a random client
and sends to it the current encoder gγ . (2) The client locally
predicts its embedding ei and sends it back to the server. (3)
Using its embedding, the server uses an HN fθ to generate
a customized network hi = h(·;wi) and communicates it to
the client. (4) The client then locally trains that network on
its data and communicates back to the server the delta be-
tween the weights before and after training. Using the chain
rule, the server can train the hypernetwork and the encoder.

At inference time, (1) the server sends the encoder to the
novel client. (2) The client uses the encoder to calculate an
embedding enew and sends it to the server. (3) The server
uses the HN to predict the personalized model of the client
hnew = h(·;wnew) from the embedding and sends the re-
sult to the client. The client then applies its personalized
model locally without revealing its data.

5. Generalization bound
The data of the new client and the clients of the feder-

ation may be sampled from different distributions. In the

2187

general case, there is no guarantee that learning a model
for labeled clients would lead to a good model for a novel
client. We now show that under reasonable assumptions,
previous bounds developed for multitask learning (MTL)
and for domain adaptation (DA), can be applied to the OD-
PFL setup, to bound the generalization error of the novel
client.

Intuitively, the bound has two terms; one captures the
domain shift, and the other captures the generalization error.

Theorem 1. Let H be a hypothesis space, Pnew be a data
distribution of a novel client, and Q be a distribution over
the distributions of the clients, that is, Pi is drawn from Q.
ˆerrz(H) is the empirical loss over the training-client data

and is defined in detail in the Appendix A.
The generalization error of a novel client is

bounded by errPnew(H) ≤ ˆerrz(H) + ε +
1
2

∫
P

infh∈H d̂H∆H(P, Pnew)dQ(P). Here, ε is an
approximation error of a client in the federation from
Theorem 2 in [2] and d̂H∆H is a distance measure between
the probability distributions defined in [3].

Proof. See Appendix A for a detailed proof.

6. Experiments

6.1. Experiment setup and evaluation protocol

We evaluated ODPFL-HN using five benchmarks. We
designed an experimental protocol the OD-PFL setup where
novel clients are presented to the server during inference.

Client split: To quantify the performance of novel
clients, we first randomly partition the clients into Ntrain
train clients and Nnovel novel clients (we used Nnovel =
N/10). Unless stated otherwise, we report average accu-
racy over novel clients. To conduct a fair comparison, train-
ing is limited to 500 steps for all evaluated methods. In each
step, the server communicates with a 0.1 fraction of training
clients following the protocol of each method.

Sample split and HP tuning: We split the samples of
each training client into training samples and validation
samples, which were used for hyperparameter tuning (de-
tails in See Appendix C).

6.2. Baselines

We evaluate using FL methods, which train a single
global model, and PFL methods, which train one model
per client. We compare the following FL methods: (1) Fe-
dAVG [25], where the parameters of local models are av-
eraged with weights proportional to the sizes of the client
datasets. (2) FedProx [27] adds a proximal term to the
client cost functions, thereby limiting the impact of local
updates by keeping them close to the global model. (3)

FedMA [33] constructs the shared global model in a layer-
wise manner by matching and averaging hidden elements
with similar feature extraction signatures. For inference
with FL methods, all novel clients are evaluated using the
single global model.

Applying PFL methods to OD-PFL is not straightfor-
ward because PFL methods are not designed to general-
ize to a novel unlabeled client. They produce a model per
training client, but it is not clear how to use these models
for inference over a novel client. We tested three different
ways to use PFL for inference with a novel client: (4) PFL-
sampled: Draw a trained client model uniformly at random.
We evaluate this baseline by computing the mean accuracy
of all personalized models on each novel client. (5) PFL-
nearest: We used the training client model closest to the
novel client. We measure the distance using A-distance [4],
which can be calculated in a FL setup. (6) PFL-Ensemble:
(4) and (5) use a model from one of the training clients as
the new client model. Here, we try a stronger baseline that
uses all personalized models for a single novel client, by
averaging the logits of all models for each prediction. In
practice, this method is expensive in communication and
computation costs. All experiments used pFedHN [29] to
produce models for training clients.

6.3. Results for CIFAR

We evaluate ODPFL-HN using CIFAR10 and CI-
FAR100 [15] following two existing protocols.
(1) Pathological split: As proposed by [25], we sort the
training samples by their labels and partition them intoN ·K
shards. Then each client is randomly assigned K of the
shards. This results in N clients with the same number of
training samples and a different distribution over labels. In
our experiments, we use N = 100 clients, K = 2 for CI-
FAR10 and K = 5 for CIFAR100.
(2) Dirichlet allocation: We follow the procedure by [12]
to control the magnitude of the distribution shift between
clients. For each client i, samples are drawn independently
with class labels following a categorical distribution over
classes with a parameter qi ∼ Dir(α). Here, Dir is the
symmetric Dirichlet distribution.We conduct three experi-
ments for each of the two datasets with α ∈ 0.1, 1, 10.
Smaller values of alpha imply larger distribution shifts be-
tween clients.

Implementation details: There are three different mod-
els in ODPFL-HN: A target model, an HN, and a client en-
coder. Target model: We use a LeNet [17] with two convo-
lutions and two fully connected layers. To assure a fair com-
parison, we use the same target model across all evaluated
methods and baselines. Client encoder: For the DS en-
coder, we use the same architecture as the target model, with
an additional fully connected layer followed by pooling op-
erations over batch dimension. These layers are added after

2188

Table 1. Accuracy on novel unlabeled clients, CIFAR10 & CIFAR100: Values are averages and standard error across clients.

CIFAR-10 CIFAR-100

split pathological α = 0.1 α = 1 α = 10 pathological α = 0.1 α = 1 α = 10

FedAvg 50.3± 2.9 58.7± 3.6 48.4± 2.9 66.2± 0.5 16.2± 1.3 17.9± 1.0 13.5± 1.7 30.2± 0.4
FedProx 54.2± 2.0 53.9± 2.2 54.2± 1.0 52.8± 0.6 5.5± 1.2 15.9± 0.7 20.6± 0.6 12.4± 0.6
FedMA 42.9± 1.8 49.3± 3.4 54.5± 0.9 53.8± 0.6 11.2± 0.7 12.6± 1.0 6.5± 0.4 7.3± 0.3
PFL-sampled 24.8± 1.0 61.0± 3.7 49.4± 3.0 68.5± 0.7 3.9± 0.4 13.5± 0.5 3.4± 1.4 32.4± 0.1
PFL-nearest 24.4± 6.2 63.1± 3.5 49.4± 0.9 68.5± 0.7 6.5± 2.7 14.3± 0.6 3.4± 0.4 32.1± 0.2
PFL-ensemble 47.6± 3.2 62.2± 3.7 49.4± 3.0 68.5± 0.7 7.8± 1.8 20.4± 1.2 3.4± 1.4 32.7± 0.2

ODPFL-HN (ours) 59.5± 3.5 66.0± 3.0 62.9± 1.0 68.1± 0.5 19.5± 2.1 26.4± 0.1 32.9± 0.9 33.6± 0.1

each convolution layer and before the fully connected lay-
ers. For the DSS and the ST encoder we use the public
implementation provided by the authors. Hypernetwork:
The HN is a fully connected network, with 3 hidden layers
and linear head for each target weight tensor.

Results: Table 1 compares ODPFL-HN to baselines on
CIFAR-10 and CIFAR-100. ODPFL-HN performs better
than all baselines in all the evaluated scenarios, except for
CIFAR-10 with the α = 10 split.

6.4. Results for iNaturalist

iNaturalist is a dataset for Natural Species Classifica-
tion based on the iNaturalist 2017 Challenge [11]. The
dataset has 1,203 classes. Following [13], we evaluate
ODPFL-HN using two geographical splits of iNaturalist:
iNaturalist-Geo-1k with 368 clients, and iNaturalist-Geo-
300 with 1,208 clients.

Implementation details: We use a MobileNetV2 [28]
pre-trained on ImageNet to extract features for each image.
The extracted feature vectors, of length 1280, are the input
for both the target model and the client encoder. Target
model: The target model is a fully connected network with
two Dense layers and a Dropout layer. Client encoder: The
client encoder has three fully connected layers with pooling
operations after the first layer. HN implementation is the
same as in Sec. 6.3.

Results: Table 2 shows ODPFL-HN outperforms current
FL methods and adapted PFL methods.

6.5. Results for Landmarks

The Landmarks dataset is based on the 2019 Landmark-
Recognition Challenge [34]. Following [13], we di-
vide the dataset into clients by authorship. The result-
ing Landmarks-User-160k split contains 1,262 clients with
2,028 classes. Implementation is as in Sec. 6.4.

Results: Table 3 shows that ODPFL-HN outperforms
current FL methods in all evaluations. ODPFL-HN out-
performs the adapted PFL methods with the exception of

Table 2. Accuracy on novel unlabeled clients for iNaturalist
Values are averages and SEMs across novel clients.

iNaturalist
split Geo-300 Geo-1k

FedAvg 36.1± 1.6 36.9± 1.1
FedProx 17.4± 0.8 26.5± 1.7
FedMA 13.4± 0.7 17.5± 0.8

PFL sampled 25.6± 1.4 27.2± 0.9
PFL nearest 24.2± 3.7 26.9± 4.6
PFL ensemble 31.5± 1.6 36.6± 1.2

ODPFL-HN 37.5± 1.7 41.6± 1.2

PFL-ensemble where it ties. However, PFL-ensemble suf-
fers from relatively large communication and computation
costs compared to the proposed ODPFL-HN.

6.6. Results for Yahoo Answers

The Yahoo Answers dataset is a question-classification
dataset [37], with 1.4 million training samples from 10
classes. We divide the data into 1000 clients using the
Dirichlet allocation procedure with α = 10.

Implementation details: We used BERT [6] to extract
a 768-dimension feature vector for each sample. For more
details, see Section 6.4.

Results: Table 3 shows that ODPFL-HN outperforms
current FL methods and adapted PFL methods.

6.7. How distribution shift affects generalization

We expect ODPFL-HN generalization to depend on the
similarity between the novel client and the training clients.
Novel clients that differ from training clients may per-
form poorly compared to clients that are similar to training
clients.

To quantify this effect, we generated clients at vary-
ing similarity levels by creating new splits of CIFAR-
100 using Dirichlet allocation while varying α ∈

2189

Table 3. Accuracy on novel unlabeled clients for Landmarks
and Yahoo Answers. Values are averages and SEMs across novel
clients.

Landmarks Yahoo
split User-160k User-1K

FedAvg 34.8± 1.3 27.6± 0.1
FedProx 13.8± 1.0 13.9± 0.1
FedMA 3.80± 0.4 25.0± 0.1

PFL sampled 37.4± 1.3 33.2± 0.1
PFL nearest 33.1± 3.6 13.2± 0.1
PFL ensemble 39.1± 1.4 33.2± 0.1

ODPFL-HN 41.1± 1.4 35.8± 0.2

{0.1, 0.25, 0.5, 1, 10}. To measure the similarity between
a novel client and all training clients, we computed the em-
pirical label distributions of each client and computed their
KL-divergence from the novel client. Figure 3a presents
the accuracy of a novel client as a function of its DKL

to the nearest train client. As expected, the accuracy de-
creases as DKL grows, for all evaluated methods. ODPFL-
HN demonstrates the most moderate decrease, achieving
the highest accuracy in large distribution shifts.

6.8. Robustness to covariate shift

Common benchmarks for PFL assume that different
clients have a different distribution of labels. Here, we con-
duct an additional experiment to measure the effect of co-
variate shifts between clients. We evaluated the robustness
of ODPFL-HN to a wide range of blur and rotation corrup-
tions, using the CIFAR10 dataset. We applied the corrup-
tions to the data of the novel client, while the data of train-
ing clients was kept uncorrupted. Figure 3b compares the
accuracy for novel clients with varying levels of blur and
rotation corruption. ODPFL-HN consistently out-performs
all baselines.

We test ODPFL-HN robustness to covariate shift, by
training an FL model on CIFAR10 (pathological split) and
used STL10 as the data of the novel client. ODPFL-HN
achieves 43.1% ± 4.1%, much better than all other base-
lines: FedProx 35.3%± 2.7%, FedMA 32.9%± 2.5%, Fe-
dAvg 34.7% ± 4.1%, PFL-sampled 17.6% ± 0.6%, PFL-
ensemble 28.1%± 1.9% and PFL-nearest 31.9%± 3.8%.

7. Differential Privacy
A key aspect of FL is data privacy, since it does not re-

quire clients to share their data directly with the hub. Un-
fortunately, some private information may be exposed (see
a recent survey by [26]). In this section, we analyze the pri-
vacy of a novel client and characterize how it can protect its
privacy by applying differential privacy (DP) [9]. We fur-

Figure 3. Distribution shift. (Top) Accuracy of novel clients
vs. distribution shift between the novel client and training clients.
Shown results for CIFAR-100 across multiple splits to Ntrain =
90 train clients and Nnovel = 10 novel clients using symmet-
ric Dirichlet distributions with varying parameter α (see Sec. 6.7).
Accuracies of novel clients are reported against the KL-divergence
(over label distribution) from the nearest train client for each
method. (Bottom) Test mean accuracy (± S.E.M. over 10 clients)
for CIFAR-10 novel clients corrupted with blur using various size
of Gaussian filters and rotation at various angles.

ther study the trade-off between the privacy and accuracy of
personalized models.

We first define key concepts and our notation. We use
(ε, δ)-DP as defined by [8]. Two datasets D,D′ are adja-
cent if they differ in a single instance.

Definition 7.1. A randomization mechanism M : D → R
satisfies a (ε, δ)-differential privacy if for any two adjacent
inputs d, d′ ∈ D and for any subset of outputs S ⊆ R it
holds that Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S] + δ.

Here, ε quantifies privacy loss, where smaller values
mean better privacy protection, and δ bounds the probability
of privacy breach. The sensitivity of a function f is defined
by ∆f = maxD,D′ ||f(D) − f(D′)||, for two datasets D
and D′ that differ by only one element.

[8] showed that given a model f , data privacy can be pre-
served by perturbing the output of the model and calibrating
the standard deviation of the perturbation according to the

2190

sensitivity of the function f and the desired level of privacy
ε. Intuitively, if the protected model is not very sensitive to
changes in a single training element, one can achieve DP
with smaller perturbations.

Our focus here is to apply DP to a novel client that joins a
pre-trained ODPFL-HN model. Fortunately, since the novel
client does not participate in training, the only information
that a novel client shares with the server is the client de-
scriptor. This descriptor is computed locally by the client,
so applying DP to the encoder can protect its data privacy.

Several mechanisms were proposed to achieve DP by
adding noise. [8] describes a Gaussian mechanism that
adds noise drawn from a Gaussian distribution with σ2 =
2∆f2 log(1.25/δ)

ε2 . Our analysis focuses on the Gaussian
mechanism, but the same method can be used with other
noise mechanisms.

Let a novel client apply (ε, δ)-DP to the encoder using
the Gaussian mechanism. The server sends the encoder g to
the client. The client then sends to the server g({xij}

mi
j=1)+ξ

as its embedding, where ξ is an IID vector from Gaussian
distribution with σ2 = 2(∆g)2 log(1.25/δ)

ε2 . To do that, the
client must know the sensitivity of the encoder. The follow-
ing lemma shows that for a DS encoder, we can bound the
sensitivity of the encoder, hence bound the noise magnitude
necessary to achieve privacy. See proof in Appendix D.

Lemma 2. Let g be a deep-set encoder, written as: g(D) =
ψ(1
|D|
∑
x∈D φ(x)). If ψ is a linear function with Lipschitz

constant Lψ , and φ is bounded by Bψ , then the sensitivity
of the encoder is bounded by ∆g ≤ 2

|D|LψBφ.

The lemma shows that the encoder sensitivity decreases
linearly with the size of the novel client dataset |D|. For a
given (ε, δ), a lower sensitivity allows us to use less noise
to achieve the desired privacy. This in turn means that the
client can achieve better performance.

We now empirically evaluate the effect of adding Gaus-
sian additive noise to the embedding of a novel client. To
meet the conditions in lemma 2, we normalized the output
of φ to be on a unit sphere, so Bφ = 1. In addition, we
average the output of φ, so Lψ = 1. We used δ = 0.01 and
compared different values of ε and dataset sizes.

Figure 4 shows that with sufficient data, a novel client
can protect its privacy without compromising its perfor-
mance. For example, given a desired privacy of ε = 0.3,
if the client feeds the DP-encoder with 3000 samples, the
HN creates a personalized model from a perturbed embed-
ding that is as accurate as a non-DP model.

8. Conclusion
This paper describes a new FL setup, where a model

trained in a FL workflow is transferred to novel clients
whose data are not labeled and were not available during

Figure 4. How much data is needed to achieve differential privacy?
Test accuracy (±SEM) for CIFAR-10 novel client as a function
of datasets size. Blue curve depicts models with privacy level of
ε = 0.3. With more data, smaller perturbation is needed to achieve
that level of privacy, hence accuracy rises.

training. We describe ODPFL-HN, a novel approach to OD-
PFL, based on an encoder that learns a space of clients and
an HN that maps clients to corresponding models in an “on-
demand” way. We evaluated ODPFL-HN on five bench-
mark datasets, showing that it generalizes better than cur-
rent FL and modified PFL methods. We also analyze and
bound the generalization error for a novel client and ana-
lyze applying DP for the novel client. We hope that this
paper will encourage the research community to consider
generalization to novel clients when designing FL methods.

Ethical implications

Federated learning is designed for helping in training
models without sharing user data that clients aim to keep
safe. It is important to realize however that in the stan-
dard FL setup clients do send information about gradients
of their local models to the server, and it is not guaranteed
that no information about the data is leaked. The current
paper addresses a scenario where all information about the
new client is only convey through a client encoder, and this
fact may provide better control to the new client over what
data it shares. This work has no specific policing or mili-
tary applications, and does not involve collecting or infer-
ring personal data.

Reproducibility

We support reproducible research and will release all
code, datasets and hyper parameters necessary to reproduce
our results.

2191

References
[1] Sawsan AbdulRahman, Hanine Tout, Hakima Ould-Slimane,

Azzam Mourad, Chamseddine Talhi, and Mohsen Guizani.
A survey on federated learning: The journey from central-
ized to distributed on-site learning and beyond. IEEE Inter-
net of Things Journal, 8(7):5476–5497, 2020. 2

[2] Jonathan Baxter. A model of inductive bias learning. Journal
of artificial intelligence research, 12:149–198, 2000. 3, 5, 11

[3] Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman Vaughan.
A theory of learning from different domains. Machine learn-
ing, 79(1-2):151–175, 2010. 5, 11

[4] Shai Ben-David, John Blitzer, Koby Crammer, Fernando
Pereira, et al. Analysis of representations for domain adap-
tation. Advances in neural information processing systems,
19:137, 2007. 5

[5] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler,
and Manfred K Warmuth. Learnability and the vapnik-
chervonenkis dimension. Journal of the ACM (JACM),
36(4):929–965, 1989. 11

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1, pages 4171–4186, Minneapolis,
Minnesota, June 2019. Association for Computational Lin-
guistics. 6

[7] Moming Duan, Duo Liu, Xianzhang Chen, Renping Liu, Yu-
juan Tan, and Liang Liang. Self-balancing federated learning
with global imbalanced data in mobile systems. IEEE Trans-
actions on Parallel and Distributed Systems, 32(1):59–71,
2021. 2

[8] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry,
Ilya Mironov, and Moni Naor. Our data, ourselves: Pri-
vacy via distributed noise generation. In Annual Interna-
tional Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 486–503. Springer, 2006. 7, 8

[9] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam
Smith. Calibrating noise to sensitivity in private data analy-
sis. In Theory of cryptography conference, pages 265–284.
Springer, 2006. 7

[10] Ahmed El Ouadrhiri and Ahmed Abdelhadi. Differential pri-
vacy for deep and federated learning: A survey. IEEE Ac-
cess, 10:22359–22380, 2022. 2

[11] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alexander Shepard, Hartwig Adam, Pietro Per-
ona, and Serge J. Belongie. The inaturalist species classi-
fication and detection dataset. 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8769–
8778, 2018. 6

[12] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Mea-
suring the effects of non-identical data distribution for feder-
ated visual classification. arXiv preprint arXiv:1909.06335,
2019. 5

[13] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Feder-
ated visual classification with real-world data distribution. In

Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part X 16,
pages 76–92. Springer, 2020. 6

[14] Youngeun Kim, Donghyeon Cho, Kyeongtak Han,
Priyadarshini Panda, and Sungeun Hong. Domain
adaptation without source data. IEEE Transactions on
Artificial Intelligence, 2021. 2

[15] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical Report TR-
2009, University of Toronto, Toronto., 2009. 5

[16] Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Sur-
vey of personalization techniques for federated learning. In
2020 Fourth World Conference on Smart Trends in Sys-
tems, Security and Sustainability (WorldS4), pages 794–797.
IEEE, 2020. 2

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
5

[18] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Se-
ungjin Choi, and Yee Whye Teh. Set transformer: A frame-
work for attention-based permutation-invariant neural net-
works. In International Conference on Machine Learning,
pages 3744–3753. PMLR, 2019. 4

[19] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need
to access the source data? source hypothesis transfer for un-
supervised domain adaptation. In International Conference
on Machine Learning, pages 6028–6039. PMLR, 2020. 2

[20] Nan Lu, Zhao Wang, Xiaoxiao Li, Gang Niu, Qi Dou, and
Masashi Sugiyama. Federated learning from only unlabeled
data with class-conditional-sharing clients. arXiv preprint
arXiv:2204.03304, 2022. 2

[21] Priyanka Mary Mammen. Federated learning: opportunities
and challenges. arXiv preprint arXiv:2101.05428, 2021. 2

[22] Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia
Kameni, and Richard Vidal. Federated multi-task learning
under a mixture of distributions. Advances in Neural Infor-
mation Processing Systems, 34:15434–15447, 2021. 2

[23] Othmane Marfoq, Giovanni Neglia, Richard Vidal, and
Laetitia Kameni. Personalized federated learning through lo-
cal memorization. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato,
editors, Proceedings of the 39th International Conference on
Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 15070–15092. PMLR, 17–23 Jul
2022. 2

[24] Haggai Maron, Or Litany, Gal Chechik, and Ethan Fetaya.
On learning sets of symmetric elements. In International
Conference on Machine Learning, pages 6734–6744. PMLR,
2020. 2, 4

[25] Brendan McMahan, Eider Moore, Daniel Ramage, Seth
Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data.
In Artificial Intelligence and Statistics, pages 1273–1282.
PMLR, 2017. 1, 5

[26] Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan
Huang, Ali Dehghantanha, and Gautam Srivastava. A survey

2192

on security and privacy of federated learning. Future Gener-
ation Computer Systems, 115:619–640, 2021. 2, 7

[27] Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil Zaheer,
Ameet Talwalkar, and Virginia Smith. On the convergence
of federated optimization in heterogeneous networks. arXiv
preprint arXiv:1812.06127, 3:3, 2018. 5

[28] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 6

[29] Aviv Shamsian, Aviv Navon, Ethan Fetaya, and Gal Chechik.
Personalized federated learning using hypernetworks. In In-
ternational Conference on Machine Learning, pages 9489–
9502. PMLR, 2021. 1, 2, 5

[30] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang.
Towards personalized federated learning. IEEE Transactions
on Neural Networks and Learning Systems, 2022. 2

[31] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. arXiv preprint arXiv:2006.10726,
2020. 2

[32] Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Opti-
mizing federated learning on non-iid data with reinforcement
learning. In IEEE INFOCOM 2020-IEEE Conference on
Computer Communications, pages 1698–1707. IEEE, 2020.
2

[33] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Pa-
pailiopoulos, and Yasaman Khazaeni. Federated learning
with matched averaging. In International Conference on
Learning Representations (ICLR), 2020. 5, 13

[34] Tobias Weyand, André Araujo, Bingyi Cao, and Jack Sim.
Google landmarks dataset v2 - a large-scale benchmark for
instance-level recognition and retrieval. In conference on
computer vision and pattern recognition, 2020. 6

[35] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Russ R Salakhutdinov, and Alexander J Smola.
Deep sets. Advances in neural information processing sys-
tems, 30, 2017. 2, 4

[36] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and
Yuan Gao. A survey on federated learning. Knowledge-
Based Systems, 216:106775, 2021. 2

[37] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level
convolutional networks for text classification. Advances in
neural information processing systems, 28:649–657, 2015. 6

[38] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon
Civin, and Vikas Chandra. Federated learning with non-iid
data. arXiv preprint arXiv:1806.00582, 2018. 1

2193

