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Abstract

We propose a novel method for Zero-Shot Anomaly Local-
ization on textures. The task refers to identifying abnormal
regions in an otherwise homogeneous image. To obtain a
high-fidelity localization, we leverage a bĳective mapping
derived from the 1-dimensional Wasserstein Distance. As
opposed to using holistic distances between distributions, the
proposed approach allows pinpointing the non-conformity
of a pixel in a local context with increased precision. By
aggregating the contribution of the pixel to the errors of all
nearby patches, we obtain a reliable anomaly score estimate.
We validate our solution on several datasets and obtain more
than a 40% reduction in error over the previous state of the
art on the MVTec AD dataset in a zero-shot setting. Also see
reality.tf.fau.de/pub/ardelean2024highfidelity.html.

1. Introduction
Anomaly Detection (AD) refers to discerning between

elements that abide by a standard of normality and those
which do not. Humans are generally able to perform this
distinction without the need for an explicit guideline for the
standard of normality simply by comparing them to items that
agree to the standard [50]. Even further, we can often find
anomalous regions from visual imagery without previous
knowledge of how a certain object or material should look,
by simply pinpointing what stands out in a single, isolated
sample [37]. This motivates the search for an automatic
system able to perform this task, i.e., zero-shot anomaly
localization (ZSAL).

Anomaly detection and localization has a wide range of
applications. Automatically finding defects during manufac-
turing, identifying forgeries, detecting situations that require
attention in medical imaging, and discovering inaccuracies
in industrial machines are just a few of the domains where an
anomaly detection system could bring considerable benefits.

The computer vision community has lately shown in-
creased interest in solving the problem of anomaly detection

Figure 1. Anomaly localization example. Left: input texture; right:
predicted anomaly map.

and localization, encouraged by the success of deep learn-
ing methods on various tasks [15]. The primary employed
strategy is unsupervised learning, modeling normality from
a collection of unblemished items. This removes the need
for labeled anomalous data at training time, which can be dif-
ficult to acquire; however, most current systems still require
numerous curated (normal) samples [22,33,36,42,51,56].
To alleviate this requirement, the more challenging task of
few-shot [28,43,46] and zero-shot [4,29,45] AL has recently
started to be addressed.

We develop a new system designed specifically for
anomaly localization that works in a zero-shot setting, identi-
fying the parts that break the homogeneity of a single textured
sample (Figure 1). Our main contribution is a novel method
for comparing the statistics between different patches in an
image or feature map. To quantify the normality of a pixel
location one could trivially compute the average of the nearby
features and compare them to a global descriptor, however, as
we show, the errors obtained by this method are too coarse for
a pixel-level localization of anomalies. We analyze different
methods for comparing the local statistics of a patch to a
(global) reference and show that one can use a bidirectional
mapping that implicitly results from the Wasserstein distance
to more precisely identify the offending pixels. This insight
is the core of our Feature Correspondence Analysis (FCA).

2. Related Work
The problem of anomaly detection can be posed for vari-

ous types of data such as weather records [52], stock market
and financial transactions [1], acoustic monitoring [21], video
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surveillance [31], medical imaging [25], manufacturing in-
spection [27, 35], etc. In this work, we address the detection
of anomalies in images, more exactly detecting anomalous
regions in otherwise homogeneous or stationary textures.
This can be formulated as a multi-class segmentation and
classification of anomalous pixels [13, 39], or in a simpler
setting, as a binary separation between normal and anoma-
lous regions [20, 22, 34, 43, 53, 56]. We focus on the latter,
usually referred to as anomaly localization (AL) despite
dealing with pixel-level segmentation (as opposed to local-
ization understood in the context of object detection). AL
can be considered a superclass of the anomaly detection
task/classification over images, as an image label can be
simply computed as the maximum of pixel-wise anomaly
predictions [9]. Therefore, AL is more challenging and, for
most purposes, more useful compared to image-level classi-
fication, making the result explainable and actionable [50].
In the remainder of this section, we briefly address the most
relevant methods and refer readers to a survey [35,50] for a
broader insight into anomaly localization literature.
Reconstruction-based methods. Most of the early ma-
chine learning methods for anomaly detection are
reconstruction-based [50], using a (variational) autoen-
coder [3, 12, 54], or a generative adversarial network (GAN)
[2, 6, 44] to learn to synthesize normal images. At inference,
reconstruction errors reveal anomalies. These methods are
intuitive; however, they do not incorporate any priors on real
images (e.g. by pretraining), which makes them dependent
on a large set of normal samples. Conversely, our method
identifies anomalies with zero normal exemplars.
Deep features-based methods. The leading approaches in
recent years belong to the class of deep feature-based methods.
In essence, these methods leverage features extracted with
the help of a larger network, pretrained on vast amounts of
data, that serves as a prior. These embeddings have been used
in various ways such as taking the 𝑘-nearest neighbors at
image (DN2 [8]) or sub-image level (SPADE [20]), creating
a Teacher-Student feature-reconstruction framework [11],
modeling the distribution of features that characterizes each
pixel location as a multivariate Gaussian (PaDiM [22]),
creating a memory bank of feature patches as a representation
of normality (PatchCore [42]), etc. The intuition is that the
features from the intermediate layers of a CNN trained on
ImageNet [23] capture higher level semantics that can be
used to identify anomalies. As we show, our approach also
benefits from using deep features.
Few-shot methods. Few-shot anomaly detection was re-
cently explicitly addressed with approaches such as normal-
izing flows [43], hierarchical generative models [46], and
feature registration [28]. These methods, however, rely on
data augmentation which is problem-specific and may re-
quire domain knowledge. Moreover, as observed in [4], they
are not significantly better compared to, for example, Patch-

Core [42] which scales better with the number of samples.
The authors of PatchCore even address the concern regarding
the performance in a limited normal data setting and shows
better results compared to SPADE [20] and PaDiM [22].
Notably, we are interested in the more extreme situation
where not a single normal image is provided.
Zero-shot methods. Zero-shot anomaly localization con-
siders the case of anomaly detection where the anomalous
regions are segmented without a set of unblemished textures
to act as guidance. MAEDAY [45] introduces for the first
time the task of zero-shot anomaly detection. The method
pretrains a transformer-based network which is used to re-
construct a partially masked image at inference. By using
this in-painting network, an anomaly score can be computed
by identifying the differences between the unmasked image
and the reconstructed output. WinCLIP [29] introduced a
new paradigm for ZSAL using a vision-language foundation
model (CLIP [41]) which quickly gained traction [5, 14, 16].
These methods use text prompts to discriminate between
normal and anomalous patches relying on the capacity of
the multimodal foundation model to learn this distinction
through large-scale training. Aota et al. [4] developed a
method for zero-shot anomaly detection and localization
specifically for textures. For each pixel, the local features are
averaged and compared to the 𝑘-nearest neighbors in the same
image. Our method is most similar to the latter as it compares
local features with globally aggregated information, and it is
designed to work on textures and not generic objects as [45]
and [29]. Academic works that explicitly solve ZSAL only
recently emerged; however, the task bears similarities to tex-
ture perception [30], image saliency [17], texture stationarity
analysis [38], and weathering estimation [7].

3. Algorithm Design
This section describes the design decisions that went into

building our method. We analyze how different components
of a zero-shot patch-based anomaly localization system affect
its performance, and we also introduce a novel procedure for
estimating the anomaly degree at each spatial location.

We consider the following attributes of an AL method,
identified as desirable: high sensitivity at high specificity,
ability to scale to higher resolutions, and fast running time.
Importantly, we focus on a zero-shot scenario, and we are
mainly interested in textures, which are largely homogeneous,
save for the anomalous regions themselves.

As a generic framework for zero-shot anomaly localization,
we propose the following self-similarity formulation to obtain
the anomaly map 𝐴 from an image 𝐼:

𝐴(𝑥, 𝑦; 𝐹, 𝑆, 𝑅) =
∑︁

𝐹𝑟 ∈𝑅 (𝐹 (𝐼 ) )
𝑆(𝑥, 𝑦, 𝐹 (𝐼), 𝐹𝑟 ) . (1)

Such an AL system is defined by three different components:
feature extraction (𝐹), patch statistics comparison (𝑆), and
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PRO ↑ / AUROC ↑ Colors RandProj Steerable TEM VGG
Moments 46.51 / 75.62 40.66 / 73.33 64.21 / 80.78 53.97 / 75.64 61.96 / 83.82
Histogram 50.43 / 77.80 53.74 / 80.48 70.64 / 84.43 68.47 / 84.71 73.17 / 88.44
SWW 58.62 / 83.62 62.21 / 85.89 73.08 / 87.77 74.48 / 89.36 77.40 / 91.44
FCA (ours) 63.30 / 85.76 66.28 / 87.62 71.75 / 86.99 75.33 / 90.18 81.08 / 92.58

Table 1. Preliminary experiment, comparing our patch statistics method to different baselines. Compared in terms of two metrics: PRO(0.3)
and AUROC. The best results are highlighted in bold.

reference selection (𝑅). Simply put, the anomaly score 𝐴

at location (𝑥, 𝑦) is computed as the sum of the costs when
comparing features within one or more patches containing
(𝑥, 𝑦) with a set of references 𝐹𝑟 . We note that the proposed
definition is a superset of the discrete form of the stationarity
measure introduced in [38]. While not explicitly designed
for anomaly localization, by isolating the influence of each
spatial location in the stationarity measure from [38], one can
use it as an anomaly localization score. The main difference
is that Moritz et al. assume the reference set 𝑅 consists of all
patches in 𝐹 (𝐼), which, as we show, is suboptimal.

3.1. Feature Extraction

We evaluate the effect of different feature extractors
𝐹 (𝐼) → R𝐻×𝑊×𝐶 and confirm the findings of previous
work that pretrained neural networks provide useful features
for AL. Table 1 compares five feature extraction functions 𝐹.
The metrics used for evaluation are detailed in Section 4. We
consider using the colors directly (𝐹 (𝐼) = 𝐼), convolving the
image 𝐼 with a set of random kernels, Steerable Filters [26],
Laws’ texture energy measure (TEM [32]), and neural fea-
tures from a simple pretrained VGG19 network [48]. In
this preliminary experiment, all feature extractors operate
on a single resolution and have a small receptive field, i.e.,
the images are scaled to 256 × 256, and the feature maps
have the same resolution, with 𝐶 ≈ 128 channels (except for
colors, where 𝐶 = 3). The random projections are inspired
by [24], where they are used in the context of the Sliced
Wasserstein Distance, and consist of normalized random
5 × 5 kernels; we use only one level of steerable filters (full
spatial resolution); finally, we use the concatenated output of
the first two convolutional layers of the VGG network, having
an effective receptive field of 5 × 5. We use a patch size of
25 × 25 for all stationarity measures, which is large enough
to capture the difference in appearance between normal and
anomalous regions.

As shown in Table 1, the embeddings obtained from the
VGG network consistently outperform other types of features,
including traditional texture analysis methods [26, 32].

3.2. Patch Statistics Comparison

The function 𝑆(𝑥, 𝑦, 𝐹 (𝐼), 𝐹𝑟 ) evaluates the degree of
anomaly at position (𝑥, 𝑦) given its local context in the
feature maps 𝐹 (𝐼), by comparing with the reference 𝐹𝑟 . The

function should analyze how do the local statistics around
(𝑥, 𝑦) differ from the statistics in 𝐹𝑟 . In this subsection we
describe different options for 𝑆, together with their limitations,
and introduce our Feature Correspondence Analysis (FCA)
method for comparing patch statistics.

Moments. In general, only a small region around a
certain location is needed to identify an anomaly. This leads
to a trivial patch statistics comparison method, computed by
averaging the features around (𝑥, 𝑦), i.e.,

𝑆(𝑥, 𝑦) =
 1
𝑇2

∑︁
(𝑥′ ,𝑦′ ) ∈𝑃𝑥𝑦

𝐹 (𝐼) (𝑥′, 𝑦′) − avg(𝐹𝑟 )
2

2
, (2)

where 𝐹 (𝐼) and 𝐹𝑟 have been omitted from 𝑆 for brevity, and
𝑃𝑥𝑦 denotes a patch of size 𝑇 × 𝑇 centered in (𝑥, 𝑦). The
definition can be easily extended to include spatial weighting
(e.g., Gaussian) and moments of higher order, becoming
equivalent to the method of moments from [38] when using
RGB colors directly as features.

Histogram. Moritz et al. [38] propose another two
options for computing the stationarity measure, which can be
described in our conceptual framework as using a histogram-
based patch statistics comparison over RGB colors, and
steerable filters, respectively. The histogram-based algorithm
can be described as:

𝑆(𝑥, 𝑦) = hist
( ⋃
(𝑥′ ,𝑦′ ) ∈𝑃𝑥𝑦

𝐹 (𝐼) (𝑥′, 𝑦′)
)
⊖ hist(𝐹𝑟 ) , (3)

where ⊖ gives the earth mover’s (Wasserstein) distance
between the two histograms. As in the case of moments, when
computing the histogram one can employ spatial weighting
to increase the importance of the pixels closer to (𝑥, 𝑦).

Sample-weighted Wasserstein (SWW). The previous
methods have limited expressive powers, specifically because
they consider the distribution inside a patch as a whole, unable
to pinpoint “outlieredness” of individual samples.

That ability conveniently occurs in an efficient implemen-
tation of the 1-D Wasserstein distance when operating on
individual samples drawn from distributions. If two sets of
samples have the same size, the Wasserstein distance can be
obtained by sorting the samples and then summing over the
absolute differences between the elements corresponding to
the same rank [24]. That comparison of samples of the same
rank within a sorting can be seen as a bĳective mapping
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Figure 2. Depiction of our Feature Correspondence Analysis (FCA). All patches surrounding a pixel are compared against the reference. The
correspondence errors of the pixel in all contexts are aggregated to obtain the final anomaly score. The ⊖ denotes the absolute difference.

between two sample sets, and the difference between corre-
sponding samples is an immediate measure for those samples’
non-compliance with the respective other distribution. That
resulting non-compliance calculation translates directly to a
coarse anomaly measure of the corresponding feature chan-
nel for each pixel; summing them across channels results in
an error score 𝑀 (𝑥, 𝑦; 𝑃) for each pixel (𝑥, 𝑦) in a patch 𝑃.

Subsequently, we aggregate the per-patch error map 𝑀

into an anomaly measure for the center of the patch 𝑃. At this
point, averaging 𝑀 (·, ·; 𝑃) would yield the exact Wasserstein
distance, and it would be equivalent to the previously defined
histogram method (with bins → ∞). Instead, we use a
Gaussian-weighted average to increase the spatial sensitivity
of the resulting anomaly score 𝑆(𝑥, 𝑦).

Upon cursory observation, this may resemble the weighted,
sliding-window histogram calculations of Moritz et al. [38];
however, Moritz et al. compute weighted distributions before
calculating their metric, whereas we preserve the original
patch distribution but weight the influence of each sample’s
non-compliance score on the final anomaly score. The
equation for this sample-weighted Wasserstein method is:

𝑆(𝑥, 𝑦) =
∑︁

(𝑥′ ,𝑦′ ) ∈𝑃𝑥𝑦

𝑀 (𝑥′, 𝑦′; 𝑃𝑥𝑦)𝐺𝜎𝑤
(𝑥′ − 𝑥, 𝑦′ − 𝑦) , (4)

where𝐺𝜎𝑤
(Δ𝑥 ,Δ𝑦) is a spatial weighting function, for which

we use a Gaussian with variance 𝜎2
𝑤 . Note that we introduce

this method as a conceptual bridge between comparing
histograms and our FCA.

FCA. The previous definition of SWW allows us to
separate the context size and the amount of smoothing in the
aggregation through the parameter of the Gaussian; however,
the final anomaly score for any location (𝑥, 𝑦) uses as context
only the patch 𝑃𝑥𝑦 . We further leverage the bĳective mapping
from SWW by computing the anomaly score at location (𝑥, 𝑦)
as the sum of the matching errors for position (𝑥, 𝑦) in the

context of all surrounding patches, which gives:

𝑆(𝑥, 𝑦) =
∑︁

(𝑥′ ,𝑦′ ) ∈𝑃𝑥𝑦

𝑀 (𝑥, 𝑦; 𝑃𝑥′𝑦′ )𝐺𝜎𝑝
(𝑥′ − 𝑥, 𝑦′ − 𝑦) . (5)

Please note the change of parameters in 𝑀 compared to the
SWW equation (4). The main difference is that instead of
considering one context patch 𝑃𝑥𝑦 when computing 𝑆(𝑥, 𝑦),
we consider all patches that contain (𝑥, 𝑦), and aggregate the
contribution of the location (𝑥, 𝑦) in all of these contexts.
Anomalies are generally considered smooth and all avail-
able datasets present anomalies as binary blobs that mark
anomalous regions, rather than continuous scores depicting
the contribution of each pixel to the anomaly. To attend to
this, we introduce Gaussian smoothing G𝜎𝑠

after matching
errors, yielding the final formula:

𝑆(𝑥, 𝑦) =
∑︁

(𝑥′ ,𝑦′ ) ∈𝑃𝑥𝑦

G𝜎𝑠

(
𝑀 (·, ·; 𝑃𝑥′𝑦′ )

)
(𝑥, 𝑦)𝐺𝜎𝑝

(𝑥′ − 𝑥, 𝑦′ − 𝑦) .
(6)

The workflow of the algorithm is illustrated in Figure 2.
We name this novel method Feature Correspondence Analysis
(FCA), as it computes the anomaly score based on the
correspondence of features from patches to a reference.

In Figure 3, we showcase the effect of the proposed method
on an artificial problem. We run FCA without smoothing
(Equation 5) to show how our formulation allows significantly
better localization of the source of the error when comparing
the patch features statistics to the reference. While running
the histogram method with a small patch size would improve
the first result, it would fail in the second example because it
contains a contextual (also called conditional [49]) anomaly.

We also compare the Histogram method and our FCA on
a real case example from MVTec AD [9], in Figure 4.

3.3. Reference Selection

We analyze several options for the set of references
𝑅(𝐹 (𝐼)). An intuitive solution is to use all the patches
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Input Image FCA AL Hist large 𝑇 Hist small 𝑇

Figure 3. Anomaly localization for 2 synthetic examples when
comparing patch statistics using FCA versus histograms.

Input Image GT mask FCA AL Histogram AL

Figure 4. Anomaly localization maps for 2 textures from MVTec AD
[10] when comparing patch statistics using FCA versus histograms.

in the image as references, however, this amounts to comput-
ing the pairwise distances between all patches in an image
which can be very time-consuming, scaling poorly as the im-
age resolution increases. Choosing a single patch at random
is fast but is a poor approximation of the global statistics.

One can alternatively use one reference that aggregates
the global information (e.g., global average for moments, and
the histogram over the whole feature map, for the histogram-
based patch statistics comparison). In the case of SWW and
FCA, we choose 𝐹𝑟 as:

argmin
𝐹𝑟

∑︁
(𝑥,𝑦)

𝐴(𝑥, 𝑦; ·, ·, 𝑅 = {𝐹𝑟 }) . (7)

The feature set that minimizes the Wasserstein distance across
all patches has a closed-form solution, obtained by taking the
median over the features at each sorted position individually,
i.e., compute the median for each order statistic for each
feature channel. We analyze the performance of the global
statistic aggregation method and the trade-off between the
number of random patches used and performance in Table 2.

Using the median works well when the texture is ho-
mogeneous but struggles to capture the global statistics for
multimodal textures (e.g., structured textures with the period

PRO / Time [s] Hist SWW FCA
Random (1) 60.95 / 1.1 59.56 / 5.7 62.01 / 9.2
Random (3) 67.04 / 1.1 66.79 / 8.2 69.57 / 18.7
Random (10) 72.99 / 1.2 73.23 / 17.3 75.91 / 52.3
Random (100) 74.55 / 1.7 75.69 / 134 78.45 / 482
All 74.01 / 380 – / 84984 – / 314577
Global 73.17 / 1.1 77.40 / 5.7 81.08 / 9.2

Table 2. Analysis of the effect of the Reference Selection method.
We report the PRO(0.3) metric as well as the running time per
image. Variants that would be unreasonably slow to be used in
practice were marked with “–”, and only the time was reported.

larger than the patch size). To avoid this issue, one can use
the pairwise distances and discard the outliers by considering
only the closest 𝑘 distances. In this case, 𝑅 selects the 𝑘-
nearest neighbors (𝑘-NN) over all patches in the feature maps,
with respect to the cost 𝑆(𝑥, 𝑦; 𝐹 (𝐼), 𝐹𝑟 ). In Section 4.3, we
only report results using 𝑘-NN references when running on
low-resolution feature maps, due to the high running time of
this method. We note that employing a WideResnet-50 [55]
as feature extractor, using the first moment for patch statistics
comparison, and taking the 𝑘-NN for reference selection
yields a system equivalent to Aota et al. [4].

3.4. Final Method and Implementation Details

In accordance with the observations made in this section,
we design our final anomaly localization system to use
neural features from a pretrained neural network, evaluate
the local statistics with the newly introduced FCA, and use
the median for reference selection as a balance between
fidelity and speed. Following recent work on anomaly
detection [20, 22, 42], we use a WideResnet-50 network [55]
and extract the features computed by the second convolutional
block, yielding feature maps with 512 channels. Because the
output of this block has a resolution 8 times smaller than the
input, and FCA can handle relatively large context sizes, we
choose to run the method at full resolution and not resize it
as a preprocessing step as done in previous work [4, 22, 42].
All patch statistics comparison variants, including our FCA,
have been implemented in PyTorch [40], utilizing CUDA
acceleration, and ran on an NVIDIA RTX A5000 GPU. We
use the same hyperparameters for all experiments, setting
𝜎𝑝 = 3.0,𝜎𝑠 = 1.0. The patch size𝑇 should be set depending
on the size of the feature maps. We use 𝑇 = 9 when running
at full dataset resolution and 𝑇 = 3 for consistency with Aota
et al. [4] when running at 320 × 320.

4. Experiments
We compare our approach with state-of-the-art methods

in zero-shot anomaly detection as well as a few other adapted
baselines. Several datasets are considered in order to assess
the robustness of the proposed approach.
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4.1. Datasets

MVTec AD. Currently, the dataset most used in the con-
text of anomaly detection is the MVTec AD dataset [9, 10].
We use the 5 texture classes, accumulating over 500 test
images and their (manually annotated) segmentation masks.
The resolution of these images ranges from 840 × 840 to
1024×1024 pixels. Past works [4,9,42] propose various pre-
processing and postprocessing setups, consisting of resizing
and cropping to various resolutions. For a fair evaluation, we
compute the metrics at full resolution, following the original
evaluation script from the dataset provider [9]. The only
adaption performed is cropping to the center before evalua-
tion to avoid computing metrics on the edges of the images
where most methods do not provide reliable scores [4].
Woven Fabric Textures. Bergmann et al. [12] introduced
a small dataset for the task of defect segmentation containing
two woven fabric textures (denoted WFT from here on). For
each of them, 50 test images and segmentation masks are
provided. The resolution of the images is 512 × 512.
DTD-Synthetic. Aota et al. [4] constructed an artificial
dataset to evaluate anomaly detection methods on more
diverse data, including anisotropic textures. The dataset is
based on the Describable Texture Dataset [19] on which
various types of defects were artificially added. The textures
are also randomly rotated and cropped, eventually yielding
1304 images of small resolution (180 × 180 to 384 × 384).
Following [4], all images are resized to a fixed 320 × 320.
Aitex. The Aitex dataset [47] contains uniform fabric tex-
tures. The defects have been manually annotated in the
original images of size 256 × 4096. Following standard
practice, we split the images into square pieces. Additionally,
we discard all frames that are not completely covered by the
texture and images that do not contain any anomaly. For
consistency with [4], we resize the images to 320 × 320.

4.2. Metrics

The main metric for anomaly localization is the threshold-
independent AUROC (area under the receiver operating
characteristic curve). This metric is not very sensitive to
spatially small anomalies. To account for this, [10] introduced
the PRO(0.3) metric which weighs the size of each anomalous
region, and only computes the integral up to a False Positive
Rate of 0.3. Since the purpose of the proposed method is
to obtain a more detailed anomaly segmentation, the PRO
metric is our most important indicator. We additionally report
the pixel-level maximum 𝐹1 score [18, 57], corresponding
to the (𝐹1-)optimal threshold. Our contribution deals with
anomaly localization and does not focus on image-level labels
(computed as the maximum across the anomaly scores map).
Therefore, the anomaly classification metric, AUROC𝑐, is
only reported on the MVTec AD dataset and omitted for
other experiments.

4.3. Results

We compare our final method against several existing
methods for zero-shot and few-show anomaly localization.
The results on the MVTec AD dataset are reported in Table 3
below. We compare our system against MAEDAY, an image-
reconstruction-based zero-shot method [45], WinCLIP [29],
SAA [14], and April-GAN [16] based on visual-language
models, and Aota et al. [4] which employs a WideResnet
as feature extractor, and uses a simple average for patch
statistics comparison, combined with a 𝑘-NN search. Despite
being multi-shot methods, we include PatchCore [42] and
RD++ [51] for reference. We additionally adapt methods
that were not explicitly designed for ZSAL but are related
in scope, for a more complete comparison. Bellini et al. [7]
propose a method for weathering arbitrary textures from a
single image, and uses an age-estimation procedure as the
first step in their pipeline. The age-estimation procedure
targets the same goal, to highlight regions in an image that
stray away from the pristine appearance. Saliency-RC [17] as
a saliency detection method highlights parts of the image that
stand out, which is related to anomaly localization. However,
as mentioned by the authors, the method’s performance on
textures is limited.

PRO (0.3) AUROC AUROC𝑐

PatchCore all† 93.64 97.52 98.96
RD++ all† [51] 96.06 98.06 99.80
Saliency [17] 22.92 58.41 46.92
Bellini et al. [7] 50.75 76.06 36.90
MAEDAY† [45] – 75.20 88.90
WinCLIP† [29] 71.5 89.06 99.64
SAA+ [14] 64.79 77.82 93.86
April-GAN [16] 92.57 96.51 97.61
Aota et al. [4] 93.82 97.47 99.67
Ours320 95.46 97.74 99.21
Ours320 + 𝑘-NN 95.58 97.77 99.17
Ours 97.18 98.73 99.58

Table 3. Quantitative comparison on MVTec AD. We note with †

results taken from different papers (may be evaluated slightly
differently, as discussed in Section 4.1). The subscript 320 marks
running our method at the lower resolution. PatchCore and RD++
are included for reference despite being multi-shot methods.

The proposed method improves the localization of anoma-
lous textures significantly compared to the previous state-
of-the-art zero-shot method of Aota et al. by using a more
precise method for comparing patch statistics. Moreover, our
system even outperforms prominent multi-shot anomaly de-
tection methods PatchCore and RD++. April-GAN localizes
the anomalies significantly better than methods following the
same paradigm (WinCLIP, SAA+), which is consistent with
April-GAN having won the zero-shot visual anomaly and
novelty detection challenge at CVPR 2023. Nonetheless, on
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Figure 5. Qualitative comparison on challenging examples. The images are shown after cropping to center.

textures the method is clearly outperformed by our approach.

We additionally run experiments on the DTD-Synthetic
dataset [4], Woven Fabric Textures [12], and Aitex [47].
In these experiments we only compare with the identified

leading methods in ZSAL, i.e., [4] and [16]. The results are
presented in Table 4 and show that our method consistently
improves upon prior art in all metrics. We find that using
𝑘-NN for reference selection can improve our results at the
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PRO (0.3) AUROC F1
DTD-Synthetic
April-GAN [16] 88.50 95.32 52.40
Aota et al. [4] 94.32 98.00 65.96
Ours 94.71 98.03 69.87
Ours + 𝑘-NN 95.93 98.51 71.79
WFT
April-GAN [16] 84.97 94.90 71.51
Aota et al. [4] 84.59 96.11 72.07
Ours320 73.54 93.09 65.86
Ours320 + 𝑘-NN 86.24 96.19 72.76
Ours 89.57 98.26 79.13
Aitex
April-GAN [16] 72.62 85.90 35.23
Aota et al. [4] 87.11 96.70 61.09
Ours 91.07 97.51 62.39
Ours + 𝑘-NN 91.24 97.52 62.62

Table 4. Quantitative comparison on DTD-Synthetic, Woven Fabric
Textures (WFT), and Aitex.

cost of a higher running time. Importantly, as the resolution
increases, the value added by our FCA also grows. This can
be seen in the results on the WFT (512 × 512) and MVTec
AD (1024× 1024) datasets where running our method at full
resolution outperforms the lower resolution + 𝑘-NN variant.

In Figure 5 we present a qualitative comparison to the
leading zero-shots methods [4, 16]. We show the anomaly
predictions on challenging samples from each dataset. Com-
pared to [4], the anomaly maps produced by our method have
higher fidelity, with more precise localization (rows 1, 2, 4),
fewer false positives (rows 3, 6), and more complete coverage
of the anomalous regions (rows 5, 7). April-GAN generally
fails to detect the entire anomaly. For more visualizations
please see the supplementary material.

In addition to the study of various design choices in our
system with respect to feature extraction and patch statistics
comparison (Table 1), reference selection (Table 2), image
size and 𝑘-NN usage (Tables 3 and 4), we present a direct
ablation and a sensitivity analysis for our parameters 𝑇 , 𝜎𝑝

and 𝜎𝑠 in the supplementary material. We also include there
a brief analysis of possible failure cases for our method.

5. Discussion
The results suggest the proposed method predicts anomaly

scores with high fidelity. While FCA generally performs
better compared to other methods, it has a relatively high
complexity. Computing local moments or histograms can
be done efficiently thanks to the separability of the Gaus-
sian kernel. This does not apply to FCA which requires
sorting the values inside each sliding window. Table 5 re-
ports the computational complexity and running time of
patch-comparison-based methods for anomaly localization.

The summary shows that despite the added complexity, our
method scales sensibly with image resolution.

Method Complexity Time [s]
320 × 320 / 1024×1024

Moments 𝑂 (𝑁𝑇𝐷) 0.04 / 0.05
Histogram 𝑂 (𝑁𝑇𝐵𝐷) 0.06 / 0.08
Aota et al. 𝑂 (𝑁𝑇𝐷 + 𝑁2𝐷) 1.10 / 199‡
Ours 𝑂 (𝑁𝑇2 log(𝑇)𝐷) 0.71 / 1.07
Ours + 𝑘-NN 𝑂 (𝑁2𝑇2 log(𝑇)𝐷) 3.97 / 392‡

Table 5. Complexity analysis. 𝐷: number of features; 𝑇2: patch
area; 𝑁: image pixel count; 𝐵: bins per histogram. Inference time
is computed at 320 × 320 and 1024 × 1024 resolutions.
‡Aota et al. and Ours + 𝑘-NN scale poorly with large image sizes.

Due to the large and varied datasets, our experiments
support the advantage of our method robustly; however, we
observe that the manually defined ground-truth masks of
MVTec AD, WFT, and Aitex inevitably introduce a level
of subjectivity to those ground-truth references. In some
cases, as for instance shown in Figure 6, significantly differ-
ent ground truth interpretations would have been possible,
relativizing the accuracy score in such cases.

A limitation of our system is that, by design, it only works
on textures. Generic objects can have very different feature
statistics in different regions which would not be handled
correctly by our method.

Input Image Mask Ours Aota et al. [4]

Figure 6. Manual ground-truth annotations remain subjective where
multiple plausible interpretations exist.

6. Conclusion
In this work, we put forward a generic framework for

performing zero-shot anomaly localization. We identify the
importance of the different components and suggest a new
approach that significantly improves upon prior art. The most
important novelty is the proposed FCA for patch statistics
comparison which enables high-fidelity anomaly localization
that scales well with large textures. The performance of the
method is validated on several datasets offering a compre-
hensive overview of the advantages of the method and the
trade-off between running time and prediction quality.
Acknowledgements. This project has received funding
from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie
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