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Abstract

Despite recent progress in static image segmentation,
video segmentation is still challenging due to the need for
an accurate, fast, and temporally consistent model. Con-
ducting per-frame static image segmentation on a video
is not acceptable since it is computationally prohibitive
and prone to temporal inconsistency. In this paper, we
present bidirectional occlusion-guided feature propagation
(BOFP) method with the goal of improving temporal con-
sistency of segmentation results without sacrificing segmen-
tation accuracy, while at the same time keeping the opera-
tions at a low computation cost. It leverages temporal co-
herence in the video by feature propagation from keyframes
to other frames along the motion paths in both forward and
backward directions. We propose an occlusion-based at-
tention network to estimate the distorted areas based on
bidirectional optical flows, and utilize them as cues for
correcting and fusing the propagated features. Extensive
experiments on benchmark datasets demonstrate that the
proposed BOFP method achieves superior performance in
terms of temporal consistency while maintaining compara-
ble level of segmentation accuracy at a low computation
cost, striking a great balance among the three performance
metrics essential to evaluate video segmentation solutions.

1. Introduction
Semantic segmentation is a fundamental problem in

visual recognition systems. Regardless of tremendous
progress for static image segmentation [3, 6, 8, 56, 63],
video semantic segmentation (VSS) remains as a challeng-
ing problem mainly because of two reasons. First of all,
processing a sheer amount of data in real time becomes
non-trivial for some practical applications due to resource
constraints. Secondly and more importantly, the segmenta-
tion predictions need to be temporally consistent in order to
avoid the so-called “flickering” problem [31, 41].

To consider the temporal continuity in a video, an in-
tuitive idea is to reuse the high-level features, extracted at
sparse keyframes, by propagating them to non-keyframes
for segmentation purpose [68], since high-level features
change more slowly compared to shallower features ex-
tracted from video frames [49]. The feature propagation
relies on a flow estimation which is much faster compared
to deep feature extraction, and thus reduces the overall com-
putational cost. However, the flow-based propagation can
affect segmentation accuracy and create deteriorated pre-
dictions due to the imperfect optical flows, inevitable oc-
clusions, or discontinuity across object boundaries.

To compensate for the aforementioned issues, it is
adopted in [28,69] to further update the features propagated
from the sparse keyframes by features computed at the cur-
rent frame. While approaches based on feature correction
appear effective, their performance is bounded by the up-
date branch. In particular, these methods may not be able to
rectify all the distorted predictions using a light-weight net-
work due to its weak feature extraction architecture. Note
that utilizing a strong deep network as the update network
contradicts the goal of reaching low computational cost. In
addition, identifying the deteriorated regions is challeng-
ing since they have been accumulated through propagation
over multiple frames. Hence the bottleneck in designing
networks to achieve an accurate and temporally consistent
VSS with low computation cost is the correction or update
of high-level features propagated from keyframes.

In this paper, we propose a bidirectional occlusion-
guided feature propagation (BOFP) framework for video se-
mantic segmentation. It leverages the high-quality features
extracted at the keyframes using a deep convolutional net-
work, and propagates them toward the intermediate frames
in bidirectional ways according to the flow fields. Un-
like [67] that aggregates features of nearby frames with a
similarity-based score for object detection, BOFP corrects
the deteriorated features following the guidance from the
learnable occlusion-based attention maps. The proposed at-
tention network outputs maps that highlight the potentially
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Figure 1. Illustration of the complementary relationship between the features propagated from the keyframes, Ik and Ik+D , toward the
intermediate non-keyframes, Ii−1, Ii, Ii+1, in forward and backward directions, respectively. It shows how distortions due to occlusion-
disocclusion (highlighted with white boxes) can be mitigated through the proposed BOFP method.

occluded regions by the use of bidirectional optical flows
embodying forward-backward movement information, in
contrast to previous works [36, 39] that estimate occluded
regions mathematically based on forward-backward consis-
tency. The attention maps are then adopted as cues to com-
pensate for the distortions from the features warped in the
reverse direction.

Our hypothesis is that the high-level features propagated
with bidirectional flows should be complementary to each
other such that the ambiguous regions caused by inaccu-
rate optical flows can be compensated by the features prop-
agated from the opposite direction. As what could be ob-
served in Fig. 1, the warped features from two keyframes
are complementary, and the proposed BOFP method is ca-
pable of merging them effectively. In addition, feature cor-
rections at non-keyframes are localized, that is, the level of
corrections is determined by the severity of distortion cal-
culated from the bidirectional flow.

The contribution of this work is three-fold: 1) We de-
velop a novel occlusion-based attention estimation network
and the corresponding occlusion-guided feature correction
module such that feature correction is adapted to degree
of distortion induced during feature propagation. 2) We
apply the bidirectional feature propagation framework to
the domain of video segmentation that takes full advantage
of high-quality representations extracted at the keyframes
when segmenting non-keyframes. 3) The proposed BOFP
method achieves substantial improvements in the temporal
consistency of the predictions while preserving the same
level of segmentation accuracy at a low computation cost
as compared to the state-of-the-art works.

2. Related Work

The proposed BOFP method is closely related to image
semantic segmentation, bidirectional optical flow, and oc-
clusion estimation, in addition to VSS. In the following, we
discuss related works from these four areas.

Image Semantic Segmentation. As a seminal work,
the fully convolutional network (FCN) [38] replaces fully-
connected layers in a classification network [50] with con-
volutional layers to achieve dense predictions. Follow-up
models [3, 35] extend FCN with explicit encoder-decoder
architectures to obtain high-resolution outputs. Methods
of [62, 63] utilize the dilated convolution to enlarge the re-
ceptive fields with a minimal computational cost. Different
from these works, the spatial pyramid pooling module [18]
presented in PSPNet [65] aggregates multi-scale contextual
information obtained with different filters and pooling op-
erations. DeepLabv3+ [8] combines the advantages from
both encoder-decoder structure and atrous spatial pyramid
pooling [6, 7]. The recent high performance network, HR-
Net [56], fuses various resolution representations in parallel
to enhance the final prediction.

Video Semantic Segmentation. A number of works
leverage cross-frame relations by applying the same im-
age segmentation network to each video frame and aggre-
gating the features over time. We refer to this group of
VSS approaches as “non keyframe-based” VSS. For ex-
ample, NetWarp [16] combines the intermediate features
warped from the previous time step with the ones extracted
from the current frame. STFCN [15] and GRFP [44] in-
corporate a spatial-temporal LSTM and a gated recurrent
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unit, respectively, to temporally aggregate semantic labels.
Consistency loss is incorporated in [37, 46, 64] as the ex-
tra constraint during training. TDNet [21] and its vari-
ants [33, 47, 55, 60] combine features extracted from shal-
lower sub-networks by an attention-based propagation mod-
ule. Recently, transformer-based methods, including STT
[33] and CFFM [51], have improved segmentation accuracy
with sacrificing the computation cost. Although these meth-
ods boost the segmentation accuracy, they suffer from high
computation burden as all features are recalculated at each
frame.

Another group of works aiming at efficient VSS take
advantage of temporal continuity to reuse the deep fea-
tures extracted at only sparse keyframes. We refer to this
kind of methods as “keyframe-based” VSS. For example,
Clockwork Net [49] directly reuses the features of preced-
ing keyframe and updates them at the current frame ac-
cording to their semantic stability. The features are prop-
agated in [34] using spatial variant convolution. DFF [68]
adopts optical flow to propagate high-level features to non-
keyframes. Further, Accel [28] updates the propagated
features with shallow features obtained from the current
frame. DAVSS [69] proposes to correct the propagated fea-
tures only on the distorted regions which is estimated by a
light-weight network. Recently, GSVNet [32] introduces a
guided spatially-varying convolution to fuse the segmenta-
tion outputs from nearby time steps. Although these meth-
ods decrease the overall computational cost compared to the
non keyframe-based approaches, there is a drop in the seg-
mentation accuracy due to potential errors in optical flows,
large motions, and occlusions-disocclusion.

The proposed BOFP method is fundamentally a
keyframe-based approach. However, unlike the works men-
tioned above, BOFP operates in a bidirectional framework
and rectifies the features with the help of attention maps
taking into consideration of occlusions-disocclusion in both
forward and backward directions to largely mitigate ambi-
guities and uncertainties existed in the occluded areas.

Bidirectional Optical Flow. The bidirectional optical
flow technique was initially proposed in [2]. It has been
used for video frame interpolation [1, 4, 17, 19, 29, 43], mo-
tion detection [48], robust optical flow estimation [24, 25,
36, 39, 57], and object detection [67]. Recently, GRFP
[27, 44] has incorporated it to a video semantic segmenta-
tion model which operates in a non keyframe-based manner.
Unlike the methods mentioned above, we employ bidirec-
tional flows in the keyframe-based framework which per-
forms bidirectional propagation in a feature space and ag-
gregates features with the guidance of the occlusion maps
obtained from a learnable network.

Occlusion Estimation. Occlusion estimation plays a
critical role in many vision tasks, including image in-
stance/panoptic segmentation [10,58], video frame interpo-

lation [17, 43], object tracking [22, 61, 66], and optical flow
estimation [24, 25, 36, 39, 57]. To the best of our knowl-
edge, BOFP is the first to utilize occlusion estimation for
video semantic segmentation such that the ambiguities and
uncertainties in the propagated features caused by the object
motions can be rectified by the guidance of occlusion-based
attention maps while other high-quality propagated features
are preserved.

3. Problem Statement
Given a video composed of T frames {Ii}, i =

1, 2, . . . T , the goal is to design a model which outputs the
corresponding segmentation of the video frames {Si}, i =
1, 2, . . . T . To meet requirements of real-world applications,
the segmentation model needs to maintain a reasonable bal-
ance among latency, accuracy, and temporal consistency.

In spite of the accuracy achieved by recent single-frame
segmentation networks, these approaches are either too
slow or could not produce smooth segmentation results over
time. Other works exploiting temporal continuity of video
through warping high-level features generate deteriorated
segmentation due to inaccurate optical flows. Instead, we
aim to develop a model that benefits from the temporal in-
formation in a video while being able to compensate for the
inherent spatial misalignment between frames.

4. Methodology
We propose the BOFP framework as occlu-

sion/disocclusion is the main source of distortion in
the flow-based spatial warping. This framework contains
three major components, as shown in Fig. 2: 1) bidirec-
tional feature propagation leveraging the high-level features
of the keyframes for segmenting the non-keyframes, 2)
occlusion-based attention estimation identifying ambigu-
ities occurred during feature propagation via flow fields,
and 3) occlusion-guided feature correction.

4.1. Bidirectional Feature Propagation

Assuming there is a distance D between the consecu-
tive keyframes, Ik and Ik+D, a deep image segmentation
network, SegNetdeep, is executed only on the keyframes.
The extracted keyframe feature, hk = SegNetdeep(Ik),
is forward-propagated to subsequent frames in a frame-
by-frame fashion using the optical flow, F f

i,i−1 =
FlowNet(Ii−1, Ii) where FlowNet represents the flow esti-
mation network. Meanwhile, the feature obtained from the
incoming keyframe, hk+D = SegNetdeep(Ik+D), is warped
backward to previous frames in a frame-by-frame fashion
along the optical flow, F b

i,i+1 = FlowNet(Ii+1, Ii). The
feature warping in forward and backward directions can be
represented, respectively, as:

hf
i = W(hf

i−1, F
f
i,i−1), hb

i = W(hb
i+1, F

b
i,i+1), (1)
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Figure 2. An overview of the proposed BOFP framework that comprises of a bidirectional feature propagation component (Sec. 4.1),
occlusion-based attention estimation component (Sec. 4.2), and an occlusion-guided feature correction component (Sec. 4.3). It leverages
the high-quality deep features extracted from two keyframes (Ik and Ik+D) using a static deep segmentation network (SegNetdeep) and
propagates them toward the non-keyframe (Ii) using optical flows. The potential ambiguities in the propagated features are rectified with
the help of attention maps estimated by an occlusion-based attention network (OANet). The ambiguities are further corrected by a shallow
segmentation network (SegNetshallow) executed on the current frame to save computation cost.

where W denotes the warping operation which is the bilin-
ear interpolation as in [69].

4.2. Occlusion-based Attention Estimation

Inspired by the forward-backward consistency assump-
tion [53], we design an occlusion-based attention network.
It is built upon the assumption that the forward flow F f

negates the backward flow F b on the pixels where there is
no error in the flow field. This observation does not hold
true for pixels which become occluded/dis-occluded.

The binary occlusion mask can be calculated using the
well-known occlusion reasoning approach [24, 39]. How-
ever, it has two hyper-parameters which are difficult to
tune for each individual video. One of our major con-
tributions is to design an occlusion-based attention esti-
mation network, dubbed OANet, that takes four optical
flows, [F f

i,i−1, F
b
i−1,i, F

f
i+1,i, F

b
i,i+1], among three consec-

utive frames (Ii−1, Ii, Ii+1) as input and estimates the
occlusion-based attention maps. See Fig. 3. The atten-
tion maps, as compared to the binary occlusion masks, are
the key enabler to a more effective feature correction ap-
proach that attends to the occluded/dis-occluded areas more

than the relatively static regions such that the bidirection-
ally propagated features can be rectified and fused more ef-
ficiently and effectively.

Denote the binary occlusion masks between each pair
of consecutive frames (Ii−1, Ii, Ii+1) as [Of

i,i−1, O
b
i−1,i]

and [Of
i+1,i, O

b
i,i+1], respectively, then the bidirectionally

propagated features can be aggregated as follows:

hi1 = (1−Ob
i−1,i)× hf

i +Ob
i−1,i × hb

i , (2)

hi2 = (1−Of
i+1,i)× hb

i +Of
i+1,i × hf

i , (3)

hi =
1

2
(hi1 + hi2) = Af

i × hf
i +Ab

i × hb
i , (4)

where
Af

i =
1

2
(1−Ob

i−1,i +Of
i+1,i),

Ab
i =

1

2
(1 +Ob

i−1,i −Of
i+1,i),

(5)

can be viewed as the attention maps that are learned by
the proposed occlusion-based attention estimation network
automatically. To be specific, the complementary optical
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Figure 3. Occlusion-based attention estimation network. The Convolution blocks in the encoder and Deconvolution blocks in decoder are
interlaced with BatchNorm and ReLU.

flows predict attention maps in forward direction, Af
i , and

in backward direction, Ab
i , that highlight the distorted areas

in the bidirectional propagation directions.
Note that since calculating Ob

i−1,i and Of
i+1,i requires

knowing [F f
i−1,i, F

b
i,i−1] and [F f

i,i+1, F
b
i+1,i], respectively,

the OANet takes all the four bidirectional flows as input to
produce Af

i and Ab
i .

4.3. Occlusion-Guided Feature Correction

The attention maps, Af and Ab, which are the attention
maps associated with the warped features in the forward
and backward directions, respectively, yield higher values
for areas with intact features while smaller ones for the oc-
cluded/disoccluded areas. Therefore, the attention maps can
serve as the weights indicating the “quality” of the features
propagated from the keyframes. Then the corrected features
at the current frame Ii can be obtained by,

hi = hf
i ×Af

i + hb
i ×Ab

i + hc
i × (1−Af

i −Ab
i ) (6)

where × represents the spatially element-wise multiplica-
tion, hc

i is the extracted feature from the current frame using
the shallow image segmentation network SegNetshallow, and
1− Af

i − Ab
i highlights pixels where the attention network

is not certain, which usually happens on the object bound-
aries. For these ambiguous regions, the proposed BOFP
framework gives more weight to features extracted from the
current frame. Later, the argmax operation is applied on
the rectified features to output the final segmentation result
Si = argmax(hi).

4.4. Training and Inference Strategy

Training. The proposed framework is trained in
two phases. In phase one, the bidirectional propaga-
tion only comprises of SegNetdeep and FlowNet. It fine-
tunes FlowNet while the weights of SegNetdeep are kept
fixed. In parallel, the shallow static segmentation network
SegNetshallow is trained on the particular target dataset (e.g.
Cityscapes) from scratch. In phase two, OANet in the full

framework is trained from scratch while the weights of
other networks are kept frozen.

During training, a batch of three frames [Ii−p, Ii, Ii+q]
are utilized, where only the image Ii has ground truth on
semantic annotation. The indices of the images in the batch
are generated based on the relation as q = D− p+1 where
1 ≤ p ≤ D. It enables the framework to propagate the
features with various propagation distances while the dis-
tance between the keyframes is kept fixed as D. Follow-
ing [28, 68, 69], keyframes are selected at regular intervals,
starting with the first frame in the video.

Inference. The inference of the proposed BOFP frame-
work is demonstrated in Algorithm 1. Given a video of
frames {Ii} and the specified keyframe interval D, the pro-
posed method bidirectionally rectifies the features of the in-
termediate frames with the help of learnt attention maps.

Algorithm 1 Inference of the proposed BOFP framework
for video semantic segmentation
Input: video frames {Ii}, D
Output: segmentation results {Si}

1: k = 0
2: h0 = SegNetdeep(I0)
3: for i = 0 to T do
4: if isKeyframe(i) then
5: hf

i = hi

6: k = i
7: hk+D = SegNetdeep(Ik+D)

8: hb
k+D = hk+D

9: else
10: hf

i = W(hf
i−1, F

f
i,i−1)

11: hb
i = W(hb

i+1, F
b
i,i+1)

12: hc
i = SegNetshallow(Ii)

13: hi = hf
i ×Af

i +hb
i ×Ab

i +hc
i × (1−Af

i −Ab
i )

14: end if
15: Si = argmax(hi)
16: end for
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5. Experiments and Results

5.1. Experimental Setup

Datasets. Cityscapes [11] consists of 5000 snippets
recorded at 17 FPS of street scenes in 50 different cities.
The dataset is divided into 2975/500/1525 snippets cor-
responding to training/validation/test sets. Each frame is
in resolution of 1024×2048, and the 20th frame of each
snippet is carefully annotated with 19 semantic labels.
CamVid [5] contains 4 video clips captured at 30 FPS with
resolution of 720×960. The 11-class high-quality dense
pixel annotation is provided for each 30th frame. Follow-
ing [69], the trainval and test sets have 468 and 233 samples,
respectively. VSPW [40], the current largest VSS bench-
mark, contains 2806 training clips, 343 validation clips, and
387 test clips, respectively, of which the pixel-level annota-
tions are provided at 15 FPS. During experiments, we resize
all images in VSPW to size of 480×853.

Evaluation Metrics. The standard mean Intersection
over Union (mIoU) [14] is calculated as the metric for seg-
mentation accuracy. More importantly, we utilize the mean
temporal consistency (mTC) metric [54] as another essen-
tial metric to measure the smoothness and continuation of
segmentation predictions over time. The metric frames per
second (FPS) is reported to compare the latency of different
models. We also report the amount of giga floating point
operations per second (GFLOPS) [20, 42] which is a more
intrinsic description of the computation cost of a model.
Following [40], we calculate the mean video concictency
(mVC) for the experiments on the VSPW dataset.

Implementation Details. We use DeepLabv3+ [8] or
HRNetV2 [56] as the segmentation model for keyframes,
i.e. SegNetdeep, due to their superior performance in terms
of accuracy and efficiency in segmenting static images.
They are pretrained on the ImageNet [12] dataset and then
fine-tuned on the target segmentation dataset. The segmen-
tation model for non-keyframes, i.e. SegNetshallow, has a
U-Net shape structure comprising of a few convolutional
layers, interlaced with BatchNorm and Leaky-ReLU layers
in the encoder and a few deconvolutional layers interlaced
with Leaky-ReLU in the decoder.

We adopt the modified FlowNet2-S [26] which has less
complexity compared to the original one. FlowNet is pre-
trained on the synthetic Flying Chairs dataset [13] and
then fine-tuned on particular dataset during the bidirectional
propagation learning. We use Adam optimizer [30] with
β1 = 0.9 and β2 = 0.99. The optimization is performed
for 100 epochs with a learning rate of 10−4. We set the
keyframe interval as 5. Note that we use a fixed keyframe
interval to follow the same protocol as in previous works
[28, 68, 69]. In Sec. 5, we study the effect of different D.

5.2. Comparison with State-of-the-Arts

We compare our proposed method with other state-of-
the-art approaches in Tab. 1, where none of the compari-
son methods uses bi-direction technique. As shown, our
method with Xception-71 and HRNetV2-W18 backbones
outperform the corresponding baselines (i.e. DeepLabV3+
and HRNetV2) in terms of mTC and FPS, with a sub-
tle drop in mIoU. It can be observed that with Xception-
71 as backbone, our method achieves higher mIoU com-
pared to the keyframe-based methods, including DFF, Ac-
cel, DAVSS, while having comparable FPS. As our target is
to have reasonable balance between accuracy and efficiency,
we reimplemented GRFP and TDNet with HRNetV2-W18
backbone to have comparable computation costs. It can be
seen that our method surpasses these methods significantly
in terms of mTC and FPS, with comparable mIoU. Also,
our method outperforms AuxAdapt significantly in terms
of mTC while having comparable mIoU and also achieves
better mIoU than CFFM and MRCFA. It is to be noted that
the methods with more expensive backbones, like NetWarp,
STT, GRFP, TDNet, DDRNet, CAA with ResNet101 back-
bone, and TMANet have boosted the accuracy while suffer-
ing from high computation cost resulting in low FPS.

The comparison with other methods on VSPW dataset
is reported in Tab. 2. It can be observed that our BOFP
achieves better performance compared to the baseline, i.e.
DeepLabv3+, and better TC compared to TCB, NetWarp,
and ETC methods.

In order to demonstrate how much accuracy drops for
each class after our feature propagation and rectification
steps, the class-wise IoUs are presented in the Supplemen-
tary Material.

Effect of Keyframe Interval. To evaluate how the seg-
mentation accuracy changes with respect to the keyframe
interval, D, the proposed method with Xception-71 back-
bone is compared with other keyframe-based methods for
various keyframe intervals ranging from 1 to 9. Fig. 4
depicts the results of different models on the Cityscapes
validation set. The result is in line with intuition that as
the keyframe interval increases, the segmentation accuracy
decreases due to increasing inaccuracy in optical flow esti-
mation and the growing ambiguities caused by occlusion-
disocclusion. Meanwhile, our model is able to achieve a
more stable performance demonstrating the importance of
bidirectional framework on rectifying the ambiguities ag-
gregated over the frames.

Visual Comparison. The qualitative comparison of the
proposed BOFP method and the state-of-the-art keyframe-
based method (i.e., DAVSS) is shown in Figs. 5 and 6 on
the Cityscapes and CamVid datasets, respectively. In partic-
ular, our approach is able to better segment the moving ob-
jects where ambiguities occur due to object motion. In order
to demonstrate the superiority of BOFP over the keyframe-
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Table 1. Comparison with state-of-the-art methods on the Cityscapes [11] and CamVid [5].

Method Backbone Cityscapes CamVid

mIoU ↑ mTC ↑ FPS ↑ GFLOPs ↓ mIoU ↑ mTC ↑ FPS ↑ GFLOPs ↓

PSPNet50 [18] ResNet50 75.5 - 4.2 - 71.0 - 2.8 -
PSPNet101 [18] ResNet101 79.4 69.7 2.1 2048 77.6 77.1 4.1 -
NetWarp [16] ResNet101 80.6 - 0.3 - 67.1 - 2.8 -
STT [33] ResNet101 82.5 73.9 2.2 - 80.2 82.3 4.2 -
DDRNet [45] ResNet101 80.4 - 22 281 76.3 - 94 -
CAA [23] ResNet101 82.6 - - 224 - - - -
TMANet [55] FCN-50 80.3 - - 754 76.5 - - -
SegFormer [59] MiT-B0 76.2 - 15 125 - - - -
CFFM [51] MiT-B1 74.8 84.4 17.2 - - - - -
MRCFA [52] MiT-B1 75.1 - 21.5 - - - - -
DFF [68] Xception-71 68.7 - 9.9 308 66.0 - 18.5 102
Accel [28] Xception-71 72.1 70.3 3.6 572 66.7 - 7.6 190
DAVSS [69] Xception-71 75.4 84.5 9.7 334 71.1 85.0 18.2 112
GSVNet [32] BiSeNet-18 72.0 - 123.4 - 64.8 - 250 -
GRFP [44] ResNet101 80.2 - 3.2 - 66.1 - 4.4 -
GRFP [44] HRNetV2-W18 76.6 83.8 4.5 468 74.6 87.2 9.3 156
TDNet [21] ResNet50 79.9 71.1 5.6 - 72.6 77.4 11.1 -
TDNet [21] HRNetV2-W18 76.5 81.6 18.6 161 72.6 84.7 33.0 54
AuxAdapt [64] HRNetV2-W18 76.6 75.3 - - 73.2 79.1 - -

DeepLabv3+ [8] Xception-71 76.6 76.6 1.2 820 72.0 83.2 2.2 270
HRNetV2 [56] HRNetV2-W18 75.9 81.0 18.9 156 75.0 83.9 37.7 52

BOFP (Ours) Xception-71 76.5 84.8 9.6 349 71.8 85.5 18.1 116
BOFP (Ours) HRNetV2-W18 75.7 86.5 19.7 216 74.4 88.4 38.3 73

Table 2. Comparison with SOTA works on the VSPW dataset.

Method Backbone mIoU TC mVC8

DeepLabv3+ [9] ResNet-101 34.7 65.4 83.2
PSPNet [18] ResNet-101 36.5 65.9 84.2
ETC [37] PSPNet 36.5 67.9 84.1
NetWarp [16] PSPNet 36.9 67.8 84.1
TCBst−ppm [40] ResNet-101 37.5 70.3 86.9
BOFP (Ours) Xception-71 35.5 70.6 84.5

and non keyframe-based methods in terms of temporal sta-
bility, two videos showing the results over the course of time
are provided in the Supplementary Material.

5.3. Method Analysis

Ablation Study. The contribution of each component
in the proposed framework is illustrated in Tab. 3, where
DeepLabv3+ and forward propagation is considered as
baseline (see 1st row). It is observed that incorporating
the backward propagation (Bkwd) improves mIoU by 3.9%
while introducing 25 ms of latency (see 3rd row). Adding
the features extracted from the current frame (Curr) slightly
improves the baseline (see 2nd row), but reduces the perfor-

Figure 4. Comparison of accuracy-interval on the Cityscapes
dataset.

mance of the forward-backward framework (see 4th row).
Adding OANet to the bidirectional framework further en-
hances mIoU by rectifying only the distorted areas indicated
in the occlusion maps (see 5th row). Our full framework
outperforms the other variants and achieves 76.5% mIoU
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Figure 5. Semantic segmentation results on Cityscapes validation
dataset. From top to bottom: the image, video segmentation by
DAVSS [69], video segmentation by BOFP, and the ground truth.

Figure 6. Semantic segmentation results on CamVid dataset. From
top to bottom: the image, video segmentation by DAVSS [69],
video segmentation by BOFP, and the ground truth.

with a reasonable overhead latency.
Effect of the Feature Correction Module. The im-

pact of the occlusion-guided feature correction is compared
with other fusion methods including directly adding fea-
ture maps (Add) and adopting a 1×1 convolutional layer
(Conv1×1). As shown in Tab. 4, our “OANet” approach
outperforms the “Add” module which treats every pixel
equally, and also, fusion with a 1×1 convolutional layer
which leads to the worst accuracy.

Occlusion Visualization. The intermediate results in-
cluding the propagated features in forward and backward
directions, feature extracted from the current frame and the
attention maps, are illustrated in Fig. 7. It can be observed
that the proposed method estimates the occlusion areas for
both forward and backward directions, and highlights the
regions where both propagated features are uncertain about
the predictions which is used for extra refinement with the
help of shallow features extracted from the current frame.

Table 3. Contribution of different components in BOFP, includ-
ing backward propagation (Bkwd), Occlusion-based attention net-
work (OANet), and the use of update branch at the current frame
(Curr). The mIoU scores and runtimes on a non-keyframe for the
Cityscapes dataset are provided.

Bkwd OANet Curr mIoU (%) Time (ms/f )

72.0 171
✓ 72.1 184

✓ 75.9 196
✓ ✓ 75.2 213
✓ ✓ 76.3 253
✓ ✓ ✓ 76.5 265

Table 4. Effect of different feature correction modules in our
framework on the Cityscapes dataset. “OANet” represents the
proposed feature correction based on occlusion maps. “Add” and
“Conv1×1” denote adding features maps and fusion using a 1×1
convolution layer, respectively.

Method mIoU (%) Time (ms/f )

OANet 76.5 265
Add 75.2 213
Conv1×1 61.4 244

Figure 7. Intermediate result examples from BOFP on Cityscapes.
Top row, from left to right: the propagated features in forward and
backward directions, and the one obtained from the current frame.
Bottom row, from left to right: the occlusion maps in forward and
backward directions, and the remaining distortion map.

6. Conclusion

This work presents the novel bidirectional occlusion-
guided feature propagation framework for video semantic
segmentation. It leverages temporal coherence in the video
by feature propagation along bidirectional flows and rec-
tifies the deteriorated predictions according to the learnt
attention maps from the proposed occlusion-based atten-
tion network. The extensive experiments on Cityscapes,
CamVid, and VSPW benchmarks demonstrate the superi-
ority of the proposed method with a better balance among
accuracy, temporal consistency, and computation cost.
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