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Abstract

Deep learning models are known to suffer from the prob-
lem of bias, and researchers have been exploring methods
to address this issue. However, most of these methods re-
quire prior knowledge of the bias and are not always prac-
tical. In this paper, we focus on a more practical setting with
no prior information about the bias. Generally, in this set-
ting, there are a large number of bias-aligned samples that
cause the model to produce biased predictions and a few
bias-conflicting samples that do not conform to the bias. If
the training data is limited, the influence of the bias-aligned
samples may become even stronger on the model predic-
tions, and we experimentally demonstrate that existing de-
biasing techniques suffer severely in such cases. In this pa-
per, we examine the effects of unknown bias in small dataset
regimes and present a novel approach to mitigate this is-
sue. The proposed approach directly addresses the issue of
the extremely low occurrence of bias-conflicting samples in
limited data settings through the synthesis of hybrid samples
that can be used to reduce the effect of bias. We perform ex-
tensive experiments on several benchmark datasets and ex-
perimentally demonstrate the effectiveness of our proposed
approach in addressing any unknown bias in the presence
of limited data. Specifically, our approach outperforms the
vanilla, LfF, LDD, and DebiAN debiasing methods by abso-
lute margins of 10.39%, 9.08%, 8.07%, and 9.67% when
only 10% of the Corrupted CIFAR-10 Type 1 dataset is
available with a bias-conflicting sample ratio of 0.05.

1. Introduction

Deep neural networks are renowned for their state-of-
the-art performance in several real-world tasks that were
previously limited by human capability [2, 11]. In or-
der to perform a particular task, deep neural networks are
generally trained on large volumes of labeled data points.
However, the training data often contains biases of dif-
ferent types that get introduced into the training data due
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to issues with the data collection devices/strategies, biases
of the annotator, and other issues. Deep learning mod-
els are extremely susceptible to the biases present in the
datasets [21, 24], and training them on such datasets causes
the models to make biased predictions and suffer from de-
graded performance when evaluated on data that contradicts
the learned biases (bias-conflicting samples). For example,
when training a deep learning model to classify between a
dog and a bird, there is a possibility that the model learns
biased features, such as the background color of the image.
In such a case, if a majority of the training samples of birds
have a blue sky as the background, the model may learn that
the background of a bird image has to be a blue sky, while
that of a dog image can vary. Samples that conform with
such biases in the dataset (bias-aligned samples) may cause
the model to rely on superficial features rather than intrinsic
features, such as a bird’s beak, to perform the classification
task. Such biases in deep learning models can have sig-
nificant implications in real-world applications and warrant
thorough investigation and mitigation. In this work, we ad-
dress the problem of debiasing deep learning models while
training on limited training data without access to the type
of bias that affects the training data.

Researchers have been working on techniques to reduce
the effect of bias in deep learning models. A majority of
prior works [1,13,22] that debias deep neural networks rely
on incorporating prior knowledge of the bias present in the
data. However, this presents several practical limitations,
including the infeasibility of gathering labeled data indicat-
ing the bias present in it. Further, such debiasing methods
are not able to address unspecified biases present in the data.
In this work, we focus on a more practical and challenging
task that entails addressing bias without prior knowledge.
In addressing such biases, some methods [17, 20] deliber-
ately amplify the biased nature of a network while attempt-
ing to debias the training of a second network by making
it more focused on learning samples that run counter to the
prejudice/bias (bias-conflicting samples) of the biased net-
work (loss reweighting). Loss reweighting-based methods
attempt to debias the model by forcing it to give more im-
portance to learning the bias-conflicting samples. The au-
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thors in [14] propose an image translation-based debiasing
method that augments realistic bias-conflicting samples for
promoting debiased representations.

Although previous works on the debiasing of deep neural
networks without prior knowledge of bias have shown good
progress, these methods generally assume that the model
has access to a large quantity of labeled data. This may not
be practically feasible in many real-world scenarios where
the data is limited due to privacy, connectivity, or other rea-
sons. For example, in order to ensure privacy, models may
be trained on local devices without transferring personal
data to servers, and local data will usually be limited and
may most likely suffer from unwanted biases. Furthermore,
in many real-world scenarios, obtaining labeled data can
be costly, time-consuming, or challenging to obtain. Ad-
ditionally, due to the limited availability of training data,
the effect of bias on the model prediction may be even more
pronounced. Infact, our experimental results in Sec. 4.6.4
indicate that the performance of an existing debiasing ap-
proach degrades significantly when the model is trained on
limited training data. Hence, learning to debias models in a
limited data setting is an important problem to address, and
we focus on this issue in this work.

In the limited data setting, the model is extremely vul-
nerable to overfitting due to the relatively higher quantity of
bias-aligned samples, due to which the model predictions
are heavily biased. The debiasing approaches generally rely
on making the model better learn the bias-conflicting sam-
ples by increasing the weights of the loss incurred for such
samples. However, in the limited data setting, this may also
lead to overfitting to the very few bias-conflicting samples.
We propose a novel approach to debias deep neural net-
works such that the effect of biases on the model predic-
tions is reduced even in a limited data setting. We first pro-
pose an approach to identify the most likely bias-conflicting
samples in the batch. Since we want the model to focus
more on these samples but not overfit on them, we com-
bine the content of these bias-conflicting samples with other
bias-aligned samples from the same class. This leads to the
synthesis of hybrid samples that retain the properties of the
bias-conflicting samples to reduce the effect of bias-aligned
samples on the model predictions. Due to this synthesis pro-
cess, the hybrid samples also contain sufficient diversity to
prevent the debiasing process from making the model over-
fit to the few bias-conflicting samples when we increase the
focus of the model on bias-conflicting samples through loss
reweighting. To the best of our knowledge, no other debi-
asing method uses such an approach to reduce the effect of
biases on the model predictions in the limited data setting.
Please note that we experimentally evaluate other debias-
ing methods that also use reweighting in some other ways
and observe that these methods still perform poorly in this
setting. We perform experiments on reduced/limited data

versions of multiple benchmark datasets, such as Colored
MNIST, Corrupted CIFAR, BFFHQ, and experimentally
demonstrate that our proposed method significantly outper-
forms existing debiasing approaches on multiple datasets,
in the small dataset regime.

The following are the contributions of this work:

• We experimentally demonstrate that the performance
of existing debiasing methods for training deep learn-
ing models on data with unknown bias drops signifi-
cantly in the presence of limited training data.

• We propose a novel approach for debiasing deep learn-
ing models that can significantly reduce the effect of
unknown biases on the model predictions in the lim-
ited training data setting.

• We also experimentally demonstrate that our proposed
approach significantly outperforms debiasing methods
even in a setting that does not suffer from data scarcity.

2. Related Works
Studies on debiasing [17, 20] in deep neural networks

have shown that biases influence the learning process when
they are easy to learn and act as shortcuts [8]. Debiasing
a model involves training a model in such a manner that
the model predictions do not suffer from the biases present
in the training dataset. Researchers have focused on two
broad settings for this problem: one in which the bias is
known [1,6,10] and the other, more realistic setting in which
the bias is not known [17, 18, 20].

Debiasing Known Bias. The authors in [1] utilize the
Hilbert-Schmidt Independence Criterion in order to ensure
that the target model is statistically independent from a set
of models that encode the bias. The work in [22] trains a de-
biased model with a biased model in an adversarial manner
using a texture-oriented network. The approach proposed
in [13] minimizes the mutual information between feature
embedding and the bias in the data. This is achieved by
adversarially training a network to predict the bias distribu-
tion against the feature extraction network. The work in [5]
trains a naive model and then a robust model, such that the
robust model learns other generalizable patterns that reduce
the effect of bias on the model predictions. The authors
in [19] propose to utilize the bias attribute information to
train the feature extractor in such a way that the features
of images from the same class are close to each other even
if they have different values for the bias attributes and the
features of images from different classes are far away from
each other even if they have the same values for the bias
attributes.

Debiasing Unknown Bias. Some research works have
also looked into debiasing a deep learning model trained
on data containing an unknown bias. This is a much more
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practical and real-world setting. The authors in [4] exper-
imentally showed that knowledge transfer can improve the
robustness of the target model if the original and the tar-
get tasks suffer from similar biases. The work in [3] learns
to split the dataset in such a way that training the model
on one split does not make it generalizable enough for the
other split, which indicates the possibility of bias. The work
in [20] intentionally makes a network more biased using
custom loss and uses the biased model to reweight loss for
different training samples depending upon how hard it is for
the biased model to learn it, indicating bias-conflicting sam-
ples. The authors in [17] propose to improve the representa-
tion of the samples by performing a swapping operation of
the features from the biased and debiased networks during
the training process. The authors in [18] propose a method
that alternatively identifies the bias in the data and performs
de-biasing through reweighting of the losses.

Although existing debiasing approaches have shown
state-of-the-art results in dealing with unknown bias in the
data, their performance in a more realistic environment in-
volving small and biased datasets is yet to be explored.
Our experimental results show that such methodologies face
a significant reduction in performance over small and bi-
ased datasets and perform very similarly to the naive vanilla
baseline model. In contrast, our proposed approach signifi-
cantly outperforms these approaches and the baseline model
in the limited data settings.

3. Proposed Approach

3.1. Problem Setting

In this work, we consider the problem of de-biasing deep
learning models trained on limited training data suffering
from an unknown bias. This experimental setup involves
a training dataset D containing limited training data ob-
tained by randomly sampling “p” percent training data for
each class of a biased training dataset. The training data
points usually contain several attributes. Some attributes
are called bias attributes since they are additional attributes
that introduce some type of bias in the dataset. On the other
hand, some attributes are called intrinsic attributes, which
determine the class the data point belongs to. In this set-
ting, there is no information about the type of bias that
is affecting the training data. The “bias-aligned samples”
refers to samples that exhibit a high correlation between
bias attributes and target labels. On the other hand, “bias-
conflicting samples” refer to samples that occur less fre-
quently and are not correlated with the bias commonly asso-
ciated with that type of sample in the dataset. The training
data contains bias-aligned and bias-conflicting samples, and
the bias-conflicting ratio “σ” represents the ratio of bias-
conflicting samples in the training data. A deep learning
model trained naively on this limited training data contain-

ing bias, will produce highly biased predictions and perform
very poorly on the test data. Therefore, the objective of any
approach in this setting is to reduce the effect of bias on
the model predictions when the model is trained on the lim-
ited training data containing bias without any access to prior
knowledge about the type of bias that affects the data.

3.2. Dual Model Training

In our approach, we train a pair of models (MB ,MD)
that have similar architectures, in parallel. This follows the
idea used by popular debiasing methods [17, 20], that train
MB to be highly biased and train MD (target model) to fo-
cus more on likely bias-conflicting samples which MB finds
difficult to learn due to the incorporated bias.

In our approach, MB is trained to match the erroneous
correlations between the bias attributes and the class label
and thereby make biased predictions. The bias attributes
often make the model learn unwanted correlations and er-
roneous shortcuts to optimize the loss functions. Conse-
quently, the bias-aligned samples are easier to learn for the
model due to the bias attributes present in them. Therefore,
in order to make MB more biased, the model should give
more importance to training data points that are easier to
learn, i.e., the bias-aligned data points in this case. This can
be achieved using the generalized cross entropy (GCE) [23]
loss that gives more importance to training data points for
which there is a high similarity between the model predic-
tions and the label, which is the case with bias-aligned data
points in this setting. The MD model is trained in parallel
with MB but the GCE loss is not used to avoid making MD

more biased. Since MB will be prone to making more bi-
ased predictions and will give a lower loss for bias-aligned
data points, we will identify training data points that are
difficult for MB to learn and give more importance to these
data points while training MD. This is a popular approach
in debiasing methods and the reweighting factor used for
changing the importance of the training data points in the
training process is obtained as mentioned in Eq. 1. The
obtained reweighting factor is used to reweight the losses
incurred by MD for the training data (see Fig. 1).

R(x) =
LB(x)

LB(x) + LD(x)
(1)

Where, LB(x) and LD(x) refer to the losses incurred by
the models MB and MD, respectively, for the training data
point x with label y. Please note that LB(x) and LD(x)
both use the cross-entropy loss (LB(x) = CE(MB(x), y),
LD(x) = CE(MD(x), y)) for computing the reweighting
factor. R(x) refers to the reweighting factor for x.
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Figure 1. In the proposed approach, we train two models MB and MD in parallel. MB is trained to be biased, whereas, MD is trained to
less biased. MB is only trained using a generalized cross-entropy based loss LMB defined in Eq. 4. A reweighting factor R(x) is computed
for each training sample using Eq. 1 similar to other debiasing methods. In order to deal with the limited data setting, we filter out likely
bias-conflicting samples xbc using the procedure described in Sec. 3.3 and combine them with the likely bias-aligned samples xba to obtain
hybrid samples xh. We also obtain the reweighting factors R(xh) for the hybrid samples and train MD using using a composite loss LMD

defined in Eq. 5. After training, we discard MB and use MD for evaluation.

3.3. Synthesizing and Using Hybrid Bias-
Conflicting Samples

As described in Sec. 1, in the limited data setting, the
model is even more prone to overfitting to the bias-aligned
samples. Similarly, using loss reweighting to give more im-
portance to the very few bias-conflicting samples present
in the limited data setting, may also lead to overfitting and
poor performance. We propose to address this problem
by introducing new hybrid training data points using the
existing few bias-conflicting samples to reduce the impact
of bias-aligned samples while maintaining sufficient diver-
sity in these new data points to prevent overfitting on the
bias-conflicting samples. However, in this setting, the bias-
conflicting samples are not known. Instead, we propose
to utilize the reweighting factors to identify training data
points that are highly likely to be bias-conflicting. This is
based on the idea that the training samples for which the
reweighting factor is very high, are the ones that the biased
model MB finds very difficult to learn, and therefore, these
samples must be in conflict with the bias learned by MB .
We propose to identify a filtering ratio (tbc) for the training
data points in a batch for this process. Assuming a batch of
N samples, each with an associated reweighting factor wi,
we select the top N ∗ (1 − tbc) samples with the highest
reweighting factor as the most likely bias-conflicting sam-
ples. The rest of the samples are considered as likely bias-
aligned samples.

After obtaining the likely bias-conflicting samples, we
synthesize hybrid samples by combining these samples with
the likely bias-aligned samples from the same class. This
has three benefits, as mentioned earlier. First of all, this
increases the number of training samples that contain the
information of the bias-conflicting samples. Secondly, this
process also ensures sufficient diversity in the hybrid sam-

ples, thereby preventing the model from overfitting to the
few bias-conflicting samples when MD is trained with more
importance for the bias-conflicting samples. We also obtain
the reweighting factors for the hybrid samples using Eq. 1,
so that if the hybrid sample has more influence of the bias
attribute, then its importance in the training process will be
lowered using the reweighting factor. The MD is trained us-
ing both the regular training samples and the hybrid samples
with their corresponding reweighting factors (see Fig. 1).

xh = α ∗ xbc + (1− α) ∗ xba (2)

R(xh) =
LB(xh)

LB(xh) + LD(xh)
(3)

Where, xbc and xba are the likely bias-conflicting sam-
ples and the likely bias-aligned samples, respectively, iden-
tified using the filtering ratio tbc on their reweighting fac-
tors, with labels ybc and yba, respectively, such that ybc =
yba. α is a hyperparameter used to control the contribu-
tion of the samples while synthesizing the hybrid samples.
xh refers to the synthesized hybrid sample with the label
yh = ybc = yba. R(xh) refers to the reweighting factor for
xh. LB(xh) and LD(xh) refer to the loss incurred by the
models MB and MD, respectively, for xh.

To summarize, the MB model is trained using loss LMB

shown in Eq. 4. Please note that MB is trained using the
generalized cross-entropy loss, as mentioned earlier. The
MD model is trained using the loss LMD

shown in Eq. 5.

LMB
= Σx GCE(MB(x), y) (4)

LMD
= Σx CE(MD(x), y) ∗R(x)+

β ∗ Σxh
CE(MD(xh), yh) ∗R(xh) (5)
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4. Experiments

4.1. Datasets and Implementation Details

In our experiments, we utilized the reduced/limited data
versions of the following datasets: Colored MNIST, Cor-
rupted CIFAR-10, BFFHQ. These datasets are the bench-
mark datasets to evaluate debiasing techniques. Colored
MNIST [20] is a variant of the original MNIST dataset [7]
with color bias. Each digit in Colored MNIST is associ-
ated with a specific foreground color. Corrupted CIFAR-
10, consists of ten different types of texture biases applied
to the CIFAR-10 dataset [16]. Corrupted CIFAR-10 Type 0
and Corrupted CIFAR-10 Type 1 differ in the type of biases
present. The Biased FFHQ (BFFHQ) dataset was derived
from the FFHQ dataset [12] by the authors of [17], which
consists of real-world human face images labeled with var-
ious facial attributes. Please refer to the supplementary ma-
terials for further details on the datasets.

For the reduced Colored MNIST dataset, we use p =
5% of the training data, resulting in 3000 training sam-
ples, and report the results on different bias-conflicting ra-
tios (σ), i.e., 0.01, 0.02 and 0.05. For the reduced Cor-
rupted CIFAR-10 Type 0 and Type 1 datasets, we set p as
10%, resulting in 5000 training samples, and report the re-
sults on σ ∈ {0.01, 0.02, 0.05}. For the reduced BFFHQ
dataset, we set p as 10%, resulting in 2000 training sam-
ples, and report results on σ = 0.05. For Colored MNIST
and Corrupted CIFAR-10, we use the test data mentioned
in [20]. The test data for the Colored MNIST and Cor-
rupted CIFAR-10 datasets consists of 10000 samples with
9000 bias-conflicting samples. For the BFFHQ dataset, we
use the validation and test datasets described in [17], which
contains 1000 test images. The bias-conflicting test set for
BFFHQ excludes the bias-aligned samples from the unbi-
ased test set. The hyper-parameters α, β and tbc are identi-
fied using ablation experiments. We use α = 0.5, β = 0.2,
and tbc = 0.9 for Corrupted CIFAR-10, α = 0.9, β = 1.0,
tbc = 0.95 for Colored MNIST and α = 0.5, β = 0.1, and
tbc = 0.9 for BFFHQ. We report the accuracy averaged over
three runs for different seeds. In our experiments, we uti-
lize the ResNet18 [9] model without pre-trained weights for
the Corrupted CIFAR-10 and BFFHQ datasets and a simple
MLP model for the CMNIST similar to [20]. In our ex-
periments, we employ the Adam optimizer [15]. For our
method, we pre-train the model to predict the angle of rota-
tion of the image by assigning pseudo labels (for CIFAR-10,
BFFHQ). Please refer to the supplementary materials for
further details. Our experimental results are presented for
three debiasing methods, namely ”LfF” [20], ”LDD” [17],
and ”DebiAN” [18], as well as the baseline vanilla model
that is trained without any debiasing techniques.

4.2. Results on Colored MNIST

The results of the experiments conducted on the reduced
Colored MNIST dataset with bias-conflicting samples ratio
of 0.02 and 0.05 are presented in Table 1. The Vanilla ap-
proach, which represents a simple MLP model with no de-
biasing approach applied, achieves an accuracy of 39.47%,
43.66% and 58.74% for σ equal to 0.01, 0.02 and 0.05, re-
spectively. Applying the DebiAN [18] method significantly
decreases the model performance even though it is a re-
cent state-of-the-art method when trained on the full dataset.
Specifically, the performance of DebiAN is lower than the
vanilla model by absolute margins of 3.61% and 1.94% for
σ = 0.01 and 0.02, respectively, and almost the same as
the vanilla model for σ = 0.05. Since DebiAN identifies
bias and removes it alternatingly, it most likely is unable
to effectively identify the bias with the extremely limited
number of bias-conflicting samples in this setting.

The results indicate that the proposed approach outper-
forms the vanilla method by absolute margins of 9.45%,
18.16%, and 15.87% for the σ = 0.01, 0.02, and 0.05, re-
spectively. Further, the proposed approach outperforms the
closest method LfF by absolute margins of 5.26%, 5.24%,
and 5.78%, for the σ = 0.01, 0.02 and 0.05, respectively.
The proposed approach also outperforms LDD [17] by ab-
solute margins of 6.58%, 7.29%, and 7.19%, for the σ =
0.01, 0.02 and 0.05, respectively. The LfF method relies
heavily on reweighting the available bias-conflicting sam-
ples, which leads to overfitting since the bias-conflicting
samples are very limited in this setting. LDD also suffers
from overfitting for the same reason and, therefore, the fea-
ture level augmentations used by LDD are not as effective in
the limited data setting as compared to the full data setting.
In contrast, our proposed approach identifies likely bias-
conflicting samples and synthesizes hybrid samples while
maintaining diversity in such samples. As a result, the pop-
ulation of bias-conflicting samples increases and is also di-
verse, which reduces overfitting and improves debiasing.
We also compare the features extracted by the debiased
model trained using LfF and our approach on the reduced
Colored MNIST dataset (σ = 0.05) using a t-SNE plot (see
Fig. 2). The plot clearly indicates that the features extracted
by the debiased model trained using our approach are better
clustered according to their respective classes as compared
to LfF. Therefore, our approach leads to a more discrimina-
tive feature space, which improves the model performance.

4.3. Results on Corrupted CIFAR-10 Type 0

Table 2 shows the results of our experiments on the Cor-
rupted CIFAR-10 Type 0 dataset. The vanilla model with-
out any debiasing approach achieves a very low accuracy of
25%, 25.68%, and 29.40% for σ = 0.01, 0.02, and 0.05,
respectively. The results indicate that LfF [20] fails to sig-
nificantly improve the model performance as compared to
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σ Vanilla LfF LDD DebiAN Ours

0.01 39.47 ± 2.50 43.66 ± 3.48 42.34 ± 1.82 35.86 ± 2.89 48.92 ± 4.32

0.02 43.66 ± 1.13 56.58 ± 1.90 54.53 ± 2.66 41.72 ± 2.88 61.82 ± 4.34

0.05 58.74 ± 1.28 68.83 ± 2.70 67.42 ± 2.69 58.17 ± 2.07 74.61 ± 2.72

Table 1. Experimental Results on the reduced Colored MNIST dataset

Figure 2. t-SNE Plot for the features extracted by the model trained using LfF and our approach on the reduced Colored MNIST Dataset.

the vanilla model. Specifically, LfF is able to improve upon
the vanilla model by a very small absolute margin of 0.44%
for σ = 0.01 and performs very similar to the vanilla model
for σ = 0.02 and 0.05. The LDD [17] approach also fails
to outperform the vanilla model significantly. The state-
of-the-art DebiAN [18] suffers significantly in this setting
and even negatively affects the model performance in some
cases. In contrast, the proposed approach outperforms LfF
by absolute margins of 5.22%, 4.20%, and 5.59%, and out-
performs LDD by absolute margins of 3.24%, 4.39% and
4.07%, for σ = 0.01, 0.02, and 0.05, respectively.

4.4. Results on Corrupted CIFAR-10 Type 1

The results of our experiments on Corrupted CIFAR-10
Type 1 are reported in Table 3. The vanilla model achieves a
very poor performance of 25.03%, 26.73%, and 30.84% ac-
curacy for σ = 0.01, 0.02 and 0.05, respectively. LfF is not
able to significantly outperform the vanilla model, achiev-
ing a performance of 25.33%, 27.90% and 32.15% accuracy
for σ = 0.01, 0.02, and 0.05, respectively. LDD achieves
slightly better performance than LfF in some cases. The De-
biAN method performs very close to the vanilla model and
is not very effective. The proposed approach significantly
outperforms the vanilla, LfF, LDD, and DebiAN methods
by absolute margins of 10.39%, 9.08%, 8.07%, and 9.67%
for σ = 0.05.

4.5. Results on BFFHQ

The experimental results on the BFFHQ dataset are re-
ported in Table 4. Similar to the other datasets, the re-
sults indicate that the performance of existing debiasing
approaches is very poor when the training data is limited.

In fact, on BFFHQ, the compared debiasing approaches
perform even worse than the vanilla baseline method. In
contrast, the proposed approach outperforms the vanilla,
LfF, LDD, and DebiAN approaches by absolute margins of
4.00%, 4.66%, 4.73%, and 5.46%, respectively.

4.6. Ablation Experiments

4.6.1 Hyperparameter Selection

We report the results of the experiments to identify the suit-
able values for the hyperparameters tbc, α, β, for the re-
duced Colored MNIST, the reduced Corrupted CIFAR-10
and the reduced BFFHQ datasets in Figs. 3, 4, 5, respec-
tively. We choose the best values for each hyperparameter.

4.6.2 Analysis of other Performance Aspects as Train-
ing Progresses

Fig. 7 (a), shows the training loss incurred by MD and MB

models for the bias-aligned and bias-conflicting samples on
the reduced colored MNIST dataset with σ = 0.05. We
observe that as the training progresses, the training loss of
MB for the bias-conflicting samples increases and remains
extremely high as compared to the bias-aligned samples.
This is expected since we are training MB to be biased. In
contrast, the training loss of MD is comparatively low for
both bias-aligned and bias-conflicting samples. Fig. 7 (b),
shows the false positive rate of likely bias-conflicting sam-
ples identified using our method. We observe that the false
positive rate keeps dropping as the training progresses and
remains extremely low. This demonstrates the effectiveness
of our approach.
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σ Vanilla LfF LDD DebiAN Ours

0.01 25.00 ± 0.35 25.44 ± 0.41 27.42 ± 0.96 24.66 ± 0.49 30.66 ± 1.28

0.02 25.68 ± 0.82 27.53 ± 0.65 27.34 ± 0.65 26.00 ± 0.15 31.73 ± 0.32

0.05 29.40 ± 0.65 30.71 ± 0.98 32.23 ± 0.47 29.01 ± 0.23 36.30 ± 1.27

Table 2. Experimental Results on the reduced Corrupted CIFAR-10 Type 0 dataset

σ Vanilla LfF LDD DebiAN Ours

0.01 25.03 ± 0.69 25.33 ± 1.12 24.68 ± 1.52 25.48 ± 0.12 31.69 ± 0.79

0.02 26.73 ± 0.47 27.90 ± 0.87 27.93 ± 2.24 27.04 ± 0.32 34.42 ± 0.70

0.05 30.84 ± 0.69 32.15 ± 1.60 33.16 ± 3.45 31.56 ± 0.81 41.23 ± 0.60

Table 3. Experimental Results on the reduced Corrupted CIFAR-10 Type 1 dataset

σ Vanilla LfF LDD DebiAN Ours

0.05 59.86 ± 0.57 59.20 ± 3.02 59.13 ± 1.33 58.40 ± 0.99 63.86 ± 1.03

Table 4. Experimental Results on the reduced BFFHQ dataset

(a)

(b)
Figure 7. Analysis of other performance aspects. a) Change
in training loss for unbiased (bias-conflicting) and biased (bias-
aligned) samples b) Change in the false positive rate of the likely
bias-conflicting samples identified using our approach

4.6.3 Comparison of Strategies for Synthesizing Hy-
brid Samples in our Approach

In the proposed approach, the likely bias-conflicting sam-
ples have to be combined with likely bias-aligned samples
to synthesize hybrid samples. We perform experiments to

compare different strategies for doing so, including our pro-
posed strategy. The results in Table 5 indicate that the sam-
ples produced through our approach are significantly better
at improving the model performance. Also note that for the
compared mixing methods, we follow the methods given in
the original papers, which includes label mixing, which is
not needed in our approach.

4.6.4 Performance degradation of Debiasing Methods
in Limited Data Regime

LfF [20] and LDD [17] are popular debiasing approaches
that are able to achieve only 32.15% and 33.16% on the
Corrupted CIFAR-10 Type 1 dataset when only 10% of the
training data is present with a bias-conflicting ratio of 0.05.
This is very close to the simple baseline vanilla model,
which achieves 30.84%. This is in stark contrast to the
experiments where the full Corrupted CIFAR-10 Type 1
dataset is used, and the baseline, LfF, and LDD achieve
41.27%, 58.77%, and 59.3% accuracy, respectively, in that
setting(see Fig. 6). This indicates that in a limited data
regime, the effect of biases on the model predictions is ex-
tremely high, and the effectiveness of debiasing approaches
is significantly degraded. The results also show that our
approach is significantly more effective at debiasing deep
learning models in the limited data settings as compared to
other debiasing approaches.

4.6.5 Performance on Sufficient Training Data

We experimentally verify the performance of the proposed
method when the entire Corrupted CIFAR-10 Type 1 data
is present with a bias-conflicting ratio of 0.05. We observe
that our approach achieves 62.3% accuracy in the presence
of sufficient training data and outperforms LfF and LDD
by absolute margins of 3.53% and 3%, respectively (see
Fig. 6). The results also indicate that the drop in perfor-
mance of our approach due to limited data is significantly
less as compared to the other debiasing approaches.
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Figure 3. Choice of hyperparameters for the reduced Colored MNIST dataset

Figure 4. Hyperparameters selection for the reduced Corrupted CIFAR-10 dataset

Figure 5. Choice of hyperparameters for the reduced BFFHQ dataset

Figure 6. Experimental results on Corrupted
CIFAR-10 Type 1 with limited and full data.

Mixup CutMix Ours
53.38 58.88 74.61

Table 5. Results on reduced Colored MNIST
with σ=0.05 for different strategies of synthesiz-
ing hybrid samples

σ Vanilla LfF LDD DebiAN Ours
0.4 72.99 71.26 73.72 72.57 73.93
0.5 74.64 71.79 75.05 75.01 75.12

Table 6. Results on Corrupted CIFAR-10 Type 1 for full data (p =
1) with a good balance between bias-aligned and bias-conflicting
samples, i.e., very low bias

4.6.6 Performance on Sufficient Training Data and
Very Low Bias

We performed experiments to verify whether our debiasing
approach has any negative effect when the data is sufficient
and has very low bis. Specifically, we experiment on the en-
tire Corrupted CIFAR-10 Type 1 dataset, with p=1 and high
σ, i.e., 0.4, 0.5, such that the data is sufficient and highly
balanced, therefore, suffering from very low bias. The re-
sults in Table 6 indicate that when the bias-conflicting and
aligned samples are in balance, the vanilla model performs
much better, indicating a low effect of bias, but the LfF de-
biasing method significantly hurts the performance in the
process of debiasing the network. In contrast, the proposed
approach does not have any negative effects and, in fact,
improves model performance even in this setting.

4.6.7 Alternative to Filtering Ratio

In the proposed approach, we select the top N ∗ (1 − tbc)
samples in a batch of size N with the highest reweighting
factor as the likely bias-conflicting samples. Another alter-
native is to identify a threshold for the reweighting factor

and consider all samples with a reweighting factor above a
threshold as the likely bias-conflicting samples. We exper-
imented with using the mean reweighting factor in a batch
as the threshold and also using 0.1, 0.3, 0.5, 0.7, and, 0.9
as the threshold. However, we experimentally observe that
using the filtering ratio instead of threshold outperforms
the above options by absolute margins of 3.17%, 2.37%,
1.21%, 0.92%, 3.39%, 9.04%, respectively, on the Cor-
rupted CIFAR-10 Type 1 dataset (σ = 0.05).

5. Conclusion

In this paper, we have proposed a novel approach to ad-
dress the problem of biased predictions in the limited data
setting. Existing debiasing approaches suffer from a mas-
sive performance drop in the limited data setting due to the
increased influence of the more populous bias-aligned sam-
ples in this setting and their additional focus on the bias-
conflicting samples, which are extremely limited in this set-
ting, causing overfitting. The proposed approach identifies
likely bias-conflicting samples and synthesizes diverse hy-
brid samples from them to better handle the problems in
this setting. We experimentally demonstrated that our ap-
proach performs significantly better than existing debiasing
techniques in the limited data setting.
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