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Abstract

The main challenge in multi-view pedestrian detection
is integrating view-specific features into a unified space
for comprehensive end-to-end perception. Prior multi-view
detection methods have focused on projecting perspective-
view features onto the ground plane, creating a “bird’s eye
view” (BEV) representation of the scene. This paper pro-
poses a simple but effective architecture that utilizes a non-
parametric 3D feature-pulling strategy. This strategy di-
rectly extracts the corresponding 2D features for each valid
voxel within the 3D feature volume, addressing the feature
loss that may arise in previous methods. The proposed
framework introduces three novel modules, each crafted to
bolster the generalization capabilities of multi-view detec-
tion systems. Through extensive experiments, the efficacy
of the proposed model is demonstrated. The results show a
new state-of-the-art accuracy, both in conventional scenar-
ios and particularly in the context of scene generalization
benchmarks.

1. Introduction

In recent years, there has been a growing interest in the
exploration of 3D object detection methods that leverage
multi-camera setups, particularly in the field of autonomous
driving research [10, 12, 13, 22]. This work focuses on de-
tecting and identifying pedestrians within a specific region
both in indoor and outdoor environments equipped with
multiple CCTV cameras.

Conventional methods [4,9,14,15] address this problem
by generating predictions from single cameras and associ-
ating distinct features of individuals across camera views.
However, occlusion remains a prominent challenge, leading
to identity conflations. Several approaches [3,7,17,19] have
been proposed to address the global association problem
and distinguish different identities by localizing in ground
plane and projecting back onto the camera views, leverag-
ing the known calibration data. However, these methods

(a)

(b)

Figure 1. Illustration of Multi-view Feature-Pulling (MVFP)
method compared to Inverse Perspective Mapping (IPM). (a)
IPM leads to the loss of features along the human body, resulting in
contamination of features from other individuals. (b) MVFP uses
3D feature volumes that pull relevant 2D features from their cor-
responding views and subsequently aggregate them through maxi-
mal fusion, effectively addressing both occlusion and feature loss.

rely on inverse perspective mapping (IPM), which can cause
the loss of information along the human body and result
in the mixture of features from different individuals, as de-
picted in Fig. 1a. Additionally, they encounter difficulties in
accurately inferring the locations of distant pedestrians, as
the inverse projection can cause elongated features, affect-
ing the retrieval of features from individuals located farther
away. To overcome these limitations, we introduce the use
of an efficient 3D feature-pulling mechanism, as shown in
Fig. 1b, that converts multi-view features into a unified 3D
space, providing a more comprehensive representation of
the scene.

In addition to the challenges posed by the inverse pro-
jection mechanism, existing multi-view detection methods
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have a significant limitation: overfitting to their training
datasets. As highlighted in [20], the overfitting hampers
the model’s ability to generalize across diverse scenes and
varying camera setups. A fundamental goal of this research
is to create a model capable of generalizing from synthetic
data to real-world scenarios. This is particularly crucial in
situations where acquiring ground-truth data for real scenes
is challenging, such as in densely populated indoor settings
or sparsely distributed outdoor environments. To address
this challenge, we meticulously analyze the components of
the multi-view detection system and develop a model that
demonstrates improved performance on unseen domains.

Our proposed method incorporates a “foreground selec-
tor” module to judiciously extract relevant semantic infor-
mation directly from the perspective views in addition to
the new feature transformation mechanism. This selective
strategy fine-tunes attention to specific details of an individ-
ual’s body, enhancing the performance of the 3D feature-
pulling process. Additionally, we propose a “maximal fu-
sion” module that accounts for the heterogeneous nature of
CCTV cameras, preserving the most pertinent and dominant
features for each individual across different camera views.
To further enhance robustness against calibration errors, we
invent a “large kernel refiner” module that captures intricate
details and spatial relationships in the scene. With the aid
of these modules, our method is able to achieve a signifi-
cant improvement in performance. We summarize our key
contributions as follows:

• We propose Multi-view Feature-Pulling (MVFP)
method, which leverages efficient 3D feature-pulling
mechanism, mitigating the loss of multi-view features
that might occur in the process of global association.

• We introduce novel “foreground selector”, “maximal
fusion”, and “large kernel refiner” modules specifically
tailored for multi-view detection systems to comple-
ment the 3D feature-pulling mechanism, enhancing the
overall system performance.

• We assess the performance of our model across var-
ious scenes, including WildTrack, MultiviewX, and
GMVD datasets. We achieve state-of-the-art perfor-
mance in both same-domain testing and scene general-
ization evaluation.

2. Related works

2.1. Multi-view pedestrian detection

MVDet [7] introduced pioneering research in multi-view
detection by projecting perspective view features onto the
ground plane and computing a pedestrian occupancy map
through spatial aggregation. Building upon this, SHOT [19]
incorporated multiple homographies to project features at
various heights, thus improving performance and reduc-
ing the distortion caused by a single homography projec-

tion. MVDeTr [6] proposed a deformable attention mech-
anism that allows the aggregation of features from differ-
ent positions and cameras to effectively handle the prob-
lem of shadow-like features. Subsequently, it incorporated
view-level augmentations, comprising flipping, cropping,
and scaling, to reduce overfitting and improve the diversity
of the dataset. MVAug [3] further implemented scene-level
augmentations, which apply geometric transformations to
the projected ground plane features. Similar to random eras-
ing [23] used in 2D object detection, 3DROM [17] intro-
duced a cylinder-like random occlusion in the 3D space to
increase the robustness of the model.

All of the above-mentioned methods are tailored to op-
erate within the same scene with a fixed camera setup.
GMVD [20] introduced a novel dataset that encompasses a
wide range of scenes, each characterized by distinct camera
configurations. Its model architecture is built upon MVDet
[7], while introducing the use of average pooling for spatial
aggregation instead of a learnable layer, enabling it to adapt
effectively to different camera setups. Nevertheless, it still
relies on the utilization of inverse projection, which leads
to the loss of valuable information alongside human bodies
and results in distorted patterns and shadow-like features, as
illustrated in Fig. 1a.

2.2. 2D to 3D feature transformation

Geometry-aware Transformer-like Models. An
emerging trend in multi-camera 3D object detection is the
adoption of transformer models to explicitly construct a
3D feature volume using a deformable attention mecha-
nism [10, 22]. However, our main focus is on crowded
scenes where the accurate detection of pedestrians is highly
important. Given the large dimensions of the ground plane
and its associated resolution, the application to use attention
mechanisms can lead to high computational complexities.

3D Feature Lifting. The concept of lifting 2D features
into a 3D space was first introduced in autonomous driving
domain [16]. Through a trainable layer, this method esti-
mates depth distributions on a per-pixel basis along the cam-
era rays and subsequently unprojected to their correspond-
ing 3D locations. As reported in [5], this particular lifting
strategy, despite incorporating a learnable layer to generate
depth-dependent features, exhibits similar performance to
the straightforward unprojection technique. Furthermore, it
is worth noting that our goal lies on detecting pedestrians
within a specific area of interest (AoI). Given this context,
adopting a per-pixel depth-based feature estimation could
potentially lead to extracting extraneous features outside the
designated AoI.

3D Feature Pulling. Another promising approach for
translating 2D features into a 3D context is through 3D
feature pulling [5, 18, 21]. This technique involves gen-
erating 3D voxel coordinates that are projected onto the
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Figure 2. Overall architecture of the proposed model. A dilated ResNet-18, coupled with our foreground selector module, is used to
extract multi-view features. In the 3D feature-pulling, a sub-pixel 2D feature is pulled for each 3D voxel using projection and bilinear
sampling. A maximal fusion module is employed to produce an aggregated 3D feature volume and subsequently reduce the vertical
dimension to create a 2D BEV feature map. Finally, a large kernel refiner module is used to enhance the output, and a 2D occupancy map
is predicted. “Conv” indicates a 1× 1 conv. layer.

2D space, creating a mapping between the 3D voxels and
their corresponding pixel coordinates. From this, we can
retrieve the sub-pixel 2D features for each 3D coordinate
through bilinear sampling. The advantage of this approach
is its non-parametric nature, which makes it particularly
suited for multi-view detection systems due to its potential
to counter overfitting issues. Another noteworthy aspect is
that it selectively retrieves the relevant 2D multi-view fea-
tures, specifically focusing on AoI. Despite its characteris-
tics aligning well with the requirements of our task, this ap-
proach has remained unexplored in the field of multi-view
pedestrian detection.

3. Methodology

3.1. Overall architecture

The overall architecture of the proposed model is il-
lustrated in Fig. 2. Given a collection of images I =
{Ii ∈ R3×H×W , i = 1, 2, · · · , N} from N views with
H and W being the image height and width, the model em-
ploys a dilated ResNet-18 to extract the multi-view features
F 2d = {F 2d

i ∈ RC×H/8×W/8, i = 1, 2, · · · , N}, where
C is the number of channels and 8 represents the downsam-
pling factor.

A foreground selector module (Sec. 3.2) is utilized to
extract meaningful semantic information and transfer them
into a unified space with the 3D feature pulling mecha-
nism (Sec. 3.3). This creates a 3D feature volume for each
view, denoted as F 3d = {F 3d

i ∈ RC×Z×Y×X , i =
1, 2, · · · , N}, where X and Y represent the width and
height of the ground plane and Z denotes the assumed ver-
tical dimension.

A maximal fusion module (Sec. 3.4) is used to aggregate
feature volumes from multiple views and reduce the vertical
dimension to form a BEV feature map F bev ∈ RC×Y×X .
The accumulated coarse BEV feature is further refined with
novel large kernel refiner module (Sec. 3.5) and passed
through a final layer to generate a 2D occupancy map.

A mean squared error (MSE) is used to calculate the loss
between ground-truth X and predicted X̂ occupancy maps.
To maintain the simplicity of our proposed model, we omit
the use of any subsidiary heads such as a single-view detec-
tion head [7] for additional supervision in the perspective
view or an offset head [6] to recover truncation error caused
by downsampling of the ground plane to lower resolution.

Figure 3. Foreground selector module. (a) Network structure
of FSM. (b) Sample view. (c) Before FSM. (d) After FSM. The
feature output is enhanced with the proposed module to focus on
crucial foreground details, while filtering out unnecessary back-
ground information. The red area delineates the area of interest
(AoI). Features outside of this region will not be utilized.

3.2. Foreground selector module

Given that the 3D feature pulling mechanism is a
parameter-free module, it is necessary to extract only the es-
sential semantic information from 2D features and facilitate
a more comprehensive feature selection. Hence, we pro-
pose a foreground selector module inspired by the channel-
attention module in the squeeze-and-excitation network [8].

The structure of the foreground selector module is shown
in Fig. 3. The module applies pooling mechanisms to cre-
ate a global feature representation and extract a relation-
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ship between different channels with a shared convolutional
layer. A sigmoid function will compute channel-wise atten-
tion scores and element-wise multiply them with the origi-
nal 2D features to create a weighted feature representation
that captures foreground information. Before reducing the
dimension of the feature maps, a skip connection is used to
enhance the representation power of the network. By incor-
porating the foreground selector module into our model, we
can ensure that only the relevant and important cues from
2D features are channeled to the 3D feature-pulling mecha-
nism, leading to improved performance.

3.3. 3D feature pulling

In the 3D feature pulling mechanism, we first create a
predefined 3D voxel volume Vi(x, y, z) ∈ RZ×Y×X using
discrete grid coordinates and project it into each camera’s
view as follows:

[
u
v

]
= Π K′[R T ] Dg


x
y
z
1

 , Dg =


sg 0 0 xmin

0 sg 0 ymin

0 0 sg 0
0 0 0 1

 (1)

where u and v represent the pixel coordinates and Π de-
notes the perspective mapping that transforms 3D points
into 2D points on the image plane. K ′ is the scaled in-
trinsic matrix, considering the feature map downsampling
and [R T ] is the extrinsic matrix that describes the posi-
tion and orientation of the camera in the world space. Dg

represents a transformation matrix that converts the world
coordinates to discrete grid coordinates, with sg denoting
the grid size and xmin and ymin denoting the lower bounds
of the ground plane that define the minimum values for the
x and y coordinates.

Using the mapping between 3D grid coordinates and
projected 2D pixel coordinates, a binary mask Mi can be
created, indicating the validity of each 3D coordinate with
respect to the camera’s frustum as

Mi(x, y, z) =

{
1, if 0 ≤ u ≤ W

8
and 0 ≤ v ≤ H

8

0, otherwise
(2)

By applying a valid mask to the voxel volume, we can
filter out the features corresponding to 3D coordinates lying
beyond the camera’s frustum. From which, we can pull the
2D features F 2d

i corresponding to each valid voxel through
bilinear sampling, ultimately yielding a 3D feature volume
F 3d
i ∈ RC×Z×Y×X for each view:

Vi(x, y, z) =

{
sampling(F 2d

i (u, v)), if Mi(x, y, z) = 1

0, otherwise
(3)

3.4. Maximal fusion module

We propose a maximal fusion module to aggregate 3D
feature volumes, addressing the challenges of achieving

scene generalization with different camera setups and mit-
igating the computational complexity introduced by learn-
able layers. First, a max-pooling operation is used to ex-
tract the largest value from each voxel, thereby effectively
selecting the most relevant and informative features from
different camera perspectives. This emphasizes the most
dominant features while omitting imperceptible or less in-
formative ones, and allows us to handle an arbitrary number
of views in random order. The aggregation process via max-
pooling can be expressed as:

V (x, y, z) =
N

max
i

Vi (4)

Furthermore, we extend the CoordConv technique [11]
from 2D pixel coordinates to 3D grid coordinates to pro-
vide 3D positional information, enhancing the model’s un-
derstanding of the spatial relationships between the pulled
2D features and 3D coordinates. The introduced “Coordi-
nate Volume” is seamlessly incorporated into the already
aggregated 3D feature volume. A convolutional layer is ap-
plied to diminish the vertical dimension Z, resulting in a 2D
BEV feature map, denoted as F bev ∈ RC×Y×X , tailored
for localization within the ground plane.

Figure 4. Proposed large kernel refiner module. (a) The figure
illustrates a single block of the module. We apply three consecu-
tive blocks, each with large kernel sizes of [7, 5, 3], which were
chosen based on empirical results. (b) The results demonstrating
the benefits of our proposed module. This module gradually re-
fines and collects the scattered multi-view features, as showcased
in the red box, leading to a more concise feature representation, as
depicted in the yellow box.

3.5. Large kernel refiner module

We propose a novel “large kernel refiner” module to han-
dle misalignments caused by imprecise calibration data and
to consolidate comprehensive body information, harnessed
from multiple perspective views, into a more concise clus-
ter of features within the BEV plane. The architecture of
the refiner module is depicted in Fig. 4. This module lever-
ages large kernel-size convolutions to amass clusters of fea-
tures, thereby mitigating undesired artifacts and enhancing
the quality of the BEV feature representation.

However, the use of large kernel sizes can significantly
increase the computational overhead. To minimize such
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Figure 5. Comparison between different datasets. First column: samples from the training split. Second column: samples from the
testing split. Top row (greyed): real view samples from WildTrack. Subsequent rows: synthetic view samples from MultiviewX and
GMVD. GMVD contains a total of seven scenes with one scene being the testing scene. Only three scenes are visualized in the figure.

concerns, we adopt a depthwise separable convolution [2],
greatly reducing the number of parameters required while
preserving the representation capacity. In addition, we in-
troduced a residual connection between the depthwise and
pointwise convolutions, which facilitates the direct propa-
gation of information and enables the model to learn effec-
tively while minimizing the risk of information loss. This
module serves as a key component in the context of 2D oc-
cupancy map prediction in a multi-view detection system.

4. Experiments
4.1. Experimental setup

WildTrack [1] is a real-world multi-camera dataset of
images captured with seven cameras at a resolution of
1920×1080 and comprising 400 frames annotated at ev-
ery two frames per second. The dataset covers a region of
12 m×36 m quantized into a 480×1440 grid using a reso-
lution of 2.5 cm2 with an average coverage of 3.74 cameras
for each person and 20 individuals per frame.

MultiviewX [7] is a synthetic dataset that closely fol-
lows the style of WildTrack, maintaining the same res-
olution and frame-count but using one less camera. It
accommodates 40 pedestrians per frame while having a
slightly lower coverage of 16 m×25 m, which is equivalent
to 640×1000 grids using the same grid cell size of 2.5 cm2.

GMVD [20] is a large-scale synthetic dataset encom-
passing a distinct array of scenes captured with varying
camera setups. In addition, the temporal and weather con-
ditions are also diverse, which makes the dataset more
challenging compared with a constrained environment like
WildTrack or MultiviewX. Apart from the size of the
ground plane and the number of cameras used, which vary
for each scene, other parameters follow those of the Multi-
viewX dataset.

For the WildTrack and MultiviewX datasets, the first 360
frames are used for training and the remaining ones for eval-

uation. This means that a single scene is used for both
training and evaluation, which may lead to overfitting. In
contrast, the training and evaluation splits for the GMVD
dataset present a different environment for each phase. For
a visual representation, refer to Fig. 5, which illustrates a
comparative view of the three datasets.

Evaluation metrics. Following prior methods, we use
four metrics to evaluate the ground plane occupancy map:
MODA (Multiple Object Detection Accuracy), MODP
(Multiple Object Detection Precision), precision, and recall.
MODA is computed by 1 − FP+FN

N , where N being the
number of ground-truth pedestrians, FP and FN being the
false positives and false negatives. MODP is calculated by∑

1−d[d<t]/t
TP , where d is the distance from a detection to

its ground-truth and t is a threshold set to 0.5 m to ascer-
tain true positives. Precision and recall can be computed
by TP

FP+TP and TP
N . MODA and recall mainly gauge cor-

rect localization accuracy while MODP assesses the local-
ization precision of each detection. Precision evaluates the
true positive rate relative to all predictions. We emphasize
MODA and recall as the key indicators to judge the perfor-
mance of a multi-view system since accurate identification
of total pedestrians count within the scene is more important
than precisely pinpointing their individual locations.

4.2. Implementation details

We employ a dilated ResNet-18 to extract multi-view
features, resulting in a feature map that is downscaled by
a factor of 8 compared to original image size. The channel
dimension is reduced to 256 within the foreground selector
module to reduce memory cost in the subsequent layers. A
voxel size of 10 cm×10 cm×20 cm is used in the X , Y , and
Z dimensions of the voxel volume. This translates to Z = 8
grids along a vertical height of 1.6 m, while also resulting
in a grid size that is 4 times downsampled compared to the
original ground plane resolution. The network is optimized
using an Adam optimizer and a cosine annealing scheduler.
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Method WildTrack MultiviewX

MODA MODP Prec. Recall MODA MODP Prec. Recall

MVDet [7] 88.2 75.7 94.7 93.6 83.9 79.6 96.8 86.7
GMVD∗ [20] 86.7 76.2 95.1 91.4 88.2 79.9 96.8 91.2
SHOT [19] 90.2 76.5 96.1 94.0 88.3 82.0 96.6 91.5
MVDeTr† [6] 91.5 82.1 97.4 94.0 93.7 91.3 99.5 94.2
MVAug† [3] 93.2 79.8 96.3 97.0 95.3 89.7 99.4 95.9
3DROM† [17] 93.5 75.9 97.2 96.2 95.0 84.9 99.0 96.1

Ours∗ 94.1 78.8 96.4 97.7 95.7 85.1 98.4 97.2

Table 1. Comparison against state-of-the-art methods. Same-domain testing on WildTrack and MultiviewX datasets. ∗ shows the
method that works with different camera setups while other methods are configured to work on a fixed camera setup as in training. † shows
the method that uses additional augmentations. Our method outperforms previous methods with larger MODA and recall scores, accurately
identifying the number of individuals involved in the scene.

Figure 6. Qualitative comparison between 3DROM [17], MVAug [3], and our method on the WildTrack dataset. The initial four
columns provide visual representations of example views and the corresponding extracted feature maps. The central column displays the
aggregated BEV feature, while the final column illustrates ground plane localizations. Yellow ovals draw attention to the shadow of the
person, while red circles emphasize instances of missed detections.

We utilized four Nvidia A100 GPUs for expedited experi-
mentation while our model can be trained on a GPU with
a memory capacity exceeding 15GB. Further specifics re-
garding the training hyperparameters are provided in Supp.
Material. To highlight the effectiveness of our proposed
model, we purposely abstained from utilizing augmentation
methods such as in [3, 6, 17], though we directly compared
with these methods in our experiments. The impact of the
augmentations to our model can be seen in Supp. Material.

4.3. Comparison with state-of-the-arts

Quantitative evaluation. In Tab. 1, we compare
our proposed model against the previous state-of-the-
art methods on the WildTrack and MultiviewX datasets.
Our method outperforms the published methods on both
datasets, demonstrating its superiority in the same domain
testing. Remarkably, despite not using any augmentation
techniques, our method surpasses heavily augmented meth-
ods such as 3DROM [17] and MVAug [3], achieving higher
MODA and recall scores on both datasets. On the other
hand, our method underperforms on the MODP score com-

pared to MVDeTr [6] since we did not recover the trunca-
tion error introduced by the downsampling of the ground
plane with an additional offset head. Furthermore, com-
pared to GMVD [20], which works with different camera
setups, our method exhibits a significant performance ad-
vantage with increased MODA scores of 7.4% and 7.5%
on WildTrack and MultiviewX, respectively. These results
underline the effectiveness and robustness of our proposed
approach, even when compared to methods specifically de-
signed for fixed camera setups.

Qualitative evaluation. In Fig. 6, we perform a vi-
sual comparison between our method and the state-of-the-
art 3DROM [17] and MVAug [3] models on the Wild-
Track dataset. Our approach stands out in capturing com-
prehensive and distinctive whole-body information, while
3DROM tends to extract ground plane features and shad-
ows and MVAug faces difficulties in distinguishing between
foreground and background, resulting in less precise feature
extraction. As mentioned in Sec. 3.5, the refinement mech-
anism within our method aids in eliminating excessive arti-
facts and creating a more concise cluster of features for each
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Figure 7. Qualitative comparison between GMVD [20] and our method on scene generalization. The first column illustrates samples
from the training set, while the second column visualizes samples from the testing set. Subsequent columns depict the ground truth and
predicted localization maps. Red circles denote missed detections (false negatives) while green circles denote false positives.

Method NVt NVi MODA MODP Prec Recall

MVDet [7] 6 6 17.0 65.8 60.5 48.8
MVAug [3] 6 6 26.3 58.0 71.9 50.8
MVDeTr [6] 6 6 50.2 69.1 74.0 77.3
SHOT [19] 6 6 53.6 72.0 75.2 79.8
GMVD [20] 6 6 66.1 72.2 82.0 84.7
3DROM [17] 6 6 67.5 65.6 94.5 71.7
Ours 6 6 76.7 74.9 85.2 92.8

GMVD [20] 6 7 70.7 73.8 89.1 80.6
Ours 6 7 82.6 76.2 89.6 93.4

Table 2. Scene generalization evaluation with the MultiviewX
dataset. Trained on a synthetic dataset (MultiviewX) and tested on
a real dataset (WildTrack). Camera 7 of the WildTrack dataset was
discarded in the first group. NVt and NVi represent the number
of views in training and inference, respectively.

individual, leading to more accurate ground plane localiza-
tion. In contrast, 3DROM struggles to detect pedestrians
near the boundaries of the ground plane, and MVAug faces
challenges in distinguishing closely positioned individuals.

4.4. Scene generalization performance

Our primary goal is to apply the trained model, which
has been developed using synthetic data, in real-world sce-
narios. Hence, we experiment a scene generalization bench-
mark which focuses on training with a synthetic dataset and
testing on a real dataset. This evaluation scenario is crucial
for determining the model’s robustness and ability to handle
the variations and complexities present in real environments
that differ from the synthetic training data.

MultiviewX Benchmark: In this evaluation scenario,
the model is trained on MultiviewX and evaluated on Wild-
Track. The results are presented in Tab. 2. For methods
designed primarily for a fixed camera setup, we remove one
extra view from WildTrack during evaluation while retain-
ing the total number of individuals present in the scene,
which is the same experimental setting as in [20]. When

assessed with six camera views, our method outperforms
the preceding methods, even surpassing GMVD [20] with
seven cameras. Upon evaluation with seven cameras, our
approach achieves a significant boost in MODA and recall
scores with 82.6 and 93.4, respectively. It is noteworthy
to mention that MVDet [7] and MVAug [3] suffer substan-
tial accuracy reduction during scene generalization due to
the limitations of a single-layer projection, which overly
relies on the memorization of the ground plane structure
from the training data, facing difficulties in new scenar-
ios. Conversely, methods such as SHOT [19] and 3DROM
[17], which incorporate multi-layer projections showcase
improved generalization performance. In the supplemen-
tary material, we also demonstrate that the generalization
performance can be further elevated with the adoption of
augmentation methods.

GMVD Benchmark: In Tab. 3, we perform scene gen-
eralization evaluation using a large-scale GMVD dataset,
which comprises a wide range of camera setups varying
from three to eight views per scene. Consequently, we
opt to only compare our results against the GMVD [20]
model in this context since we believe that manipulating
(adding or dropping) frames may not yield meaningful in-
sights for methods designed for fixed camera setups. When
trained on the GMVD train-set and subsequently evaluated
on the GMVD test-set, our method exhibits remarkable per-
formance, achieving an improvement of 5.1% in MODA
score compared to the GMVD baseline. Moreover, when
evaluated on the WildTrack test set, our model achieves a
MODA score of 85.6 (only 2.6% lower than the MVDet [7]
result from the same-domain testing in Tab. 1 and 3% higher
than our result trained on the MultiviewX dataset in Tab. 2).
While both GMVD and our method highlight the substantial
impact of leveraging a large and diverse synthetic dataset,
our method manages to surpass GMVD performance sig-
nificantly, even when trained on a comparatively smaller
dataset like MultiviewX.
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Method NVt

GMVD WildTrack

NVi MODA MODP Prec. Recall NVi MODA MODP Prec. Recall

GMVD [20] 3,5,6,7 6,8 68.2 76.3 91.5 75.5 7 80.1 75.6 90.9 89.1
Ours 3,5,6,7 6,8 73.3 76.5 93.0 79.2 7 85.6 78.0 91.8 94.0

Table 3. Scene generalization evaluation with the GMVD dataset. Trained on GMVD train-set and tested on GMVD test-set and real
dataset (WildTrack). NVt and NVi represent the number of views in training and inference, respectively.

Qualitative Comparison: We further validate the gen-
eralization performance by comparing the localization maps
shown in Fig. 7. The first two rows provide visualizations
of the results obtained on the WildTrack dataset, where
the model was trained using the MultiviewX and GMVD
datasets, respectively. The last row illustrates the outcomes
when the model was trained on the GMVD train-set and
evaluated on its test-set. Comparing the first and second
rows, both GMVD [20] and our method show improve-
ments when trained on a larger dataset, evident by the re-
duction in missed detections. In terms of false positives,
GMVD appears to predict a higher number of false positive
detections compared to our method; on the other hand, our
model demonstrates fewer false positives and offers more
accurate detection results with fewer missed detections that
closely align with the ground-truth.

4.5. Ablation Study

We provide an ablation study in Tab. 4 to systemati-
cally evaluate the individual contributions of each compo-
nent within our proposed model. The maximal fusion mod-
ule is an inseparable part of the overall system and there-
fore is not dissected in this analysis. The first row repre-
sents the baseline result, achieved by setting Z = 1 in the
3D feature-pulling mechanism (3DFP), replacing the fore-
ground selector module (FSM) with a 1 × 1 conv. layer
for dimensional reduction, and swapping the large kernel
refiner (LKR) module with a 3 × 3 conv. layer for spa-
tial aggregation. The baseline performance slightly lags be-
hind MVDet [7] since naive a 3 × 3 conv. layer for spa-
tial aggregation, instead of 3-layer dilated convolutions in
MVDet may lack the requisite learning capacity to capture
the complex spatial relationships present within the aggre-
gated BEV feature map.

Out of the three components, it is evident that 3DFP and
LKR both make substantial and comparable contributions
to performance enhancement, while FSM appears to have
a lesser impact. When combined, the deployment of 3DFP
and LKR achieves a MODA score of 93.2, outperforming
the results attained by using either component in isolation.
The best result is achieved by integrating FSM, which fos-
ters a synergy amplifying the efficacy of the 3D feature-
pulling mechanism. More ablation analyses are provided in
Supp. Material. In summation, the incorporation of the 3D
feature pulling mechanism, along with the introduction of

3D FP FSM LKR MODA MODP Prec Recall

86.7 75.3 95.9 90.5
✓ 92.3 78.7 96.9 95.3

✓ 89.7 76.1 95.5 94.1
✓ 92.2 77.5 96.8 95.4

✓ ✓ 93.2 78.1 96.9 96.2
✓ ✓ ✓ 94.1 78.8 96.4 97.7

Table 4. Ablation results on the WildTrack dataset. 3D FP
refers to the 3D feature pulling mechanism, where Z is set to 8.
FSM and LKR are the foreground selector module and large kernel
refiner module, respectively.

novel modules, each plays a substantial role in elevating the
overall performance of a multi-view detection system.

5. Conclusion
This research focuses on a strategic approach to effec-

tively transfer 2D features into 3D space by leveraging a
parameter-free 3D feature-pulling mechanism. A detailed
examination of each constituent element within the multi-
view detection system led to the development of three novel
modules, which have demonstrated their pivotal role in
significantly enhancing the overall performance. Notably,
the proposed model showcases adaptability across diverse
scenes with varying camera setups.

However, there are still avenues for improvements to re-
duce the domain gap between the source domain (synthetic
data) and the target domain (real data), stemming from fac-
tors like lighting conditions, varying appearances of pedes-
trians, and camera placements. Furthermore, it is important
to note that while our model was initially designed to excel
on small datasets, its performance on larger datasets, such
as GMVD, might not be as optimal. The model’s capacity to
effectively capture the heightened complexity present in the
larger datasets could be a potential area for enhancement.
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