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Abstract

Existing video compression (VC) methods primarily aim
to reduce the spatial and temporal redundancies between
consecutive frames in a video while preserving its quality.
In this regard, previous works have achieved remarkable
results on videos acquired under specific settings such as
instant (known) exposure time and shutter speed which of-
ten result in sharp videos. However, when these methods
are evaluated on videos captured under different temporal
priors, which lead to degradations like motion blur and low
frame rate, they fail to maintain the quality of the contents.
In this work, we tackle the VC problem in a general sce-
nario where a given video can be blurry due to predefined
camera settings or dynamics in the scene. By exploiting
the natural trade-off between visual enhancement and data
compression, we formulate VC as a min-max optimization
problem and propose an effective framework and training
strategy to tackle the problem. Extensive experimental re-
sults on several benchmark datasets confirm the effective-
ness of our method compared to several state-of-the-art VC
approaches.

1. Introduction
Video compression (VC) methods primarily aim to

jointly compress the motion estimated between consecu-
tive frames and the residual computed between the recon-
structed frames and their original counterpart. In this re-
gard, existing VC approaches [2, 11, 12, 17, 21, 22, 24–27,
40, 46, 49, 50] have achieved remarkable results on videos
acquired under specific settings such as instant (known) ex-
posure time and shutter speed that often result in distinc-
tively sharp videos with sufficiently high frame rate. How-
ever, when these methods are evaluated on videos captured
under different temporal priors, such as slow shutter speed,
long exposure time, and fast-moving objects, which lead
to degradations like motion blur and low frame rate, they
perform very poorly and fail to preserve the input video
quality. This is mainly because motion and residual infor-
mation cannot be precisely computed and compressed be-

tween frames with degraded contents and relatively large
temporal distances, and hence existing approaches cannot
effectively generalize to complicated real-world scenarios.
Furthermore, this limitation cannot be trivially solved by
retraining previous works with blurry footage owing to the
nature of their problem formulation.

With the recent progress in deep network-based motion
deblurring [10, 31, 38, 41, 44], a straightforward approach
to tackling the task at hand would be to cascade off-the-
shelf deblurring and video compression models. However,
using cascade models results in sub-optimal performance.
First, the pixel errors introduced in the deblurring stage
would propagate to the compression stage, thus degrading
the overall performance. Second, due to the arbitrariness of
the artifacts introduced in the deblurring stage, since each
frame is processed independently, temporal smoothness can
not be ensured. As a result, the decoded video will suffer
from flickering artifacts. The alternative strategy of reverse
cascading (compression followed by deblurring) also suf-
fers from the same limitations.

An attempt to address these limitations by deploying a
naı̈ve end-to-end optimization scheme on cascade models,
unexpectedly, results in an even worse performance. This
is mainly due to the inherent trade-off between visual en-
hancement and data compression when performing the joint
task. Intuitively speaking, a blurry video can be regarded as
the pseudo-compressed version of its sharp equivalent. On
the other hand, a blind attempt to enhance the visual quality
of the given blurry video before compression would in turn
have a decompressing effect, i.e. it increases the amount of
bits required to encode the given data.

We have observed that an end-to-end training of cascade
models with the standard rate-distortion optimization [25,
49, 50] fails to exploit this trade-off and makes the cascade
models converge to a bad local minima [14, 20, 37], where
the deblurring network collapses to an identity function in
deblurring + compression (D + C) cascade models, whereas
the compression network incurs a heavy encoding cost in
compression + deblurring (C + D) cascade models.

This paper tackles the video compression problem in a
situation, where a video may contain blurry regions due to a
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predefined camera setting or dynamics in a scene. Inspired
by the aforementioned trade-off, we formulate the task at
hand as a min-max optimization problem, i.e. we adap-
tively maximize the visual quality of a given video while
simultaneously minimizing the number of bits needed to
encode it. To this end, we present a single, end-to-end
trainable network with interrelated visual enhancement and
compression modules. To mitigate erroneous motion esti-
mation due to blur corrupted pixels or large displacements,
we propose a context-aware flow refinement mechanism.
Finally, we devise an effective training strategy to tailor
each component in our network toward optimal compres-
sion performance. We show the versatility of our approach
by demonstrating that one well-trained model can be used
for 1) generating sharp, yet compressed videos from raw
blurry videos and 2) compressing videos while preserving
the input prior, i.e. either sharp or blur prior.

Contributions. To summarize, our contributions are two-
fold: (1) To the best of our knowledge, this is the first work
that studies neural compression for blurry videos. Besides
proper problem formulation, our work introduces an effec-
tive framework to tackle the problem. (2) We comprehen-
sively analyze our work and competing baselines in several
settings and confirm the merit of the proposed approach.

2. Related works

Early VC algorithms such as H.264 [45] and H.265 [39]
achieve highly efficient compression performance, how-
ever, they are based on manually designed modules. In the
following years, several works [7, 18, 19, 23, 47] have at-
tempted to substitute some of the components in traditional
codecs with DNN-based methods, yet none of these works
are end-to-end trainable. Meanwhile, Wu et al. [46] for-
mulated the VC problem as an interpolation between com-
pressed images and trained a deep network in an end-to-
end manner. However, their model performance is below
the widely used video coding standards. Lu et al. [25]
mimicked the pipeline in conventional methods and pro-
posed the first deep VC framework that has achieved state-
of-the-art performance. Most follow-up works focused on
improving compression performance using: multiple ref-
erence frames [21, 34, 49, 50], hierarchical compression
[50], recurrent models [49], adaptive blurring [2], feature-
level compression [8, 9, 12], contextual video coding [17],
transformer-based architecture [27] and GAN losses to add
realism to decoded videos [26,51]. However, most previous
works are prone to motion artifacts, such as blur and low
frame rate, and fail to preserve image quality when perform-
ing compression under these settings. Our work tackles this
problem via joint formulation of visual enhancement and
data compression.

3. Methodology

Problem Formulation. Given a sequence of blurred in-
puts {Bt, Bt+1, . . . , Bt+n}, we aim to output a visually
sharp yet compressed video {xt, xt+1, . . . , xt+n}. Let Q
represent a metric to measure the visual quality of frames
and S represent the number of bits required to encode a
given data. We formulate the joint blur reduction and video
compression task as a min-max problem by optimizing a
single model F with parameters Θ in an end-to-end manner
with a compression loss L as follows,

min
U⊆Θ

max
V⊆Θ

∑
L
(
FΘ

({
Bt

}n

t=1
|xt−1

)∣∣∣ {Xt

}n

t=1

)
subject to Q

({
xt

}n

t=1

)
≫ Q

({
Bt

}n

t=1

)
S
({

xt

}n

t=1

)
≪ S

({
Bt

}n

t=1

) (1)

where xt−1 denotes a keyframe encoded using an im-
age compression method similar to ‘I-frame’ in traditional
codecs [29, 32, 42], {Xt, Xt+1, . . . , Xt+n} represents the
ground truth (GT) sequence, V denotes a subset of model
parameters that contribute towards maximizing the quality
of the input blurry frames with respect to their sharp coun-
terparts and U represents a subset of model parameters as-
sociated with quantizing motion and residual information to
minimize temporal redundancy between frames.

Since the visual enhancement process increases the Bpp
of a video, optimizing V has a decompressing effect that
contradicts the compression objective L. Therefore, joint
training of blur reduction and video compression becomes
a min-max problem. As mentioned previously, naı̈ve joint
training does not work since the two tasks counter each
other. In this work, we propose a framework that optimizes
these two contradicting objectives. The overview of our
proposed framework is depicted in Fig. 1.

3.1. Visual Enhancement

To reduce the blur of the given input Bt, we design a
visual enhancement network (VENet) which has two in-
terrelated components. The first part estimates an additive
vector representation bt, which we refer to as blur resid-
ual, to offset the blur from Bt. If the given input is a sharp
frame, then bt is approximately a zero vector of the same
size as the given input. The second part of the VENet, on
the other hand, compresses the blur residual information.
The compressed blur residual b̂t will then be added to Bt to
output a visually enhanced frame x̂t that will be used in the
next steps (see Fig. 1a). The main motivation behind such
a design choice comes in twofold. First, unlike blind de-
blurring approaches [10,31,38,41,44] that directly output a
deblurred frame, our VENet enables us to simultaneously
optimize the quality and size of the enhanced frame. Sec-
ond, as our network is trained in an end-to-end manner, the
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Figure 1. (a) Overview of our proposed framework. (b) The backbone structure for blur and flow residual estimation networks. (c) Network
architecture for the compression autoencoder.

VENet learns to maximize the quality of the input frame
for optimal video compression.

To estimate the blur residual bt conditioned on the input
Bt, we used a variation of residual dense network [53] as a
backbone network. As shown in Fig. 1b, the backbone net-
work consists of a pixel shuffle layer, convolutional layers,
residual dense blocks (RDB) [53], and a sub-pixel convo-
lution (pixel reshuffle) layer [36]. In order to compress the
estimated blur residual information bt, we adopted an auto-
encoder style network [3,25,50]. As depicted in Fig. 1c, the
blur residual is fed into a series of convolution (deconvolu-
tion) and nonlinear transform layers. Given a blur residual
bt of size M ×N × 3, the encoder generates a blur residual
representation ut of size M/16 ×N/16 × 128. Then ut is
quantized to ût. We used the factorized entropy model [4]
for quantization. The decoder inputs the quantized repre-
sentation and reconstructs the blur residual information b̂t.
The enhanced frame x̂t is then obtained by adding b̂t to the
blurred input Bt, i.e. x̂t = Bt + b̂t.

3.2. Motion Estimation and Compression
To reduce temporal redundancy in the given video, we

first estimate the motion between the current enhanced
frame x̂t and the previous reconstructed frame xt−1. We
employ a pre-trained optical flow network [33] to predict
an initial flow f i

t→t−1. Most existing video compression
works fine-tune the pre-trained flow network using a warp
loss (Eq. (2)) for better motion estimation. However, we ar-
gue that such a modification has two important limitations.
First, it assumes that x̂t and xt−1 are absolute references,

and thus does not attend to potential motion artifacts in the
inputs. This in turn leads to erroneous results (see Sec. 5).
Second, as the receptive field of the flow network is fixed,
it is challenging to adaptively handle large motions. To ad-
dress these limitations, we propose a flow refinement net-
work (FRNet) and an attention-based loss function for ef-
fective motion estimation and compression.

As shown in Fig. 1a, FRNet inputs the initial flow
f i
t→t−1, x̂t and xt−1 and outputs a residual flow fr

t→t−1

which will be added to the initial flow to generate a refined
flow (Eq. (3), Eq. (4)). We used a residual dense architec-
ture (see Fig. 1b) with three RDBs to generate fr

t→t−1.
The refined flow information ft→t−1 is then encoded,

quantized, and reconstructed as f̂t→t−1 using a flow auto-
encoder network (see Fig. 1a).

Lwarp =
∑∥∥x̂t −Wb(xt−1, f̂

i
t→t−1)

∥∥
2

(2)

fr
t→t−1 = FRNet(x̂t || xt−1 || f i

t→t−1) (3)

ft→t−1 = f i
t→t−1 + fr

t→t−1 (4)

where Wb denotes a back-warping layer, f̂ i
t→t−1 denotes

the reconstructed initial flow and || stands for channel-wise
concatenation.

To tailor the flow refinement process for the task at hand,
we designed a context-aware training loss that enforces
FRNet to attend to the visually enhanced regions. Specif-
ically, we generate an attention map by scoring the differ-
ent regions of x̂t according to their degree of enhancement
(with respect to Bt) so that the motion refinement stage
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xt−1 Bt Bt crop E fi
t→t−1 ft→t−1

Figure 2. Visualization of motion refinement. E , f i
t→t−1 and ft→t−1 denote the attention map, initial flow, and refined flow, respectively.

knows which regions to particularly focus on (see Fig. 2).
To achieve this, we first compute the error map E which is
defined as the mean squared error between x̂t and the cor-
responding GT frame Xt, i.e. ∥x̂t−Xt∥2. E is a 2D tensor
of size M ×N , where values are averaged across channel.
To avoid a noisy map, we further applied an average pool-
ing layer of kernel size k and stride k and assign each pixel
in the error map with the corresponding average value of its
neighborhood, i.e. we segmented E into M ·N

k2 regions of
size k × k. Then we rank and label each region with inte-
ger values {v, . . . , vM ·N

k2 }, where v is a constant to ensure
increased variance in the error map distribution.

E = rank[v,vM·N
k2 ]

[
AvgPool(k,k)

(
∥x̂t −Xt∥2

)]
(5)

The higher values in E represent segments that still have
motion artifacts while the lower values represent regions
that are enhanced (or that were sharp initially). By using
E as an attention weight, we propose a new loss, which we
refer to as context-aware loss (LCaL), for informed motion
refinement and compression as shown in Eq. (7). E is min-
max scaled between 0 and 1 (Eq. (6)) in order not to disrupt
the natural trade-off between distortion and bit-rate during
training (refer to Sec. 3.4).

w =
E −min(E)

max(E)−min(E)
(6)

LCaL =
∑∥∥∥w ·

[
x̂t −Wb(xt−1, f̂t→t−1)

]∥∥∥
2

(7)

3.3. Residual Compression

Given the refined flow f̂t→t−1, we back-warp the refer-
ence frame xt−1 to reconstruct the current frame. To com-
pensate for the artifacts in the warped frame, we further
process it using a motion compensation network (MCNet).
As depicted in Fig. 1a, MCNet inputs the warped frame,
the reference frame xt−1 and the motion vector f̂t→t−1 and
outputs a motion compensated frame xt which is expected
to be as close as the enhanced frame x̂t (Eq. (8)). We used a
residual-UNet architecture like the one used in [25, 50] for
MCNet.

xt = MCNet
(
Wb(xt−1, f̂t→t−1) || xt−1 || f̂t→t−1

)
(8)

Finally, the residual between the enhanced raw frame x̂t and
the motion compensated frame xt, i.e. rt = x̂t−xt, is com-
pressed using a residual encoder-decoder network. Like the
blur residual and motion compression, the residual infor-
mation rt is first encoded to a latent representation qt, then
quantized to q̂t and finally decoded to r̂t (see Fig. 1a). The
reconstructed residual information r̂t is added to the motion
compensated frame xt to obtain the compressed frame xt,
i.e. xt = xt + r̂t.

3.4. Training Strategy

The goal of our video compression framework is to min-
imize the number of bits used for encoding a given video
frame Bt, while simultaneously enhancing its quality with
respect to its sharp counterpart Xt and reducing the distor-
tion between the enhanced frame x̂t and the reconstructed
frame xt. Therefore, we formulate the optimization prob-
lem as follows,

L = λeE + λdD +R (9)

where λe and λd are hyperparameters to control the three-
way trade-off between the enhancement E, distortion D and
bit-rate R. For the visual enhancement part, we jointly op-
timize the number of encoding bits for the quantized blur
residual ût and the ℓ1 photometric loss between the en-
hanced frame x̂t and the corresponding GT frame Xt as
shown in Eq. (10). Note that we also included the ℓ1 photo-
metric loss between Bt+ bt and Xt so that the blur residual
bt auto-encoder will not collapse into a bad local minima
where b̂t = 0, i.e. Bt = x̂t.

LVENet = λe

[∑∥∥Xt−(Bt+bt)
∥∥
1
+
∥∥Xt−x̂t

∥∥
1

]
+R(ût)

(10)
where R(·) denotes the number of bits used for encoding
the representations. We used the density model of [3] to
estimate R. λe is defined as λe = sλd, where s is a step de-
cay parameter to maintain the trade-off between the visual
enhancement and compression as the training progresses.

Following previous works [21,25,49,50], we used a pro-
gressive scheme to train the different components in the
compression part. First, the motion estimation and com-
pression step in Sec. 3.2 is trained by optimizing the pro-
posed context-aware loss LCaL and the bit-rate for encod-
ing the quantized motion vector m̂t (Eq. (11)). The optical
flow network [33] used to obtain the initial flow f i

t→t−1 is
initialized with pre-trained weights and remains unchanged.
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Then, the motion compensation network in Sec. 3.3 is added
into the training using the loss function defined in Eq. (12).

LM = λdLCaL +R(m̂t) (11)

LMCNet = λd

∑∥∥xt − x̂t

∥∥
2
+R(m̂t) (12)

Finally, the distortion between the reconstructed frame xt

and the enhanced frame x̂t is optimized using the loss func-
tion formulated in Eq. (13), where D(x, y) is defined as a
distortion metrics. We used the mean square error (MSE),
i.e. D(x, y) = MSE(x, y) when optimizing for PSNR and
D(x, y) = 1 − MS-SSIM(x, y) when optimizing for MS-
SSIM. This is in accordance with the experiment protocol in
previous works [25, 49, 50]. The total training loss for end-
to-end optimization of the whole network is summarized in
Eq. (14).

LD = λdD(xt, x̂t) +R(m̂t) +R(q̂t) (13)

Ltotal(i) =


LVENet i ≤ a

LVENet + LM a < i ≤ b

LVENet + LMCNet b < i ≤ c

LVENet + LD c < i ≤ maxiter
(14)

where a, b, c are different iteration steps and maxiter is the
maximum iteration during training.

4. Experiments
4.1. Experimental Setting

Datasets. Existing works use Vimeo-90k dataset [48],
which contains 89, 800 clips each with 7 sharp frames, for
a model training. However, as this dataset cannot be ap-
plied to train a model in a blurry scenario, we follow the
common practice in computer vision research and generate
a blur dataset by synthesizing low-frame-rate videos from
a sharp high-frame-rate sequence [35, 54]. To simulate a
frame Bt taken by a low-frame-rate camera, we average n
consecutive frames taken by a 240 fps camera.

Bt =
1

n

j=κt+n
2∑

j=κt−n
2

Ij

where Ij is the j-th high-frame-rate latent image and
the parameter κ determines the frame rate of the acquired
frames. As n is related to the degree of blur [6], we ex-
periment with different values of n ∈ {5, 7, 9}. To take
the shutter closing time into account during video acquisi-
tion [54], we discard m number of consecutive frames in
between before synthesizing the next frame Bt+1, where
m ∈ {5, 3, 1}. We set κ = m+ n = 10 to downsample the

240 fps to 24 fps, which is a common fps setting for com-
modity cameras. In this manner, we create blurry videos
captured under different exposure settings.

We apply this scheme to Adobe240 [38], GOPRO [31]
and REDS [30] datasets which provide high-frame-rate
videos with a resolution of 1280× 720. Most of the videos
in these datasets, however, have less than a thousand frames
which makes it challenging to synthesize enough and di-
verse training set. Hence, instead of training separately
on each dataset, we used a total of 325 videos (100 from
Adobe240, 25 from GOPRO, 200 from REDS) and built a
training dataset that approximately has 32, 500 clips each
with 7 frames. The remaining non-overlapping videos in
each dataset (30 from Adobe240, 8 from GOPRO, and 70
from REDS) are used for testing. We also make use of other
benchmark datasets such as UVG [28] and MCL-JCV [43]
for generalization experiments.

Implementation Details. Following the previous works
[25, 49, 50], we train eight models by setting λd =
256, 512, 1024, 2048 when optimizing for PSNR and λd =
8, 16, 32, 64 when optimizing for MS-SSIM. For compress-
ing the reference ‘I-frame’, we use BPG [5] and Lee et al.
[16] in our PSNR and MS-SSIM models, respectively. For
each model, an Adam optimizer [15] with an initial learning
rate 1e− 4 and momentum 0.9 is used. We set the different
iteration steps a, b, c and maxiter to 1e+5, 2e+5, 3e+5
and 1e + 6, respectively. The learning rate is decayed by a
factor of 10 at 5e+ 5 and 8e+ 5 iterations. The step decay
parameter s for λe is initialized with 1 and reduced by 0.25
every 2e+5 iterations. We use a mini-batch size of 4 by ran-
domly cropping images of size 256 × 256 during training.
Our network is implemented using Tensorflow [1].

Evaluation Metrics. We measure the distortion between
the reconstructed frame xt and the GT frame Xt on PSNR
and MS-SSIM metrics with respect to the number of bits
for encoding the representations mt and qt. Bits per pixel
(Bpp) is used to represent the required bits for each pixel in
the current frame.

4.2. Experimental Results

We compare our work with traditional video codecs,
i.e. H.265 [39], and the latest learned methods for which
open-source implementations are available, i.e. SSF [2],
RLVC [50] and DCVC [17]. However, naive VC models are
prone to motion artifacts and fail to preserve image quality.
Hence, to compare our model with competitive baselines,
we implement a cascade approach by using the state-of-the-
art deblurring networks, i.e. Gao [10]. We create two types
of cascade models, i.e. deblurring + compression (D + C)
and compression + deblurring (C + D).

For each cascade model, we establish three types of base-
lines: (i) Off-the-shelf , where pretrained models from the
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Figure 3. (a) - (c) Rate-distortion performance comparison between our method and (a) off-the-shelf cascade models. (b) cascade models
optimized with the joint training scheme (LJoint). (c) cascade models optimized with intermediate supervision scheme (LInt). (d) Rate-
distortion performance comparison on preserving the blur (top) and sharp (middle and bottom) priors.

respective tasks are successively used for the joint task. (ii)
Joint training, where cascade models are jointly trained
from scratch using the standard rate-distortion loss [49],
i.e. LJoint = λDJoint + R, where DJoint denotes the
losses computed with respect to the GT frame Xt at dif-
ferent stages of training. For D + C models, DJoint is com-
puted with respect to the output of the compression network
(without explicit supervision to the deblurring network) and
for C + D models, DJoint is computed with respect to the
output of the deblurring network. R represents the rate op-
timization for motion and residual representations. (iii) In-
termediate supervision, where we use additional interme-
diate supervision between the cascaded components. For
D + C models, an ℓ1 photometric loss is used to train the
deblurring network, and the compression network is simul-
taneously optimized with respect to the deblurred output.
The total training loss is defined in Eq. (15).

LD+C
Int = λd

∥∥Xt − x̂t

∥∥
1
+ λcDInt +R (15)

where DInt denotes the distortion losses computed with re-
spect to the deblurred output x̂t. λd and λc represent hyper-
parameters for the deblurring and compression networks,
respectively. Note that the loss in Eq. (15) is analogous to
the proposed training strategy in Sec. 3.4. For C + Dmodels,
the equivalent training scheme would be to first optimize the

compression network with the blurry input and enhance the
decoded output using the deblurring network as shown in
Eq. (16).

LC+D
Int = λcDInt + λd

∥∥Xt − xt

∥∥
1
+R (16)

where DInt represents the distortion losses computed with
respect to the blurry input Bt. We use the official code of
each compression and deblurring model to implement the
cascade baselines. For fair evaluation, each cascade model
is trained and evaluated using the same settings and datasets
as our method. We implement H.265 [39] in a medium set-
ting using ×265 encoder.

Bit-rate and Distortion. Fig. 3a depicts the rate-
distortion curves of our method and off-the-shelf cascade
models on Adobe240 [38], GOPRO [31] and REDS [30]
test sets. As can be inferred from the figure, our approach
performs favorably against all possible baselines on PSNR
metric. For instance, given a blurred input and a budget
of 0.3 Bpp, our approach can reconstruct sharp frames at
a quality of 29.52 dB on average, while the second best
performing method (Gao [10] + DCVC [17]) reconstructs
frames at a quality of 27.68 dB. The main reason behind
such a performance gap is due to error propagation in off-
the-shelf cascade models, where blur/compression artifacts
propagate from the first stage to the second stage, degrading
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Figure 4. Qualitative analysis on real-world videos. Note that PSNR is not possible to compute as sharp GT is not available.

the overall performance. Moreover, as each network is op-
timized for the individual task, naı̈vely cascading them for
the joint task often gives sub-optimal results as observed in
other works [35, 54]. It can also be inferred from Fig. 3a
that D + C models perform significantly better than their C
+ D counterparts. This is mainly because deblurring net-
works [10] perform poorly in the presence of both blur and
compression artifacts.

One way to address the limitations of off-the-shelf cas-
cade models would be to end-to-end optimize trainable cas-
cade models. In Fig. 3b, we study the joint training scheme,
where cascade models are trained as one network with the
standard rate-distortion loss (LJoint). As can be seen from
Fig. 3b, the joint training scheme results in performance
worse than off-the-shelf models. This is mainly because of
the inherent trade-off between the two tasks as discussed
in Sec. 1. Our experimental analysis reveals that, for D +
C models, the deblurring network basically collapses to an
identity function. This is intuitive because it is easier to
compress a blurry input compared to its sharper equivalent
since the latter one will have more information to encode.
As a consequence, the compression network alone has to re-
construct the input video while reducing its temporal redun-
dancies but deblurring its contents at the same time, which
are incompatible. Similarly, we observed that C + D mod-
els incur a heavy encoding cost as shown in Fig. 3b. This
is because the compression network diverges to preserving
as much information as possible for the deblurring network
to enhance. These results show that the trade-off balance
always tips to the second task when cascade models are
trained in the joint training scheme, resulting in a subpar
overall performance on the joint task.

To create a stronger baseline, we optimize the cascade
models using a training scheme analogous to our proposed
training strategy, i.e. intermediate supervision in Eq. (15)
and Eq. (16), where we introduce additional intermediate
supervision between the cascaded components. As can be
seen from Fig. 3c, the proposed training strategy signifi-
cantly improves the performance of cascade models. It can
also be inferred from Fig. 3c that D + C methods gener-
ally outperform their corresponding C + D counterparts de-
spite the fact that C + D take much fewer bits given that the
compression network encodes the blurry input in this set-
ting. This is mainly because the deblurring network fails
to blindly enhance the compressed output due to the high
ill-posedness of the task. Enhancing the quality of com-

pressed videos is a very challenging problem even for sharp
videos [52], let alone for blurred and compressed inputs.

In comparison to the strongest D + C models, our net-
work still gives a notably better result. To further analyze
the results, we compute the quality gain between the high-
est and smallest distortions for the curves in Fig. 3c over
the corresponding increase in bit-rate cost. In this metric,
our approach achieves 10.80 dB/Bpp on average whereas
Gao [10] + DCVC [17] could only achieve 7.86 dB/Bpp.
The performance gain of our method compared to cascade
D + C models trained under the same setting can be at-
tributed to the motion refinement step in Sec. 3.2 which
is crucial for optimal compression performance in a blurry
scenario as opposed to fine-tuning a pretrained flow network
(see Sec. 5). In Fig. 4, we show qualitative results on blurry
scenes from real-world videos. As shown in the figure, our
model gives a visually better output at a lower encoding cost
compared to the strongest baseline.

4.3. Experimental Analyses

Preserving the Input Prior. Although motion blur is
mostly considered an unwanted artifact, it can be some-
times useful to add realism to a scene. Taking that into
consideration, we experiment with the idea of having the
option to preserve the blur when performing compression.
We achieve this during inference time by simply using input
Bt (instead of the enhanced frame x̂t) to compute the frame
residual rt in Sec. 3.3, i.e. rt = Bt − xt. The remaining
steps follow accordingly.This mechanism is an inverse pro-
cess of the visual enhancement in Sec. 3.1 where rt is equiv-
alent to the blur residual bt. As previous works [2, 17, 49]
typically output a blurry video given a blurry input, we use
them as a baseline to evaluate our work on preserving a
prior. As can be inferred from Fig. 3d (top), our approach
(with the simple fix) performs better than state-of-the-art
VC approaches in maintaining the input blur when com-
pressing a blurry video. This result further highlights the
flexibility of our proposed framework to be easily adapted
to diverse conditions without the need for re-training.

The notion of preserving a prior also applies when the
input video is distinctively sharp with predominantly static
contents. To compare our approach and previous works in
this scenario, we use the UVG [28] and MCL-JCV [43]
datasets. As can be seen in Fig. 3d (middle and bottom),
our model trained in a blurry setup gives a very compet-
itive performance compared to the state-of-the-art models
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Figure 5. (a) Temporal smoothness comparison, (b) - (d) Ablation studies on blur residual compression, flow refinement and LCaL

[25, 49, 50] optimized on a sharp dataset.

Complexity Analysis. In Table 1, we analyze the runtime
and parameter size of our model and the competing base-
lines. As shown in the table, our approach takes 0.67 sec-
onds to reconstruct an input frame of size 1280 × 720px
while the best-performing cascade models, i.e. Gao [10] +
DCVC [17] and Gao [10] + RLVC [50], take 1.97 and 1.98
seconds, respectively.

Temporal Smoothness. To evaluate the smoothness of
videos decoded by our method and competing baselines,
we adopt a flow-based smoothness metric [13, 35]. We
first compute the second-order differential flow between the
decoded video and its GT counterpart using 3 consecutive
frames at a time, i.e. df = (fx2→x1

−fx1→x0
)−(fX2→X1

−
fX1→X0), where x0, x1, x2, and X0, X1, X2 are frame se-
quences in the decoded and GT videos, respectively. The
temporal smoothness metric T (l) is then defined as func-
tion of the pixel error length l,

T (l) = log
∑
v∈df

1[l,l+1)(∥v∥2)− log |df | (17)

where v denotes a vector of matrix df , | · | represents the
size of a matrix and the indicator function 1S(x) equals to
1 if x belongs to set S. The lower value of T (l) indicates
better temporal stability. As can be seen from Fig. 5(a),
off-the-shelf cascade models perform worse on the tem-
poral smoothness metric as they are prone to error prop-
agation. Compared to the strongest baseline (Gao [10] +
DCVC [17] trained with LD+C

Int ), our approach decodes a
temporally smoother video.

5. Ablation Study
In this section, we perform extensive experiments to

show the effectiveness of our designed modules. First, we
study the importance of blur residual compression by train-
ing a network without the bt auto-encoder, where the en-
hanced frame x̂t is obtained directly by adding bt to the
input Bt, i.e. x̂t = Bt + bt. It can be inferred from
Fig. 5(b) that blur residual compression consistently leads
to better performance. As mentioned previously, compress-
ing the blur residual information plays a significant role in

Table 1. Evaluation on time complexity and parameter size

Method
Gao [10]

+
H.265 [39]

Gao [10]
+

SFF [2]

Gao [10]
+

RLVC [50]

Gao [10]
+

DCVC [17]

Ours

Parameters (×106) 3.87 38.08 20.56 11.81 12.74

Runtime (s) 1.52 2.35 1.98 1.97 0.67

maintaining the balance between visual enhancement and
compression for optimal overall performance.

We analyze the importance of the motion refinement step
by training our network without FRNet, i.e. we fine-tuned
the optical flow network using a warp loss. As can be seen
from Fig. 5(c), directly fine-tuning the optical flow network
in a blurry scenario results in significantly worse perfor-
mance compared to a network trained with flow refinement.
This is mainly because of erroneous initial flow estimation
since the pixels in the input frames are corrupted by blur and
a blind warp loss in Eq. (2) can not address this limitation
(refer to Sec. 3.2). To demonstrate the benefit of the pro-
posed context-aware loss (LCaL), we train the FRNet using
the warp loss (Lwarp in Eq. (2) using ft→t−1) and compare
the results with a network trained using LCaL. As shown in
Fig. 5(d) and Fig. 2, attending to the visual enhancement us-
ing E leads to better motion estimation and notably superior
compression performance.

6. Conclusion
In this work, we tackle the video compression problem in

a general situation, where unwanted blurs may be present in
videos. We design various cascade models as baselines and
analyze their limitations. To overcome these limitations, we
propose a novel framework that can be efficiently optimized
in an end-to-end manner. We have demonstrated the effec-
tiveness and flexibility of our approach through extensive
analyses on different datasets. However, there remain a few
limitations. In extreme cases, where videos are severely
blurred or temporally undersampled, we experimentally ob-
served that our enhancement module VENet fails, therefore
compromising the overall compression performance.
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