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Figure 1. Comparison between frozen model FocalClick [11], the baseline and our method. Images are taken from Berkeley dataset. To
illustrate the effectiveness of the proposed method to decrease catastrophic forgetting, the baseline and our method have been continuously
adapted on DRIONS-DB [7] −→ Rooftop [49] −→ Berkeley [44]. Green and red points represent positive and negative clicks correspondingly.
Automatic annotation has been done until reaching a target IOU of 95%.

Abstract

Interactive segmentation is the task of segmenting ob-
jects or regions of interest from images based on user
annotations. While most current methods perform effec-
tively on images from the same distribution as the train-
ing dataset, they suffer to generalize on unseen domains.
To address this issue some approaches incorporate test-
time adaptation techniques which, on the other hand, may
lead to catastrophic forgetting (i.e. degrading the perfor-

mance on the previously seen domains) when applied on
datasets from various domains sequentially. In this paper,
we propose a novel domain adaptation approach leveraging
a teacher-student learning framework to tackle the catas-
trophic forgetting issue. Continuously updating the student
and teacher models based on user clicks results in improved
segmentation accuracy on unseen domains, while preserv-
ing comparable performance on previous domains. Our
approach is evaluated on a sequence of datasets from un-
seen domains (i.e. medical, aerial images, etc.), and, after
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adaptation, on the source domain demonstrating a signif-
icant decline of catastrophic forgetting (e.g. from 55% to
4% on Berkeley dataset).

1. Introduction
Interactive segmentation is the task of extracting masks

for user specified objects or regions of interest. User anno-
tations can be of the form of scribbles [4,6,16,17,24,28,33],
clicks [5, 10, 11, 20, 22, 35, 36, 43, 47, 48, 60], bounding
boxes [27, 46, 58, 61], polygons [1, 23, 37], etc. Applica-
tions of interactive segmentation vary from image editing
(e.g. for editing selected objects, or removing them from
the scene, etc.) to annotation of large datasets for image
segmentation (e.g. for self-driving cars, aerial, or medical
imaging, etc.).

Given the wide range of applications and the recent
developments of deep learning methods for semantic, in-
stance, or panoptic segmentation requiring large volumes
of annotated data, there has been a growing interest towards
interactive segmentation as well. As a result a large body of
research [10, 11, 20, 22, 29, 35, 36, 43, 47, 48, 60, 61] has fo-
cused on developing new and improved deep learning based
techniques for interactive segmentation.

Initial attempts of applying deep learning methods to
interactive segmentation [60] incorporated user annota-
tions as additional input to Fully Convolutional Networks
(FCN) [39]. To better identify the target object, other works
[36, 43, 61] explore new ways of utilizing user clicks. Still,
click simulation for training did not reflect the iterative
essence of the interactive task (all clicks were generated
at once) in contrast to the practical application of interac-
tive segmentation when people add clicks iteratively in er-
roneous regions based on current segmentation mask. To
mimic human behaviour some works [11, 41, 48] generate
clicks iteratively each time utilizing the segmentation result
of previous iteration during training. Despite such improve-
ments, most interactive segmentation methods failed to cap-
ture fine details in user annotated areas. To overcome this,
new approaches emerged [11,35] to apply local refinement
around user clicks.

Nonetheless, the performance of these methods deteri-
orates on datasets from unseen domains. To address this
issue, IA+SA [26] and RAIS [19] apply test-time adapta-
tion to update the model based on user annotations which
provide strong hints about the ground truth. These methods
have shown promising results on adapting to a single dataset
from an unseen domain. However, in most practical scenar-
ios of large scale annotation the target domain is not sta-
tionary, meaning that datasets from diverse domains might
become available for annotation. In such cases catastrophic
forgetting becomes prominent in adaptation methods for in-
teractive segmentation [19,26]. To that end, it becomes cru-

cial to update the model in a way that it accumulates knowl-
edge from new datasets without forgetting the existing one.
To accomplish this, we design a novel framework, consist-
ing of teacher and student models, for continuous adap-
tation, applicable for any pre-trained off-the-shelf interac-
tive segmentation model. Both the teacher and the student
have the same architecture and the same initial knowledge
by our design. During adaptation they constantly exchange
their knowledge. Particularly, the teacher model shares its
knowledge with the student before the adaptation on each
dataset. Then the student model quickly gets adapted to
the new dataset and exchanges the new knowledge with the
teacher. The student model is updated based on user an-
notations, while the teacher is updated via an exponential
moving average (EMA) of the student’s parameters. Fre-
quent updates of the student achieve improved performance
on the current domain, while updating the teacher via EMA
leads to a balanced knowledge accumulation from past and
current domains, deteriorating forgetting.

Our contributions are summarized as.

• We propose a new method for continuous adaptation
for interactive segmentation that alleviates catastrophic
forgetting and can use any pre-trained off-the-shelf in-
teractive segmentation model.

• As part of the proposed method, teacher and student
models are updated using user-provided clicks and pre-
vious predictions to adapt to new domains.

• Through various adaptation scenarios we demonstrate
the effectiveness of the proposed method both in adapt-
ing to new domain datasets such as Heart, Spleen,
DRIONS-DB, Rooftop, but also we show how catas-
trophic forgetting is diminished compared to the base-
line method.

2. Related Work
Interactive Segmentation. Before the recent break-
throughs in deep learning, traditional approaches [4, 6, 16,
17, 24, 27, 28, 46, 58] defined interactive segmentation as
a graph cut optimization problem. For instance, some
works [6, 46] treat user provided annotations as hard con-
straints for the optimization, or [16] use a random walker
to get segmentation results. However, all these methods
use only low-level features and do not yield high quality
segmentation masks for images with complex structures or
with similar foreground and background, hard textures. The
introduction of FCNs for semantic segmentation [39] en-
abled researchers to apply deep learning based techniques
to interactive segmentation as well. Since then various vi-
sual backbones [8, 9, 54, 59] have been used in interactive
segmentation methods. The pioneering work using deep
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Method Backbone GrabCut Berkeley DAVIS
NoC@85 NoC@90 NoC@85 NoC@90 NoC@85 NoC@90

RITM [48] HRNet-18 1.42 1.54 1.46 2.26 4.36 5.74
PseudoClick [38] HRNet-32 - 1.50 - 2.08 3.79 5.11
FocalClick [11] SegFormerB3-S2 1.44 1.50 1.55 1.92 3.61 4.90
OursFOCALCLICK SegFormerB3-S2 1.42 1.46 1.53 1.85 3.40 4.86

Table 1. Evaluation results on benchmark datasets. NoC@85 and NoC@90 are used for denoting the average Number of Clicks required
to obtain 85% and 90% IOU correspondingly.

Method DRIONS-DB Rooftop
NoC@85 NoC@90 NoC@80 NoC@85 NoC@90

IA+SA [26] - 3.1 3.6 - -
FocalClick [11] 4.75 6.23 1.79 2.22 2.86
OursFOCALCLICK 1.63 2.22 1.60 1.84 2.30

Table 2. Evaluation results on datasets from different domains from the source. Note that IA+SA [26] and our method use test-time
adaptation.

learning for interactive segmentation is DIOS [60], where
user interactions are of the form of positive and negative
clicks indicating the foreground object and the background.
Clicks are transformed to Euclidean distance maps and are
passed to the model together with the input image. DIOS
established a well-defined strategy for random click simu-
lation for training as well as an evaluation protocol for click
based interactive segmentation methods. Most recent works
use clicks as a method of interaction and have explored
various representations - Gaussian or binary disks [48],
superpixel-based or object-based guidance maps [42]. Be-
sides, different methods utilize clicks with diverse purposes.
FCA-Net [36] capitalizes the observation that the first click
is the most important one and uses a separate First-Click
Attention module to get improved results. DEXTR [43]
uses four extreme points (left-most, top-most, right-most,
bottom-most) to identify the object user wants to segment.
IOG [61] takes one inside click near to the center of the fore-
ground object and two more clicks at symmetrical corner lo-
cations (enabling to construct the bounding box) providing
the opportunity for further corrections as well. Since dur-
ing evaluation each next click is placed on the largest erro-
neous region, ITIS [41] proposed to generate several clicks
iteratively during training to mimic natural annotation be-
haviour. RITM [48] emphasizes the importance of the usage
of modern backbone models and large high-quality train-
ing datasets to significantly improve model performance.
Several methods take the resulting segmentation mask of
previous interactive step together with the image and click
maps as input to the next step [11,14,35,41,48]. Meanwhile
EdgeFlow [20] provides an edge mask as an additional in-
put. RIS-Net [31], FocusCut [35] and FocalClick [11] focus
on the interactive segmentation task from a localized per-

spective in order to refine the output. FCFI [57] exploits
user clicks both for local feedback correction and global
feedback integration into deep features. GPCIS [62] formu-
lates the interactive segmentation task as a pixel-wise bi-
nary classification model based on a Gaussian process for
each image. PseudoClick [38] uses automatically gener-
ated clicks to mimic human clicks for the enhancement of
segmentation masks. PhraseClick [12] combines clicks and
textual phrases to correctly locate and segment the target
object. CLIPSeg [40] relies on visual or textual prompts
to segment the target object. Recently released SAM [25]
provides zero-shot capabilities for promptable segmentation
based on clicks, bounding boxes, masks, text descriptions.
BRS [22] and f-BRS [47] introduce a test-time optimiza-
tion of the network inputs [22] or some auxiliary parame-
ters [47] to ensure that user-provided clicks are labeled cor-
rectly. IA+SA [26] exploits user annotations to update the
whole model test-time to adapt to specific images or new
domains. RAIS [19] constructs a model with basic seg-
mentation and adaptation modules and updates them test-
time. Besides segmenting a single target object, methods
have been proposed for full image annotation [2], human
parsing [15], thin object segmentation [32].

Adaptation. Deep learning models in general, including
semantic segmentation models, are trained on a specific
source dataset, which is assumed to represent the distribu-
tion of the data that the model will be exposed to in the
future. However, when the model is deployed in the real
world, it may encounter data that comes from a different
distribution than the one it was trained on. Various adap-
tation techniques have been designed to improve the per-
formance of the model on new domains and increase its
generalization capability, including but not limited to Unsu-
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Method Heart Spleen
NoC@85 NoC@90 NoC@85 NoC@90

FocalClick [11] 5.75 8.40 3.73 4.29
OursFOCALCLICK 3.30 6.70 1.51 1.85

Table 3. Evaluation results on Heart and Spleen datasets from The Medical Segmentation Decathlon [3]

Adaptation Sequence Heart Spleen
NoC@85 NoC@90 NoC@85 NoC@90

Heart −→ Spleen 3.30 6.70 1.46 1.83
Spleen −→ Heart 2.95 6.00 1.51 1.85

Table 4. Evaluation results on datasets from The Medical Segmentation Decathlon [3] using FocalClick [11] as pre-trained interactive
segmentation model. Continuous adaptation has been applied on the specified sequences of datasets

User
provides
the next

click

Adaptation and Evalutation
for one image

EMA

Adaptation and Evalutation
for one dataset

Adaptation and Evalutation
for a sequence of datasets

Pre-trained
model

Figure 2. The overall architecture of our method. As part of it,
the student model is used for interactive annotation and is adapted
to the current dataset. Meanwhile the teacher model accumu-
lates new knowledge balancing with the existing one via updates
through exponential moving averages of student’s parameters.

pervised Domain Adaptation [21, 30, 51, 52, 55], Test-Time
Training [50], Test-Time Adaptation [53], Continual Learn-
ing [13, 56]. While some of these methods assume an ac-
cess to target data during training, others use a subset of
the source data for test-time adaptation. We believe that
the above approaches put quite hard limitations as, first, in
most practical situations the target domain is unknown dur-
ing training, second, it is not feasible to keep the source
data due to ethical, legal or just computational reasons.
Moreover, the target domain should not necessarily be sta-
tionary and can change over time. Another approach for
adaptation is to update the model test-time based on pre-
diction entropy [30, 53] or self-training with pseudo-labels.
CoTTA [56] proposes a framework for continual test-time
adaptation that gives weight-averaged pseudo-labels and the
prediction using several augmentations.

3. Method

We start this section with the problem formulation of
continuous adaptation for interactive segmentation, fol-
lowed by a subsection presenting our method.

3.1. Problem Formulation

Continuous adaptation of a pre-trained interactive seg-
mentation model can be formally defined as follows. Let
fθ∗(x) be an interactive segmentation model with input
x (image, user annotations, etc.), weights θ∗ obtained af-
ter training on source dataset DS . Also, there are L
datasets D = {D1, D2, . . . , DL} from arbitrary domains,
where each dataset Dl consists of nl images, i.e. Dl =
{I1, I2, . . . , Inl

}. However, these datasets are not avail-
able during training. Similarly, source dataset DS is not
available during annotation. The goal is to update pre-
trained model parameters θ∗ during annotation such that
the performance is improved on dataset Dl while ensur-
ing the performance does not degrade on previous datasets
DS , D1, D2, . . . Dl−1.

3.2. Our Method

In this paper we design a continuous adaptation frame-
work that enables to achieve the above formulated goals -
adapt to new domains and preserve past knowledge. For
that purpose we exploit teacher-student architecture, where
the student is supposed to quickly adapt to a new do-
main, meanwhile the teacher accumulates the newly learned
knowledge without catastrophic forgetting. The overview
of our method can be found in Fig. 2.

Let the interactive segmentation model be fθ(I, C,M),
where I is the input RGB image, C is the 2 channel guid-
ance map, including both positive and negative clicks, M
is model’s prediction at previous interactive step and θ rep-
resents model parameters. Note that I, C and M have the
same spatial resolution H × W . After a fully-supervised
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Adaptation Sequence BaselineFOCALCLICK OursFOCALCLICK

NoC@90 NoC@90
GrabCut 1.46 1.46

DRIONS-DB −→ GrabCut 1.60 1.46
DRIONS-DB −→ Rooftop −→ GrabCut 1.72 1.46

Berkeley 1.85 1.85
DRIONS-DB −→ Berkeley 2.72 1.90

DRIONS-DB −→ Rooftop −→ Berkeley 2.87 1.93
DAVIS 4.86 4.86

DRIONS-DB −→ DAVIS 5.20 4.79
DRIONS-DB −→ Rooftop −→ DAVIS 5.23 4.79

Table 5. Evaluation results for the last dataset in the specified sequence of continuous adaptation using FocalClick [11] as pre-trained
interactive segmentation model. The proposed method diminishes catastrophic forgetting.

Adaptation Sequence BaselineRITM OursRITM

NoC@90 NoC@90
GrabCut 1.48 1.48

DRIONS-DB −→ GrabCut 2.20 1.48
DRIONS-DB −→ Rooftop −→ GrabCut 2.10 1.52

Berkeley 2.27 2.27
DRIONS-DB −→ Berkeley 4.39 2.38

DRIONS-DB −→ Rooftop −→ Berkeley 4.99 2.37
DAVIS 5.21 5.21

DRIONS-DB −→ DAVIS 6.92 5.24
DRIONS-DB −→ Rooftop −→ DAVIS 7.63 5.22

Table 6. Evaluation results for the last dataset in the specified sequence of continuous adaptation using RITM [48] as pre-trained interactive
segmentation model. The proposed method diminishes catastrophic forgetting.

training on source dataset DS the optimized model param-
eters are θ∗.

At the beginning of adaptation, both teacher
fθT (I, C,M) and student fθS (I, C,M) models are
initialized as the pre-trained interactive segmentation
model with weights θ∗, i.e. θT = θ∗ and θS = θ∗. To
adapt on a dataset Dl = {I1, I2, ..., Inl

} we employ the
following adaptation mechanism. For each image It after
each click k a single gradient descent (GD) step is used to
update the student model parameters θSt,k based on LC loss:

LC(It, Ct,k,Mt,k−1, θ
S
t,k−1, θ

∗) =

LSCE(Mt,k−1, Ct,k) + γLR(θ
∗, θSt,k−1),

(1)

where Ct,k = [CP
t,k, C

N
t,k] and Mt,k−1 denote the user an-

notations (positive and negative click maps) at the click
k and the student model prediction after k − 1 clicks re-
spectively. LSCE(Mt,k−1, Ct,k) denotes the sparse binary
cross-entropy loss between the prediction and user anno-
tations, i.e. pixels without annotation are not considered.
LR(θ

∗, θSt,k−1) is used to penalize large deviations from the
pre-trained weights. γ is a hyper-parameter.

LSCE(Mt,k−1, Ct,k) =
1

k

∑
p

[−CP
t,k ⊙ logMt,k−1−

CN
t,k ⊙ log (1−Mt,k−1)]p

(2)

LR(θ
∗, θSt,k−1) = ∥θ∗ − θSt,k−1∥2 (3)

After there are no more corrections from the user and the
interactive process has ended for It, we use a single GD step
to update θSt,Kt

optimizing LI loss:

LI(It, Ct,1:Kt ,Mt,1:Kt , θ
S
t,Kt

, θ∗) =

LSCE(Mt,Kt
, Ct,Kt

) + LBCE(Mt,Kt
,Mt,1)+

γLR(θ
∗, θSt,Kt

),

(4)

where Ct,1:Kt = {Ct,k}Kt

k=1, Mt,1:Kt = {Mt,k}Kt

k=1 for
Kt total number of clicks, and LBCE is a regularization
term based on the binary cross-entropy between the pre-
dicted segmentation maps Mt,1 and Mt,Kt

:
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LBCE(Mt,Kt
,Mt,1) =

1

HW

∑
p

[−Mt,1 ⊙ logMt,Kt
+

(1−Mt,1)⊙ log (1−Mt,Kt
)]p

(5)

After obtaining a final prediction for image It, we update
teacher model as well. To achieve the initial objective for
the teacher model and accumulate new knowledge without
forgetting past one, teacher model is updated by the expo-
nential moving average (EMA) using student model param-
eters:

θTt+1 = αθTt + (1− α)θSt,Kt
(6)

This way the adaptation is done iteratively for both stu-
dent and teacher models updating student model parameters
after each user click and updating teacher model parameters
once for each image.

To adapt on dataset Dl+1, we keep teacher model as it
is at the moment, i.e. updated using all images up to the
last image of Dl. We reinitialize student model so that it
has the same parameters as the teacher before the adap-
tation on Dl+1. This process is repeated for all available
datasets. See Algorithm 1 for clarity. Note that annotation
and adaptation happen in parallel. Implementation details
can be found in the Supplementary Material.

4. Experiments
In this section we introduce how we have defined the

baseline model. Then we evaluate the baseline and the
proposed teacher-student architecture in different adapta-
tion scenarios. We use FocalClick SegFormerB3-S2 [11]
trained on COCO [34] + LVIS [18] as off-the-shelf pre-
trained interactive segmentation model. First, we show
that small improvements exist over the frozen model even
for datasets that come from the same domain as the train-
ing dataset. Next, we confirm that the proposed adapta-
tion method helps to increase the performance on datasets
from various domains - aerial or medical images. To verify
that continuous adaptation is superior to adaptation from the
pre-trained model for each new dataset, we show that adap-
tation on similar domain dataset improves the performance
on subsequent datasets. We demonstrate that the proposed
adaptation setting decreases catastrophic forgetting on dif-
ferent sequences. Finally, we construct our method on top
of RITM [48] and show that our continual adaptation mech-
anism can use arbitrary off-the-shelf pre-trained interactive
segmentation model.

4.1. Constructing a baseline

We decide to construct a baseline model using
IA+SA [26] adaptation approach, as a prominent work in

Algorithm 1 Continuous Adaptation for interactive seg-
mentation with teacher-student architecture
Require: Model fθ(I, C,M), pre-trained weights θ∗,

datasets D, hyperparameters α, γ, learning rate λ
1: θT ← θ∗ ▷ Initialize teacher and student using the

pre-trained weights
2: θS ← θ∗

3: for all Dl ∈ D do
4: θS0,0 ← θT ▷ Reinitialize student with teacher

parameters for each new dataset
5: for all t = 1, 2, . . . , nl do
6: Ct,0 ← {0,0}
7: Mt,0 ← 0
8: for all k = 1, 2, . . . ,Kt do
9: Ct,k ← Ct,k−1 ∪NewClick(It,Mt,k−1)

10: Mt,k ← fθS (It, Ct,k,Mt,k−1)
11: θSt,k ← θSt,k−1−
12: −λ d

dθS LC(It, Ct,k,Mt,k−1, θ
S
t,k−1, θ

∗; γ)
▷ Update student after each click

13: end for
14: θSt,Kt

← θSt,Kt
−

15: −λ d
dθS LI(It, Ct,1:Kt

,Mt,1:Kt
, θSt,Kt

, θ∗; γ)
▷ Update student after each image

16: θT ← αθT + (1− α)θSt,Kt
▷ Update teacher

via EMA after each image
17: end for
18: end for
19: return θT ,M ▷ Return teacher model parameters and

all student predictions

test-time adaptation for interactive segmentation. Adapta-
tion happens based on two defined mechanisms - Single Im-
age Adaptation(IA) and Image Sequence Adaptation(SA).
While the former is responsible to learn image specific
details, the latter adapts the model to the large domain
changes. Since ground truth masks are not available test
time, user-provided clicks are used for sparse supervision.
Also, two terms of regularization are used to ensure the pre-
trained model does not forget the strong prior knowledge -
dense supervision and important parameter change regular-
izer.

IA+SA uses a strong re-implementation of ITIS [41] as
a pre-trained interactive segmentation model. However, as
the implementation of IA+SA is not available and since the
authors claim that the proposed adaptation mechanisms are
orthogonal to architectural changes, we use current SOTA
interactive segmentation model FocalClick [11] to construct
a baseline method combining with IA+SA [26] adaptation
approach.

In case of continuous adaptation we apply this baseline
on a sequence of datasets. We demonstrate that catastrophic
forgetting takes place for this approach. Through vari-
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Figure 3. Comparison between frozen model FocalClick [11] and our method on diverse datasets from several domains. a) DRIONS-
DB [7], b) Rooftop [49], c) Heart [3], d) Spleen [3]. Green and red points represent positive and negative clicks correspondingly. Automatic
annotation has been done until reaching a target IOU of 95%

ous experiments we show that the proposed teacher-student
framework for continuous adaptation of any pre-trained off-
the-shelf interactive segmentation model helps to eliminate
catastrophic forgetting.

4.2. Comparison with SOTA and baseline

Table 1 shows the comparison with SOTA interactive
segmentation methods. We apply our method on three
widely used benchmark datasets. GrabCut [46] and Berke-
ley [44] contain 50 and 100 samples correspondingly. Also,
a subset with 345 frames from videos of DAVIS [45] dataset
is used. It is the same subset proposed in Latent Diver-

sity [29]. We can see that even in the absence of any do-
main changes, model updates help to achieve higher IOU
with fewer clicks. Fig. 1 includes several qualitative results
obtained by FocalClick [11], the baseline and our method.

To verify how effectively the proposed method adapts
to large domain shifts, we use the same datasets as in
IA+SA [26] from medical domain - DRIONS-DB [7] con-
taining 110 images of eye fundus of different patients, and a
dataset of 63 aerial images, Rooftop [49]. Results in Table
2 demonstrate how much adaptation helps to increase the
performance on new domain datasets and decrease the re-
quired number of annotations to reach the target IOU. Par-
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ticularly, for DRIONS-DB Number of Clicks required to
obtain 90% IOU (NoC@90) is 2.22 for our method com-
pared to 6.23 by FocalClick.

Besides DRIONS-DB and Rooftop, we evaluate our
method on other datasets with large domain shift. We use
Heart and Spleen datasets from The Medical Segmentation
Decathlon [3]. These datasets contain 30 and 61 3D vol-
umes of CT scans correspondingly. Since the proposed
method is designed for 2D segmentation, we extract the
slice with maximal ground truth mask area from each vol-
ume to obtain 30 Heart and 61 Spleen CT slices and their
annotations. Again the proposed adaptation helps to achieve
a significant performance improvement for these datasets as
reported in Table 3. Several qualitative results are presented
in Fig. 3. More examples can be found in the Supplemen-
tary Material.

To move on, in many practical scenarios several datasets
from similar domains are used for annotation. Hence, it is
reasonable to accumulate newly learned knowledge. To bet-
ter illustrate the above point, we have applied our method to
continuously adapt to two different datasets of CT scans. In
one case, we adapted on Heart dataset, then on Spleen. On
the other case, in the opposite order. Though there is a slight
difference for Spleen dataset when adapted first or second,
it might be because of already quite good performance on it.
On the other hand, we can notice an average improvement
about 10% or 0.7 clicks for Heart dataset when adapted after
Spleen as reported in Table 4. The acquired knowledge dur-
ing the adaptation on Spleen dataset boosts the performance
on Heart scans.

Furthermore, we illustrate the effects of catastrophic
forgetting doing continual adaptation first on one or two
new domain datasets (DRIONS-DB, or DRIONS-DB and
Rooftop) and then each of three benchmark datasets (Grab-
Cut, Berkeley or DAVIS). As reported in Table 5, continu-
ous adaptation of the baseline on the specified sequences
yields significant forgetting for each of the benchmark
datasets. Meanwhile applying the proposed teacher-student
architecture eliminates effects of forgetting for GrabCut,
Berkeley and provides an improvement for DAVIS.

We also construct the proposed continuous adaptation
mechanism using another interactive segmentation model -
RITM [48], to verify that any off-the-shelf pre-trained in-
teractive segmentation model can be utilized. The base-
line is designed in the same way as in previous experi-
ments, except with one difference - RITM is used instead
of FocalClick. We choose to use RITM with HRNet-18
backbone [9]. In Table 6 we demonstrate that the forget-
ting has been drastically decreased after applying teacher-
student architecture for continuous adaptation for all bench-
mark datasets.

5. Conclusion

In this paper, we have presented a novel approach to in-
teractive segmentation that leverages a teacher-student ar-
chitecture for continuous adaptation. Our approach ad-
dresses the issue of catastrophic forgetting that arises when
adaptation is done on several datasets from different do-
mains sequentially. The proposed update rules for teacher
and student models enable to achieve better results on
benchmark datasets such as GrabCut, Berkeley and DAVIS,
improve performance on different domain datasets by a
large margin and decrease the effects of catastrophic forget-
ting significantly. We believe that our proposed method pro-
vides a promising direction for future research in the field of
continuous adaptation for interactive segmentation, and can
be applied to a wide range of applications such as general
digital, aerial or medical imaging.
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