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Abstract

Binarization is a powerful compression technique for
neural networks, significantly reducing FLOPs, but often
results in a significant drop in model performance. To ad-
dress this issue, partial binarization techniques have been
developed, but a systematic approach to mixing binary and
full-precision parameters in a single network is still lack-
ing. In this paper, we propose a controlled approach to
partial binarization, creating a budgeted binary neural net-
work (B2NN) with our MixBin strategy. This method op-
timizes the mixing of binary and full-precision components,
allowing for explicit selection of the fraction of the network
to remain binary. Our experiments show that B2NNs cre-
ated using MixB1in outperform those from random or iter-
ative searches and state-of-the-art layer selection methods
by up to 3% on the ImageNet-1K dataset. We also show that
B2NNs outperform the structured pruning baseline by ap-
proximately 23% at the extreme FLOP budget of 15%, and
perform well in object tracking, with up to a 12.4% relative
improvement over other baselines. Additionally, we demon-
strate that B2NNs developed by Mi xB1in can be transferred
across datasets, with some cases showing improved perfor-
mance over directly applying MixBin on the downstream
data. '

1. Introduction

Convolutional neural networks (CNNs) have led to sev-
eral breakthroughs in the field of computer vision and im-
age processing, especially because of their capability to ex-
tract extremely complex features from the images. How-
ever, these deep CNN models are extremely computation-
hungry and require significant power to process. For exam-
ple, a ResNet-18 classification model comprises 1.9 million
parameters, each represented in full-precision using 32-bits,
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Figure 1. Performance comparision of B2NNs obtained us-
ing MixBin vs. the various trivial approaches. The B2NNs
are constructed using cResNet-20 architecture on CIFAR-100
datasets. Here, Rear-BN and Front-BN represent B2NNs con-
structed with binary layer placed in the rear and front parts of the
network, respectively. Pseudo-random involves modifying 30%
of the MixBin generated B2NNs. The Full Precision network and
Binary Network have 4.14 x 107 and 1.93 x 10°® FLOPs respec-
tively.

and accounts for a total of 1.8 billion floating point opera-
tions (FLOPs) for the ImageNet dataset [1]. For most of
the problems, these deep CNN models are overparameter-
ized, and there is enormous scope of reducing their sizes
with minimal to almost no drop in the performance of the
models. The popular approaches for effective model com-
pression include removing the non-important set of param-
eters or channels (pruning) [2], distilling knowledge of the
dense teacher network into a light-weight student network
(distillation) [3], converting 32-bit representations of the pa-
rameters to lower bit representations (quantization) [4], and
transforming the network weights to 1-bit representations
(binarization) [5].

Among the methods outlined above, binarization is very
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effective in drastically reducing the size of the model and
increasing the inference speed. In its basic form, binariza-
tion involves changing all the weights and activations to 1-
bit representation and implementing the convolutions with
bitwise XNOR operations [6]. However, due to the signif-
icantly reduced representation, the performance of the bi-
narized network is significantly lower than its full-precision
counterpart. To circumvent this, several approaches exist
such as binarizing only the weights and keeping the activa-
tions as full-precision [7], parallely stacking multiple bina-
rized layers [8], using special layers such as squeeze-and-
excitation blocks [9] and retaining skip connections as full-
precision modules in a ResNet-type binary network [10].
All the above methods exploit partial binarization of the
network reduce the performance gap between full preci-
sion network and binarization. However, there still does not
exist a systematic approach to perform intermediate levels
of compression in a more controlled sense. A solution as
such would provide the flexibility of analyzing the drop in
the performance of the model at different levels of model
compression, thereby allowing to choose a right balance be-
tween the size of the binararized model and its performance.
Beyond this, such an approach would provide the control on
using binarization to perform hardware-specific compres-
sion, thereby allowing the compressed model to exploit the
full computational power budget of the target hardware.

An alternative to using partial binarization could be
quantization, where based on the desired extent of com-
pression, the choice of precision for the target network
can be made. However, due to its ability to replace the
matrix multiplications with XNOR operations, binarization
can achieve a higher extent of FLOP reduction compared
to an equivalent amount of quantization in terms of similar
number of effective parameters. Moreover, binarization it-
self can be looked at as a modified form of aggressive quan-
tization, and it is worth understanding how it would fair.

In this paper, we propose a paradigm to perform
partial binarization of neural networks in a controlled
sense, thereby constructing budgeted binary neural network
(B2NN). Our B2NN approach relies on identifying the right
set of convolutional layers of a network that should be bi-
narized, and the rest of the network is retained as full-
precision. A straightforward approach to select layers to
binarize is through random sampling, and we experimen-
tally demonstrate that this is not very effective. While the
network itself can be made very light, the performance of
the compressed variant deteriorates significantly. Through
various trivial baselines, we numerically demonstrate that
binarizing different parts of a CNN has very different effect
on the performance of the compressed model, thus making
it important that the right set of target layers are identified
for building the right B2NN. This is shown in Figure 1, and
we see that for a similar computational budget, keeping the

later layers of a network as full-precision boosts its perfor-
mance significantly, while more binarization towards of the
end of the network architecture has an adverse effect. We
discuss this aspect further in section 4 of this paper.

To overcome the challenge outlined above, we present
MixBin, a smart selection strategy that constructs B2NN
through optimized mixing of the binary and full-precision
components. MixBin allows to explicitly choose the frac-
tion of the network to be kept as binary, thereby presenting
the flexibility to approximately adapt the inference cost to
a prescribed budget. The core of our selection strategy lies
in effectively analyzing how sensitive the performance of
the network is with respect to the different layers. Based on
our initial observations, we have formulated two variants,
MixBingess and MixBingrqq, and the related details are
described in section 3.3 of this paper. We conduct sev-
eral experiments and demonstrate in several different sce-
narios that the resultant compressed networks achieved us-
ing MixBin are superior over all the baselines chosen in
our study, which includes some of the popularly used model
compression methods as well.

Contributions. The contributions of this paper can be
summarized as follows.

* We introduce the concept of budgeted binary neural
networks (B2NNs), compressed variants of the dense
full-precision models obtained through partial bina-
rization. B2NN relies on effectively identifying the
right set of layers that are to be retained as binary or
full-precision.

* We present MixBin, a search strategy to compress
a given full-precision network through partial bina-
rization in an optimized sense. The inherent design
of MixBin facilitates budgeted binarization, allow-
ing to develop light-weight models that maximally ex-
ploit the available compute resources. We demonstrate
through numerical experiments that B2NNs obtained
from our MixBin strategy are significantly better than
those obtained from random selection or even iterative
greedy search over the network layers.

* The efficacy of MixBin is demonstrated on multiple
datasets and tasks for various budget scenarios, and the
resultant models obtained from MixBin are consis-
tently superior over those obtained with popular model
compression methods chosen as baselines in this study.
Performance results on ImageNet demonstrate the ef-
fectiveness of MixBin for large datasets, and we also
show that it works well for the downstream task of ob-
ject tracking.

2. Related Work

Neural networks are often known to be overparameter-
ized [11]. This leads to undesired additional latency when
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deploying these models in production with little effect on
the model accuracy. There exist several works that focus
on addressing this issue. First among these is through in-
ducing efficient components in the neural network design,
such as using bottleneck blocks [12], replacing the 3 x 3
convolutions with 1 x 1 [13], using depthwise-separable
convolutions [14] and employing neural architecture search
[15-17]. Another approach to design efficient networks
involves distilling the information of large networks into
smaller networks (knowledge distillation) [3, 18-21]. Fur-
ther, there exist works that aim at identifying the undesired
or less desired weights or filters of a network and remov-
ing them. Selection criteria for pruning include ranking
scores based on L1/L.2 norms of parameters [ 1 1,22,23], gra-
dients derivatives [24,25], learnable parameters [2, 26, 27]
and pruning of network once at intialization prior to train-
ing [28,29] . An equally effective direction of efficient net-
work design is through quantization of the weights and/or
activations of a network to represent it with a reduced num-
ber of bits [4,30-32].

Quantizing a given network refers to representing each
weight or activation with reduced number of bits, such as
half-precision (16-bits) or 8-bits. An extreme case of quan-
tization is network binarization where the 32-bit represen-
tations are directly scaled down to 1-bit each [5]. Due to the
replacement of the conventional convolution operation with
a bitwise XNOR operation, a significant computational gain
is observed. Further, adding the channelwise scaling on the
binary weights allows to scale BNNs to largescale datasets
such as ImageNet [60] . Although binarization is an effective
technique for network compression, it leads to a significant
reduction in network representation which results in a sig-
nificant decrease in performance. There exist several works
that attempt to find a right balance between model perfor-
mance and the extent of compression in the model. For ex-
ample, ABCNet proposes to stack multiple parallel layers
together to use multiple binary layers to increase the repre-
sentation capability of the network [8]. In BiRealNet [10],
skip connections are represented as real-valued and it has
been shown to boost the performance. Other recent bina-
rization methods that improve performance include React-
net [33], IR-Net [34] and SA-BNN [35].

Most of the approaches listed above attempt to find rep-
resentations in between a fully binary network and real-
valued one. However, there is no straightforward method to
design networks comprising binary components that make
efficient use of the available computational memory and de-
livering maximum possible performance. The closest to-
wards this goal is the hybrid binary network [36] that per-
forms selective binarization through locally converting the
activations to full-precision and retaining the rest of the net-
work as binary . However, this approach provides limited
flexibility in terms of full exploitation of the mixing be-

tween binary and full-precision components. There also
exists layer selection methods for quantization designed
to combine different precisions layers together in a net-
work [37-39]. These use either the difference of network
weights, their gradients or the Hessians to decide which lay-
ers to choose for reduced precision and the extent of reduc-
tion. We discuss these methods further in Section 4 and
present a comparison of these methods with MixBin.

3. Proposed Approach
3.1. Background

Binary neural networks (BNNs), also referred to as 1-bit
neural networks, use binary weight parameters and binary
activations for the intermediate layers of the network, ex-
cluding the first layer. Sign(-) function is used to convert
real-valued weights/activations to their binary counterparts
and the conversions can be mathematically stated as

, {—1 if a, <0
ap = Sign(a,) = ]
+1 otherwise
. (1)
wy, = Sign(w,.) = {1 if o < 0
+1 otherwise

where a, and w, denote the real-valued (full-precision)
activations and weights, and a; and wj the corresponding
binary variants.

Compared to the full-precision model where 32-bit rep-
resentations are used for every parameter, BNNs, with their
1-bit representations, can lead up to 32X memory saving.
Further, since the activations are also chosen as binary,
the convolution () operation is implemented as a bitwise
XNOR () operation and a bit-count operation. It is repre-
sented as

a. xw,.xab (a,dwy) 2)

where o € R contains the channelwise scaling fac-
tors and ® denotes the elementwise multiplication opera-
tion. For w, € ReuXcnxkxkw  the scaling factor a; € o
can be mathematically represented as

1 .
L = E (4,55,%) 3
o; - w, 3)

denoting summation of the matrix along all dimensions ex-
cept Cout, and n = ¢, X kp X k. Here, ¢;y,, kp, and k,, de-
note the input channel dimension, kernel height and width,
respectively. For more details related to the scaling, see [0].

3.2. Budgeted binary neural network (B2NN)

Although BNN leads to significant memory and compu-
tation gain, it has been experimentally demonstrated that
the performance of BNNs can be significantly lower than
their full-precision counterparts. Clearly, reducing 32-bits
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to 1-bit in all parts of the network is not the effective way,
and budgeted binary neural network alleviates this issue.
Among the various layers of a given CNN for example,
B2NN identifies the right set of layers that are to be con-
verted to 1-bit representation with minimal compromise
in model performance, and the rest are retained as full-
precision. Below we provide the mathematical description
of B2NN.

Let ¥ : R® — R® denote a neural network com-
prising a set of weights W, activations A, and input
and output layers. For F comprising n hidden layers,
this implies, we have W = {w;, ws,..., W,, w,4+1} and
A ={a;,as,...,a,}. Note here that w, 1 performs a
fully-connected mapping between the output of the final
convolutional layer and the output of the model. Dur-
ing binarization, it is common for even fully-binarized net-
works to retain wi, w1 and a,, as full-precision [10,33],
and we follow a similar convention . Thus, for methods
that perform complete binarization, w; V ¢ € [2,n] and
a; V i € [1,n — 1] are converted from full-precision to bi-
nary. However, as stated earlier, this dips the performance
of the resultant BNN significantly, and alternatively some
of the works retain a; as full-precision.

B2NN couples a and w together as 8; = {a;, w;;1},
referring them as one layer, and performs binarization on
a subset ® C ©, where © = {61,60,,...,0,,_1}. The
generic mathematical problem that we solve with B2NN
can be stated as follows.

®* = argmin L(F(P,0 — P,x),y)
PCOW (4)

st. B(®,0 —®) < By,

where @™ denotes the optimized subset of layers that are
binarized, and £(-) denotes the function to be minimized
on the dataset (x,y) when making this selection. Further,
B(-) denotes the budget function and By is the prescribed
limit. In this paper, we use FLOPs budget for compressing
the networks.

Effect of binarizing different parts of a network.
The performance of the constructed B2ZNN model depends
heavily on the choice of ®. To demonstrate the importance
of selection, we consider several trivial approaches in this
study to construct B2NNs, where the goal is to select k out
of n — 1 layers to be binarized, such that the performance
of the resultant B2NN is maximized to the largest possible
extent while also satisying the budget constraint as stated
in Eq. 4. We provide a brief description of the various
trivial approaches below followed by detailed formation of
our MixBin approach in Section 3.3.

Random selection. As the name suggests, this approach
does not involve any smart strategy in the selection and the
process of selecting k out of n — 1 layers to be binarized is
completely random.

Front- or Rear-BN selection. In this selection strat-
egy, ®* is sampled sequentially from the front or
rear parts of the full-precision network, respectively.
For Front-BN selection, this implies selecting ®* as
® ={61,0,,...,0;}. Similarly, for Rear-BN selection ,
we have © = {Bn,k, Gn,kﬂ, ey 0n727 0n,1}.

Iterative selection. It is a greedy selection process based
on iterative search strategy designed to identify the right
layers of any given network to be converted to binary or
full precision, one-by-one. For the k out of n — 1 layers to
be binarized, the j" step of binarization, where j € [1, k],
can be stated as finding the optimal layer 8* € @ ;) to be
binarized. It can be mathematically stated as:

0;

;) = argmin L(F(O+;),0( —0,x),y)

0C®(j),W (5)

where Q(j) =0 - ® ;). Here, ® ;) denotes the layers
that have already been binarized in the previous j — 1 steps
and is defined as @ ;) = {0(1),0(3), ..., 0(;_1)}, Where 0}
denotes the optimal layer chosen at the j step of binariza-
tion to obtain B2NN. For calculating 8%, we perform brute
search over all elements of © ;) and choose the layer, which
when binarized, maximizes the performance of the interme-
diate B2NN model. Additional details and the pseudo-code
related this approach can be found in the supplementary ma-
terial.

Pseudo-random selection. This selection strategy in-
volves identifying the <I>’("j) layers to be binarized and then
rather than binarizing these layers, a subset of them is re-
placed by another subset of same size randomly sampled
from ® — ®. It can be expected that if the process of select-
ing (I)?j) is properly optimized with respect to performance
of the resultant B2NN, the performance of the network ob-
tained from pseudo-random selection would be relatively
sub-optimal.

As shown in Figure 1, mixing full-precision and binary
layers using different strategies yields very different results,
and a wrong selection approach can lead to completely sub-
optimal model performance. For example, the performance
of Rear-BN is far inferior to even the random selection strat-
egy, indicating that the later parts of the network should not
be preferred for binarization. Among the various methods
described above, we observe that Iterative Selection works
the best, although being lower than our MixBin approach.
However, the iterative selection approach is computation-
ally very expensive which limits its adoption for large net-
works. For an extremely low budget of 10%, we observe
that almost all the methods result in poorly performing net-
works, and Pseudo-random ranks the lowest. Clearly, the
trivial layer selection strategies described above are not well
suited for constructing B2NNs, especially when it comes to
extreme model compression. This shows the importance
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and need of a systematic way to construct B2NNs such that
the maximal performance of the original network can be re-
tained.

Algorithm 1: MixBin Approach

Given : Budget value By;
Pre-trained network weight ©;
Neural Network F; Training data D;
Output: Binarized weight ®
K+ {}
for 6 € © do
(x,y) + D;
// Binarize both activation and
weights of 6
0 «+ Binarize();
// Pass x through F, B2NN with a

single binary layer 6
¥« F(6,0 —0,x)
// Calculate Binarization
coefficient for 6
Kk <+ MixBin(y,y, 0,0 — 0)
// Add tuple (k,0) to set K
K + push({«,0})

end

// Sort set K based on k

K < Sort(K]|k)

// Select ® from K for the
prescribed budget By

P « Select(K|Bp)

3.3. MixBin

MixBin refers to the strategy of mixing binary and full-
precision components in a network in an efficient and effec-
tive manner. The approach of MixBin is described in Al-
gorithm 1. Unlike the greedy selection approach discussed
earlier, MixBin identifies the set of layers to be binarized,
®*, in one single pass eliminating the requirement for any
model updates via backpropagation. It involves first calcu-
lating the binarization coefficient x with respect to every
layer. To compute #; V #; € [1,n — 1], only the i layer
is converted to binary and the performance of the resultant
network is computed. Note that x can be any generic func-
tion such that magnitude of x; correlates with the extent to
which the i layer would be a preferable choice for bina-
rization. In this paper, we choose it to be a function of drop
in performance of the network due to binarization of the i
layer and/or the change in the gradient of the loss with re-
spect to this layer.

For the selection of ®* as described in Eq. 4, the val-
ues of x associated with all the layers are analyzed and a
selection is made. In this paper, we present two variations

of MixBin that differ how & is calculated. These are de-
scribed below.

MixBiny,ss The premise of this formulation assumes
that if a specific layer is favored over the others for bina-
rization, converting this layer from full-precision to binary,
while maintaining all other layers at full-precision, would
result in minimal performance degradation. In other words,
the drop in performance of the model due to binarization of
a certain layer can be considered independent of the others
and can be used as a direct measure of how preferred a cer-
tain layer is for binarization. Based on this, the binarization
coefficient is defined as

RO = L(F(©,x),y)—
‘C(]:(é]a SR éjax)7y) (6)

The resultant values of x are then sorted in ascending
order and the layers corresponding to the first k sorted val-
ues of « are chosen ensuring that the extent of binarization
complies with the predefined budget defined for the B2ZNN.

MixBing,..q This formulation is based on the hypothe-
sis that beyond the drop in performance of the model, the
inertness of the resultant network also plays an important
role in deciding the importance of the layers for binariza-
tion. Based on this, we also include the L; norm of the
gradient of the resultant loss with respect to the parameters
of the j;1, layer. The resultant binarization coefficient "¢
can be stated as

K,]GTad = K,]LOSS X ”L(f(éj’ (I éj7x)ay)(0j)

@

Intuition for the addition of the gradient term is that once a
layer has been binarized, it should have have lower tendency
to influence the performance of the model, thereby exhibit
increased inertness.

4. Experiments
4.1. Experimental Setup

We demonstrate the efficacy of MixBin on the tasks of
image classification and object tracking. For image clas-
sification, we conduct experiments to compress CIFAR-
ResNet20 (referred further as cResNet-20) on CIFAR-100,
MobileNet and ResNet-18 on TinyImageNet and ResNet-
18 on ImageNet-1K dataset. For Object tracking, we use
ResNet-18 model, and train and compress the tracker on
GOT-10K dataset. The choice of smaller architectures like
cResNet-20 and MobileNet help us to ensure that the archi-
tectures do not overfit on simpler datasets like CIFAR-100
and TinyImageNet. Further the choice of ImageNet-1K and
GOT-10K help to demonstrate that MixBin is scalable to
complex datasets.
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FLOPs calculation. We calculate FLoating point OP-
erations (FLOPs) based on the code publicly available
at https://github.com/SwallOw/torchstat/.
For the calculations, batch size of 1 is assumed. For B2NNs,
total FLOPs of the network is equal to the sum of FLOPs of
the full-precision layers and BOPs (Binary OPerations) for
binary counterpart. BOPs are determined using the method-
ology introduced in BiRealNet [10]. This involves divid-
ing FLOPs by 64 since modern CPUs can execute bitwise
XNOR operations and bit-counting concurrently in groups
of 64.

4.2. Baselines

To demonstrate the efficacy of MixBin, we set up mul-
tiple competitive baselines. These include the random and
greedy selection strategies as described in Section 3.2, as
well as adaptations of works which propose methods for op-
timal selection of layers based on different bit-widths. We
adapt these methods for our use case as baselines in which
we either keep the whole layer binary or full precision. Note
that while we explain the methods below in terms of quanti-
zation, as in their original formulation, we use the resultant
indicators to identify the right layers for binarization.

BNAS [37]. This approach incorporates amplitude loss
function as part of the optimization process. This loss func-
tion is formulated as the Lo difference between the full pre-
cision weights and the binary weights. We employ the am-
plitude loss as a criterion for selecting layers in the network,
where a lower value indicates a higher inclination towards
binarization.

Adaptive MBQ [38]. This approach uses Taylor expan-
sion to build a metric for quantifying the loss sensitivity
introduced by quantization. The metric guides on the extent
to which each layer should be quantized, and a lower value
of their proposed metric indicates a higher level of quanti-
zation.

HAWQ-V2 [39] uses the sensitivity of Hessian trace of
weights, scaled by a perturbation of quantization. By con-
sidering second-order information stored in the Hessian, it
identifies layers that are more sensitive to quantization. A
lower value of the metric indicates a higher level of quanti-
zation.

Network Slimming [2]. Additionally, we also com-
pare our method with a popular network pruning approach,
called network slimming [40]. This approach involves
adding an L; penalty term on the scaling parameters of
each Batch Normalization layer which induces sparsity in
the network.

4.3. Results

Performance on simple classification datasets. Figure
2 presents the performance curves obtained with MixBin
as well as the chosen model compression baselines on
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Figure 2. Performance comparison of MixBin with B2NNs ob-
tained using random and competitive layer selection algorithms, as
well as pruning, for three different model and data combinations.

CIFAR-100 and TinylmageNet datasets. Baselines here in-
clude those mentioned in Section 4.2, as well as random
selection. Across all combinations of the datasets and mod-
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Table 1. Performance scores for the ResNet-18 architecture on
ImageNet-1K datasets for three compression methods: Network
Slimming, HAWQ-V2, and MixBin (ours). The Full precision
network has a total of 1.82 x 10° FLOPs, while the binary network
generated using the Bi-RealNet method has 1.71 x 10%® FLOPs.
The term "budget" refers to the percentage of FLOPs that remain
after applying the respective compression method.

Table 2. Performance scores for SiamFC with ResNet-18 back-
bone on GOT-10K datasets for four compression methods: Net-
work Slimming, Adaptive MBQ, BNAS and MixBin (ours). The
Full precision network has a total of 4.28 x 10® FLOPs, while the
binary network generated using the Bi-RealNet method 2.00 x 107
FLOPs. The term "budget" refers to the percentage of FLOPs that
remain after applying the respective compression method.

Method Budget(%) Acc.(%)T FLOPs(%))
Full Precision Network - 65.66 100
Binary Network - 55.54 9.39
Network Slimming 63.58 50
HAWQ-V2 50 62.25 53.16
MixBingrad 64.12 53.16
MixBingess 65.38 53.16
Network Slimming 34.58 15
HAWQ-V2 5 56.20 15.64
MixBingrad 57.26 15.64
MixBingess 57.44 15.64

els, MixBin consistently outperforms all the baselines.
At higher budgets, performance achieved with pruning are
comparable to those achieved by MixBin. However, when
low budgets are used, the performance of the former dete-
riorates to a level even lower than that of the binary model.
Interestingly, we observed that MixBin at budgets of 60%
or higher yields results that are comparable to, or even supe-
rior to, the original full precision model. This clearly shows
that MixBin leads to compressed models that generalize
better, leading to reduced overfitting and thereby improved
performance on the evaluation set.

Performance on ImageNet-1K. To further demonstrate
the efficacy of MixBin, we study its compression ca-
pability on large-scale classification dataset of ImageNet-
1K using ResNet-18 architecture. We compare our re-
sults to those obtained by HAWQ-V2 and Network Slim-
ming at budget levels of 15% and 50%. The performance
of each method, along with the corresponding achieved
FLOPs ratio compared to the full precision network, are
presented in Table 1. Pruning exhibited a significant de-
cline in scores at lower budgets, whereas binarization did
not experience such a drop. Among the evaluated meth-
ods, MixBinp,ss demonstrated the highest performance,
followed by MixBing,qq and HAWQ-V2. Interestingly,
MixBing,ss Was able to maintain performance compara-
ble to the full precision network at 50% budget, while the
performance of the other methods dropped by 2-3%.

Note that FLOPs of B2NNs are not always met with re-
spect to the corresponding budget since they operate at layer
level, unlike structured pruning methods. However, this
characteristic can be advantageous for B2NNs as they have
a more structured nature and are easy to implement com-

Method Budget(%) AOT SRys5T FLOPs(%)]
Full Precision Network - 0.251 0.242 100
Binary Network - 0.189 0.173 4.68
Network Slimming 0.235 0.220 60
Adaptive MBQ 0.215 0.198 56.67
BNAS 60 0.211 0.186 61.01
MixBingess 0.237 0.219 56.57
MixBingraed 0.240 0.234 61.01
Network Slimming 0.198 0.179 40
Adaptive MBQ 0.210 0.199 39.34
BNAS 40 0.211 0.199 39.34
MixBingess 0.235 0.226 43.67
MixBingrad 0.236 0.228 43.67
Network Slimming 0.201 0.182 10
Adaptive MBQ 0.218 0.202 13.35
BNAS 10 0.218 0.202 13.35
MixBingess 0.226 0.216 13.35
MixBingrad 0.226 0.216 13.35

pared to the structured pruning methods. Further, FLOPs
of two methods can be exactly the same, while their perfor-
mance scores may differ due to the presence of multiple lay-
ers with similar FLOPs. However, if any one of these binary
layers is interchanged from the set of layers having equal
FLOPs, it may negatively impact B2NNs’ performance.

Building light weight object trackers. Object track-
ing is an application domain that benefits among the most
from model compression. When deployed on low-power
devices, object trackers need to be light-weight and deliver
desired inference speed based on the target hardware. In
this regard, we demonstrate the application of MixBin to
design light-weight object trackers. We analyze the stability
of the compressed variants of the ResNet-18 model at var-
ious FLOPs budgets and analyze how well it fairs against
model compression achieved using other baselines.

Table 2 shows the results for various compressed variants
of ResNet-18. From Table 2, we see that the compressed
models obtained from MixBing,qq as well MixBing g
are superior than any other choice of compressions. While
this difference is small at FLOPs budget of 60% of the orig-
inal network, it grows to a large margin at extreme lev-
els of preserving only 10% FLOPs from the original net-
work, further confirming the applicability and effectiveness
of MixBin. Note that in some cases two methods gave ex-
actly the same set of layers which led to similar scores.
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Table 3. Performance scores of B2NN masks transferred (Trans.)
from the ImageNet-1K dataset to both a classification task on the
TinyImageNet [TinyIN] and CIFAR-100 [C100] dataset and an ob-
ject tracking task on the GOT-10K dataset, using the ResNet-18
architecture. The term "budget" refers to the percentage of FLOPs
that remain after applying the respective compression method. The
performance metrics evaluated for the classification task are accu-
racy (Acc.), while the metrics evaluated for the tracking task are
average overlap (AO) and success rate at 0.5 overlap (SRo.5)

Classification |Object Tracking
Method Budget (%) |TinyIN 1+ C100 1|AO 1T SRg5 T
Trans. 60 56.73  56.27 |0.232 0.217
Base 5711 56.37 |0.240 0.234
Trans. 40 55.67 55.91 [0.237 0.232
Base 56.44 55.48 |0.236 0.228
Trans. 20 55.51 54.69 |0.220 0.206
Base 55.08 52.93 10.214 0.203
Trans. 10 5446 53.05 |0.221 0.211
Base 5425 5245 10.226 0.216

Transferability of B2ZNNs models. The generalizib-
lity of the B2ZNNs obtained from MixBin can be assessed
based on the extent to which they are transferable across
datasets. This implies analyzing how well a model com-
pressed on one dataset performs on another dataset. In this
regard, we present results for the scenario of model trans-
fer from ImageNet-1K to TinyImageNet and CIFAR-100
dataset for classification and from ImageNet-1K to GOT-
10K for object tracking. These are reported in Table 3.
From the results, we see that the performance of the trans-
ferred models is in a similar range as when the model is
trained on the base dataset. Clearly, B2NNs designed for
large datasets such as ImageNet seem to work well for the
base datasets, thus these do not require any additional layer
selections. An interesting observation made on the clas-
sification tasks is that at budget of as low as 20% of the
original FLOPs, the transferred B2NNs seems to perform
slightly better than those trained on the base dataset. Over-
all, B2NNs obtained from MixBin seem to generalize well
across datasets.

5. Conclusion and Future work

In this paper, we have proposed a strategy to per-
form partial binarization of neural networks in a controlled
sense, thereby constructing budgeted binary neural network
(B2NN). We presented MixBin, an efficient strategy for
finding a well optimized mixture of binary and full preci-
sion components in a given network architecture. MixBin
allows to explicitly choose the approximate fraction of the
network to be kept as binary, thereby presenting the flex-

ibility to adapt the inference cost to a prescribed budget.
Numerical experiments conducted on various datasets and
model choices support our claim that the B2NNs obtained
from our MixBin strategy are significantly better than
those obtained from random selection, iterative selection,
and even more elegant strategies based on popular methods
from the field of model compression. This is strongly evi-
dent from the results presented on ImageNet-1K dataset as
well as the downstream task of object tracking where signif-
icant improvements over the baselines are reported. Over-
all, from the results and discussions presented earlier in the
paper, it can be concluded that MixBin is an efficient and
effective strategy for constructing B2NNs that can maxi-
mally utilize the available computational resources.

Limitations and future work. Although the presented
MixBin strategy results in mixing of full-precision and bi-
nary components which are superior over the chosen com-
petitive baselines at similar budgets, there is still scope of
improving it. In this paper, we have focused on optimizing
the selection process at the layer level. However, there is
potential for further investigation into how the network’s be-
havior will be affected by a more granular approach, specif-
ically at the channel level. Additionally, it would be intrigu-
ing to explore the application of our layer selection method
for transformer-based architectures and assess its efficiency
in that context. Moreover, the currently available hardware
are limited in terms of fully exploiting the power of binary
neural networks, and similar limitation exists for the B2ZNNs
designed using our methodology. However, we believe that
with the rapid developments happening in this field, this
should be resolved soon.
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