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Abstract

Recent studies have achieved impressive results in face
generation and editing of facial expressions. However, ex-
isting approaches either generate a discrete number of fa-
cial expressions or have limited control over the emotion
of the output image. To overcome this limitation, we intro-
duced EmoStyle, a method to edit facial expressions based
on valence and arousal, two continuous emotional parame-
ters that can specify a broad range of emotions. EmoStyle
is designed to separate emotions from other facial charac-
teristics and to edit the face to display a desired emotion.
We employ the pre-trained generator from StyleGAN2, tak-
ing advantage of its rich latent space. We also proposed
an adapted inversion method to be able to apply our system
on real images in a one-shot manner. The qualitative and
quantitative evaluations show that our approach has the ca-
pability to synthesize a wide range of expressions to output
high-resolution images.1

1. Introduction

Facial expression editing is an active research field with
applications in areas such as entertainment, virtual assis-
tants, and psychology research. In the field of emotion psy-
chology, scientists need ultra-realism, diversity, and a con-
tinuous, scientifically-supported control space, and are ea-
gerly seeking a tool to improve upon WEIRD (Western, Ed-
ucated, Industrialized, Rich Democracies) real face stimuli,
e.g. NimStim [33] and Chicago [20]. Similarly, the visual
effects (VFX) community needs a precise emotion editing
tool that edits the face only, maintaining all other aspects
(e.g. hair, skin tone). The ability to synthesize realistic fa-
cial expressions has the potential to enhance human-agent
interaction and improve emotional intelligence. Currently,
the process of editing facial expressions with high control
typically involves creating 3D animated humans, which can

1https://bihamta.github.io/emostyle/

Figure 1. The input image is displayed on the left. The images
at the top, right, and bottom of the plot represent the outputs gen-
erated by EmoStyle using continuous emotion parameters in the
valence and arousal space.

be a resource and time-intensive task [5]. Therefore, it is
crucial to explore alternative and more efficient methods for
synthesizing realistic facial expressions.

The study of emotions has a long history in psychology.
In the 1960s, Paul Ekman [10] proposed a widely accepted
categorization of facial expressions. He identified six basic
emotions: happiness, sadness, anger, fear, surprise, and dis-
gust, which were later expanded to include two additional
emotions: contempt and embarrassment. More recently, re-
searchers have focused on the dimensional nature of emo-
tions, with valence (V), which reflects the negativity (-1)
or positivity (+1) of emotion, and arousal (A), which re-
flects the level of physiological activation associated with
the experience [30], from mild (-1) to intense (+1). These
dimensions have been used to describe a wide range of emo-
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tions (compared to only 8 categorical facial expressions)
and have been incorporated into many models of emotion
recognition and synthesis [16, 32]. As an example of the
advantages of the dimensional approach, it can distinguish
between cold anger and hot anger, and low arousal positive
(considered “ideal affect” in East Asian culture) and high
arousal positive (ideal affect in North America) [35]. Ac-
cording to a study conducted by Arias et al. [2], utilizing
Generative Adversarial Networks (GANs) to create slightly
more smiling faces can improve both human-human and
human-computer interactions.

Early work in 2D facial expression editing employed
Conditional Generative Adversarial Networks (GANs) to
modify facial images [9, 17, 26]. Such studies also used
valence and arousal as editing parameters, yet worked
mainly on low-resolution images and tended to produce
artifacts on the human faces. In recent years, the Style-
GAN/StyleGAN2 [13, 14] models have revolutionized the
field of image synthesis and are one of the most widely used
generators. In the area of facial expression, studies using
StyleGAN2 have primarily focused on creating slight varia-
tions in emotional expressions, such as increasing the level
of smiling or anger [1, 31]. Therefore, major limitations
remain in the ability to edit and synthesize more nuanced
and high-quality emotional expressions. Additionally, these
StyleGAN2 methods have primarily focused on image edit-
ing within the model’s existing domain [1, 11, 31], limiting
their applicability to unseen faces.

This paper presents an approach for one-shot, high-
quality editing of human facial expressions based on va-
lence and arousal, as opposed to categorical facial emotions.
Firstly, we contribute a method for disentangling emotion
expression from other facial attributes, by training a nonlin-
ear Emotion Extraction module using an alternating emo-
tion variation and emotion reconstruction method. A key
insight is that by training our model with a broad range of
valence and arousal values, we can increase the diversity
in the output facial expressions. Ultimately, we can create
facial expressions that are slightly more or less surprised,
disgusted, or tired, among others.

Secondly, we propose a combination of auxiliary loss
functions aimed at facilitating facial expression editing
while preserving other facial attributes. One of the key con-
tributions of our work is a novel background loss function,
which ensures that the model preserves skin color, back-
ground, and hairstyles in extreme emotional modifications.
This is achieved by applying a mask over the face, exclud-
ing the forehead, and enforcing the model to maintain con-
sistency in all other areas. By doing so, the model learns to
preserve skin color by maintaining consistency in the fore-
head region, thus enabling more realistic and accurate facial
expression synthesis.

Finally, we propose an extension to our facial expres-

sion editing method to enable one-shot editing on real im-
ages (out-of-StyleGAN2 domain images). To handle faces
not seen during initial training, we describe a fine-tuning
approach that builds upon previous facial inversion meth-
ods [28, 34]. To showcase the effectiveness of our ap-
proach on unseen images, we evaluate our method on faces
from CelebA [19], widely used as out-of-domain images for
StyleGAN2, which was trained on FFHQ [13] comprised of
photos from Flickr. The results presented in our study high-
light the efficacy and potential of our approach for facial
expression editing on real images.
Our approach is capable of producing high-quality images
with a resolution of 1024 x 1024 pixels, which is currently
the maximum resolution that can be achieved using Style-
GAN2. As a result, our proposed method for synthesiz-
ing facial expressions based on valence and arousal pro-
vides greater flexibility and control over emotional modi-
fications in facial images. This approach allows for more
nuanced and subtle modifications to facial expressions, en-
abling greater realism and accuracy in the synthesized im-
ages.

2. Related Work

In recent years, generative models have gained signifi-
cant attention for their ability to produce realistic images.
In addition to their remarkable generation capabilities, gen-
erative models can also be utilized for image editing. Here,
we review various techniques that aim to alter facial expres-
sions using generative models.

2.1. Facial expression synthesis

One of the first facial editing approaches used condi-
tional GANs [23], which condition image generation on
a label. ExprGAN [9] is based on conditional GAN ar-
chitecture and Adversarial Autoencoders [21] to synthesize
emotional expressions. Inspired by ExprGAN, Lindt et al.
in [18] proposes CAAE [38] for emotion-based expression
editing, incorporating identity preservation. As highlighted
in their study, they struggle with maintaining identity dur-
ing extreme emotions. The generated images also have a
low resolution of 96x96 pixels. GAN-imation proposed by
Pumarola et al. [26] employs a version of conditional GANs
and utilizes valence and arousal, in addition to categorical
emotion labels, to synthesize facial expressions on a face.
Another example is StarGAN [6], a conditional GAN that
has been modified in VA-StarGAN [17] to allow for face
editing based on valence and arousal intensities. However,
despite their potential, the generated images often contain
artifacts and the expected results may only be achievable
on low-resolution images. Differing from traditional ap-
proaches reliant on manual labels, d’Apolito et al. in GAN-
mut [7] presents a GAN-based framework. It constructs a
nuanced interpretable emotional conditional space via fun-
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damental categorical emotion labels. However, the gener-
ated images exhibit limitations, particularly in quality no-
tably around the eyebrows and mouth.

2.2. Semantic editing using StyleGAN2

More recently, high-quality generative models such as
StyleGAN [13] and StyleGAN2 [14] have been widely used
in face editing tasks owing to their expressive and informa-
tive latent space. The rich StyleGAN2 latent space provides
the ability to separate face attributes from other facial fea-
tures. Researchers have made significant progress in seman-
tic editing within this domain, which is comprehensively
surveyed by Melnik et al. [22].

Many studies have investigated moving along a direction
in the latent space to identify corresponding changes that re-
sult in specific facial attribute modifications (e.g. age, gen-
der, expression). One such example is StyleFlow proposed
by Abdal et al. [1], which utilizes continuous normalizing
flows to learn a semantic mapping between the Z and W
spaces. InterFaceGAN proposed by Shen et al. [31] uti-
lizes pre-trained classifiers to learn a hyperplane in the la-
tent space, which serves as a separation boundary to iden-
tify directions along which specific facial attributes increase
or decrease. GANSpace proposed by Härkönen et al. [11]
is an unsupervised method that employs principal compo-
nent analysis to identify directions for image editing. Once
these directions are identified, GANSpace relies on the user
to manually select the most meaningful directions based on
the target attribute by observing the generated outputs. All
of the editing methods mentioned above have a limitation
in that they provide limited control over the output image,
allowing users to only increase or decrease an attribute to a
certain extent.

To address this limitation in control, StyleCLIP proposed
by Patashnik et al. [25] enables the manipulation of fa-
cial features using only text prompts, utilizing a contrastive
language image pre-training (CLIP) [27] model to learn a
joint embedding. Latent-2-latent (L2L) proposed by Kho-
dadadeh et al. [15] trains a non-linear attribute model ca-
pable of controlling the input latent instead of solely mov-
ing along the latent space. Despite the increased ability to
control facial expression attributes, StyleCLIP and L2L are
prone to modifying unwanted attributes such as identity.

2.3. Editing real images in StyleGAN2

Despite the expressiveness of StyleGAN2, editing real
images within the StyleGAN2 latent space can be challeng-
ing. As a solution, various inversion methods have been
proposed, which have recently been surveyed in Xia et al.
work [36]. The Pivotal Tuning Inversion (PTI) method pro-
posed by Roich et al. [29] utilizes an initial latent code as a
pivot and then fine-tunes the generator to reconstruct the im-
age while preserving the remaining parts of the latent code.

MyStyle proposed by Nitzan et al. [24] builds upon PTI
and proposes the use of a convex hull to identify a cluster
for an identity in the latent code. By mapping an identity to
a convex hull, it enables image editing while preserving the
identity, which can be used for super-resolution and other
editing tasks. However, in order to identify the convex hull,
it is necessary to use approximately 100 images captured
under diverse conditions to apply changes without compro-
mising identity [24]. Collecting such a diverse dataset can
be impractical when attempting to edit the facial expression
of a single individual.

3. Method

Our method takes an image as input Iinput and two emo-
tion parameters (valence and arousal). As shown in Fig.
2, our pipeline consists of an EmoExtract module M , and
a pretrained generator model, StyleGan2, G. In phase 1,
we train EmoExtract and the upsampling module to learn
how to disentangle emotions from other facial attributes. In
phase 2, we freeze the EmoExtract and upsampling modules
and fine-tune G on the target real face.

3.1. Phase 1: Training EmoExtract

In the initial phase of our methodology, our goal is to
train the EmoExtract module to produce the necessary mod-
ifications to the input image to generate a face to attain the
target emotion. The process is depicted in Fig. 2.

We provide our 3-layered MLP module, EmoExtract,
with a latent code representing a face from the W space
of StyleGAN2, concatenated with an emotion latent code
representing valence and arousal. In order to train our
model, we use generated face images alongside their cor-
responding latent codes from the W space of StyleGAN2.
We feed the target valence and arousal (v, a) to an upsam-
ple MLP model to map these two numbers to a higher di-
mension. Then, we concatenate the emotion embedding
and the latent code w and feed it into our EmoExtract
M , M(Upsample(v, a), w) = d. EmoExtract modifies the
original latent code such that the final image is in accor-
dance with the input emotion parameters G(d + w) !
Ioutput. In each epoch of our training process, we train the
EmoExtract network in one of two different ways:

• Emotion Variation: We generate two random VA val-
ues and use these emotional variations as inputs. Thus,
we aim to generate faces depicting emotions that do
not frequently appear in our generated dataset. In
this part, we use background loss alongside our three
main loss functions (emotion loss, identity loss, and
pose loss) to assure the preservation of background,
hairstyle and skin color, described in Sec. 3.3.

• Emotion Reconstruction: Every fifth batch (chosen
through trial and error) we feed the input face to a
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Figure 2. Phase 1: Training EmoExtract. We train the EmoExtract and up-sampling modules (green) by alternating Emotion Variation
with random emotion parameters from the valence-arousal space (top), with Emotion Reconstruction of the input face (bottom). Five
auxiliary losses are used for this purpose, as indicated by the dashed lines. The Inversion module [28] is employed to extract the latent
code w of the input image Iinput. The EmoExtract module is trained to determine the necessary modifications d that should be applied to a
latent code w. Note that d should result in 0 for the Emotion Reconstruction segment. The final latent code is generated by adding d to the
original latent code w. Finally, the StyleGAN2 generator is used to create our desired image.

state-of-the-art valence and arousal estimation network
proposed by Toisoul et al. [32] and predict the emo-
tion of the face. Then, we use these emotion param-
eters of the input face to enhance reconstruction per-
formance and assist the network in producing realistic
outputs. We train EmoExtract to produce a zero vector
that indicates no adjustment is required between the
facial expression and the target emotion. During this
process, we incorporate reconstruction loss along with
other loss functions (emotion loss, identity loss, and
pose loss) to ensure that the output image accurately
represents the input image.

By applying such steps during the training process we en-
force the EmoExtract model to learn the correlation be-
tween the target emotion and the emotion coded within the
latent code.

3.2. Phase 2: Fine-tuning StyleGAN2

Next, we describe our method for allowing the editing
of a new person’s face who is out of the StyleGAN2 do-
main. In this second phase, we freeze the EmoExtract mod-
ule trained previously and fine-tune our StyleGAN2 compo-
nent. Our inputs during this phase are emotion parameters

and one real face. First, we determine the face’s latent code
utilizing an inversion framework to extract the latent code
in the StyleGAN2 W space, then perform a fine-tuning step
inspired from [29].

We incorporate the same loss functions from Phase 1 into
the optimization process and fine-tune the generator on a
single image. This fine-tuning allows us to accurately re-
construct the input image and grants us the ability to per-
form edits. In this phase, we fine-tune the StyleGAN2 gen-
erator to adjust it in a way that it can move our latent code
to a more editable space in the latent space of StyleGAN2.

3.3. Loss Functions

To ensure high-quality reconstruction, accurate facial
emotion synthesis, and preservation of identity, pose, and
background, we employ a weighted combination of five loss
functions:
Emotion Loss (Lemo) is employed to assess whether the
generated output images reflect the input emotion param-
eters. This is accomplished by computing an L2 loss be-
tween the valence-arousal values of the input image and
those of the predicted valence-arousal derived from the gen-
erated image. We use a pre-trained emotion estimation
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(a) (b) (c) (d)
Figure 3. a) Input image, b) Landmarks detected by the model
proposed by Bulat and Tzimiropoulos [3], c) Subset of landmarks
chosen for calculating pose loss, d) Estimated mask over face to
use for background loss.

model to predict valence and arousal [32].

Lemo = kemo (Iinput)� emo (Igen)k2 (1)

Identity Loss (Lid) is employed to preserve the identity of
the input image, we use a state-of-the-art face recognition
system (VGGFace2 [4]) and calculate the L1 loss between
the embeddings of the input and generated images.

Lid = kEmid (Iinput)� Emid (Igen)k1 (2)

Pose Loss (Lpose) is utilized to ensure that the generated im-
age preserves the pose and facial alignment of the input. To
achieve this, we apply an L2 loss on a subset of face land-
marks estimated by a pre-trained Facial Alignment Network
(FAN) [3]. The selection of this subset is based on the con-
sideration of landmarks that remain relatively stable despite
changes in facial emotions. The 14 selected landmarks are
shown in Fig. 3c.

Lpose = kPose (Iinput)� Pose (Igen)k2 (3)

Reconstruction Loss (Lrec) is utilized to enforce high-
quality image reconstruction. To achieve this, we adopt the
“mix” loss approach proposed by Zhao et al. [39] which in-
volves a weighted combination of L1 loss and MS-SSIM
loss.

Lrec =↵ (1�MS-SSIM (Iinput, Igen))

+ (1� ↵) kIinput � Igenk1
(4)

Notably, we employ the reconstruction loss on the whole
image on Emotion Reconstruction batches where we use
the original emotion parameters of the input image as the
target, indicating that the generated face is expected to re-
semble the input image.
Background Loss (Lbg): In the Emotion Variation batches
where the valence and arousal are random numbers, we alter
the reconstruction loss in Eq. 4 to enforce only the preser-
vation of the hair and background. To accomplish this, a
mask is estimated on the facial region using the facial land-
marks that are extracted by the Facial Alignment Network
(Fig. 3d). The remaining regions of the input and output
face are compared using the reconstruction loss, according
to Eq. 4, except that Iinput and Igen are masked.

LPIPS # FID # ID " VA std "
GANSpace [11] 0.47 30.31 0.53 0.5/0.2
InterFace [31] 0.36 11.83 0.87 0.4/0.1
StyleFlow [1] 0.36 13.03 0.83 0.5/0.1
GANmut [7] 0.26 8.25 0.81 0.5/0.25
L2L [15] 0.19 16.19 0.78 0.5/0.3

EmoStyle (Ours) 0.07 7.86 0.88 0.5/0.25

Table 1. EmoStyle outperforms other methods in FID, LPIPS, and
ID preservation while maintaining high valence and arousal stan-
dard deviation. VA std is indicating valence and arousal standard
deviation.

The overall auxiliary loss is calculated as a weighted
sum of the individual losses. The specific weights are de-
termined through trial and error, by comparing our metric
performance using different weight combinations.
(
LEmoVar = �1Lemo + �2Lpose + �3Lbg + �4Lid

LEmoRec = �1Lemo + �2Lpose + �3Lid + �5Lrec
(5)

LEmoVar represents the total loss when random valence and
arousal are used (Emotion Variation), while LEmoRec repre-
sents the total loss when emotion modification is not desired
(Emotion Reconstruction).

4. Experiments

In this section, we undertake a thorough evaluation of
our system. Our evaluation is conducted both quantitatively
and qualitatively to ensure a comprehensive analysis of the
system. Additionally, we conduct an ablation study to eval-
uate the effectiveness of each component in our pipeline.

4.1. Experimental Settings

We utilized 70,000 generated images along with their la-
tent codes for training, and a separate set of 1,000 images
with their corresponding latent codes for testing. These im-
ages were generated using StyleGAN2, which was origi-
nally trained on the FFHQ dataset [13]. Following the rec-
ommendation in the original StyleGAN paper, we truncated
the vectors by a factor of 0.7. For qualitative real-image ex-
periments, we selected a subset of the CelebA dataset [19]
that contains high-resolution images of human faces. The
proposed pipeline was trained on a system equipped with a
GeForce RTX 2080 GPU, using the PyTorch deep learning
library. We utilized StyleGAN2 pre-trained at 1024 x 1024
resolution for all our experiments. To compute losses and
train our network, in every 5 batches, we employed Emo-
tion Reconstruction which uses the estimated valence and
arousal values extracted by our emotion estimation model,
and Emotion Variation in the remaining batches. The loss
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Figure 4. Sample outputs of EmoStyle, with each output corresponding to a different combination of input valence and arousal. The results
align with our expectations, as they effectively convey the positivity or negativity and the level of arousal of the faces.

weights were set empirically to �1 = 0.3, �2 = 0.001,
�3 = 0.2, �4 = 1.5, and �5 = 0.2.

4.2. Quantitative Evaluations

We conducted a thorough evaluation of our framework’s
performance, comparing it with current semantic editing
methods in terms of editing quality and identity preserva-
tion capabilities. To accomplish this, we employed two
distinct types of metrics: the Fréchet distance (FID) [12],
Learned Perceptual Image Patch Similarity (LPIPS) [37]
and identity preservation. Facial expression edits were per-
formed on 1000 images with different valence and arousal
values, and the results were compared with GANmut [7]
and those of existing StyleGAN2 methods, including L2L
[15], InterFaceGAN [31], StyleFlow [1], GANSpace [11].
VA values chosen for this experiment can be found in Sec-
tion 7.4 of the Supplementary Material.
FID and LPIPS Scores: These were utilized to measure
the diversity and quality of the generated images. Specifi-
cally, we reported FID and LPIPS scores for 1000 images
generated using StyleGAN2 and our edited images. The re-
sults are presented in Table 1.
Identity Preservation Score: To evaluate our framework’s
identity preservation capability, we employed an external
face recognition model ArcFace [8] and calculated the co-
sine similarity between the original and edited images. We
then compared our results with those of existing methods,
and the findings are presented in Table 1.
Valence and Arousal Standard Deviation: We compared
the diversity of facial expressions in our method with prior
work by calculating the standard deviation of valence and
arousal. We used a pretrained emotion estimation module
[32] to estimate these values for the generated images and
presented the results in Table 1. Table 1 demonstrates that

Figure 5. The result of our real image EmoStyle fine-tuning, com-
pared to standard image inversion without fine-tuning using two
different methods, e4e [34] and pSp [28]. As shown, both alterna-
tive methods fail to preserve the identity of the person.

EmoStyle outperforms prior work in terms of FID, LPIPS,
and ID preservation. While L2L demonstrates a slightly
higher VA std, it is crucial to understand that a wider range
in these values alone may not necessarily signify a more
diverse range of emotions; artifacts may also contribute to
unintentional modifications of facial expressions (Fig. 6b).
We additionally computed the root mean squared error
(RMSE) between the target VA values and the correspond-
ing predictions derived from the generated images. No-
tably, this metric was calculated exclusively for our model
and L2L, as other models did not explicitly incorporate VA
value calculations. The RMSE for L2L stands at 0.187,
while for EmoStyle, it is 0.181.

4.3. Qualitative Evaluations

In terms of qualitative results, we illustrate our sample
outputs in Fig. 4, which displays face images generated
using different valence and arousal values. We also eval-
uated the effectiveness of our emotion editing method by
comparing it to three existing face editing methods (GAN-
imation, StyleCLIP and GANmut) in Fig. 6a. We focused
on four basic emotion categories for visualizing the results.
Initially, we tested various text prompts as inputs to Style-
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Figure 6. a) StyleCLIP [25], GAN-imation [26], and GANmut [7] are 3 approaches that are closely related to EmoStyle, as they can
handle real images with varying degrees of emotion intensity. The images at the top represent the input images, while the subsequent
rows of images illustrate different intensities of emotions generated using various methods. As shown in this image, all three struggled
to effectively synthesize the desired emotions in a given image and were unable to maintain the identity of the original image. Note that
GAN-imation and GANmut generated images at 128 x 128 resolution and others at 1024 x 1024. b) Outputs from GANSpace, L2L, and
our system. Both L2L and GANspace models fail to preserve identity in some emotional expressions.

CLIP to generate facial expressions but found that Style-
CLIP could only produce a limited set of discrete expres-
sions. To demonstrate the diversity of facial expressions
generated by GAN-imation, we used valence and arousal
with varying intensities to map to the basic emotions of our
choice. We repeated the same procedure with our system
to produce the same basic emotions with different inten-
sities. For GANmut, we located the emotion categories
within GANmut’s personalized latent space. Since GAN-
imation can perform on cropped, low-resolution (128 x 128)
images, we cropped the face bounding box in order to com-
pare our results with those obtained from StyleCLIP, GAN-
mut, and EmoStyle. Results are shown in Fig. 6a. In order
to evaluate the plausibility of our results and compare them
to StyleGAN2 methods, we assessed our method against
GANSpace and L2L. We selected these two approaches be-
cause they enable us to control the emotion of the generated
image. StyleFlow and InterFaceGAN do not offer direct
control over the output expression, instead relying on rela-
tive adding or subtracting in a specific direction, therefore
we omitted them for comparison. GANSpace computed
control vectors for diverse facial attributes, 10 of which are
discrete emotion-related states, such as a big smile and fear-

ful eyes. To compare our method with GANSpace, we used
the GANSpace model to synthesize emotional faces based
on their annotated attributes. We implemented L2L based
on their published paper [15] and used the same emotion
estimation instead of their attribute module. We chose the
closest valence and arousal values to the labels predefined
in GANSpace. We then used EmoStyle and L2L models to
synthesize these emotions on the same faces. We notice that
both GANSpace and L2L lose identity preservation when
changing emotions. The results are presented in Fig. 6b.

4.4. Ablation Study

To demonstrate the effectiveness of each component in
our system, we conducted an ablation study by comparing
the results obtained from 5 different settings. To underscore
the importance of each component, we perform a qualitative
and quantitative analysis. We visually compare their impact
in Figure 7, and assess their performance through FID and
LPIPS metrics, presented in Table 2.
Background Loss: The introduction of a background loss
enabled us to exercise control over the image’s background
in the batches where target emotions were randomly se-
lected. Without the masked background loss, we observed
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significant variations in the background, skin colour, and
hairstyle of the generated faces, as illustrated in Fig. 7.
Identity Loss: To maintain the identity of the face while
changing emotions, we integrated an identity loss compo-
nent into our pipeline. As demonstrated in Fig. 7, our sys-
tem occasionally failed to preserve the identity of the face
when the identity loss was not incorporated into the system.
Emotion Reconstruction: As described in Sec. 3, every
fifth batch, we provide the estimated valence and arousal of
the input image as input to our model, with the expectation
that it would learn to reconstruct the image without alter-
ing the emotions. In this experiment, we omitted this step
and instead input random valence and arousal at every step.
However, as shown in Fig. 7, our experiments demonstrated
a noticeable decline in reconstruction quality and disentan-
glement when the Emotions Reconstruction was not consid-
ered in the training process.
Emotion Variation:: In Fig. 7, we also provide visual evi-
dence of the significance of utilizing the Emotion Variation
method in our pipeline. When we excluded this step, our
model did not learn how to edit the person’s emotional ex-
pression.
Personalization : We show the effect of fine-tuning Style-
GAN2 using our losses. First, we retrieve the corresponding
latent code in the StyleGAN2 latent space using one of two
different inversion methods, namely, e4e [34] and pSp [28].
While our method described in Sec. 3 employs pSp as the
inversion method and maps the latent code to W , when test-
ing e4e we optimize the weights of a stack of MLP networks
to edit the face in W+. Fig. 5 shows the importance of
fine-tuning StyleGAN2 as it enables us to invert faces to the
StyleGAN2 domain and edit it while preserving the identity.

LPIPS # FID #
EmoStyle 7.86 0.07
w/o Identity Loss 9.10 0.09
w/o Pose Loss 10.46 0.1
w/o Background Loss 10.9 0.14
w/o Emotion Reconstruction 12.3 0.12

Table 2. Ablation Study comparing component effectiveness
through FID and LPIPS metrics.

5. Discussion

During the training and evaluation of our system, we
encountered noteworthy observations. Our architecture in-
corporates state-of-the-art emotion estimation techniques to
estimate valence and arousal. In our initial development,
we discovered that the valence and arousal estimation mod-
ule proposed by Toisoul [32] had high performance, but it
tended to also focus on non-facial attributes, such as back-
ground, hair type, and age, when estimating emotion. For
example, when using it to train EmoStyle and attempting
to generate a crying face (low valence, low arousal), the re-

sulting face would tend to resemble an infant, or when in
a state of bliss (high valence and low arousal), the back-
ground would change to a green representing nature. It was
to address these issues that we implemented background
loss and ID loss. Another notable finding of our study is that
the StyleGAN2-generated images lack emotional diversity.
The standard deviation of valence and arousal for 70,000
images generated by StyleGAN2 was 0.42 and 0.15, respec-
tively. In contrast, our proposed method demonstrated the
ability to generate images with greater diversity, achieving
standard deviations of 0.5 and 0.25 for valence and arousal,
respectively. This pattern is also observable in a heatmap
illustrating the diversity of valence and arousal across gen-
erated images (see Sec. 7.1 of Supplementary Material.) In
certain images, distinguishing between emotional expres-
sions where the valence and arousal closely align can be
challenging. While existing benchmarks primarily center
on the VA dimensions, a third dimension, dominance, re-
mains unexplored. A promising direction for future re-
search lies in the incorporation of this additional axis. In
future work, we will explore (Action Units) AUs as an extra
control axis: Semantic emotion editing could enable global
control, while AUs offer local control.

Figure 7. Ablation study: The absence of Emotion Variation re-
sults in failure to edit the facial expression, while lack of other
modules results in the loss of identity or facial features (e.g.
beard).

6. Conclusion

This paper presents a semantic editing system that allows
for precise control over the output face’s emotional expres-
sion. We train an emotion extraction module to identify the
latent code that corresponds to the desired emotion parame-
ters and generate a new face image that exhibits the targeted
emotion with minimal changes. Our architecture is capa-
ble of performing one-shot emotion editing of a given face,
even if the face is not present in the latent space of the Style-
GAN2 generator. To enable this functionality, we fine-tune
the generator with our emotion extraction module. We also
demonstrate the effectiveness of our system through various
qualitative and quantitative evaluations. Our experimental
results demonstrate that our approach is capable of manipu-
lating facial expressions, and preserving identity while gen-
erating high-quality images.
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