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Abstract

Generalized Category Discovery aims to discover and
cluster images from previously unseen classes, in addition
to classifying images from seen classes correctly. In this
work, we propose a simple, yet effective framework for this
task, which not only performs on-par or better with the cur-
rent approaches but is also significantly more efficient in
terms of computational requirements. Our first contribution
is to use expanded neighborhood information in contrastive
learning to generate robust and generalizable features. To
generate more discriminative feature representations, espe-
cially for fine-grained datasets and confusing classes, we
propose a class-wise adaptive margin regularizer that aims
at increasing the angular separation among the prototypes
of all classes. Extensive experiments on three generic as
well as four fine-grained benchmark datasets show the use-
fulness of the proposed Adaptive Margin and Expanded
Neighborhood (AMEND) framework.

1. Introduction

Due to the exponential increase in data, it is often not fea-
sible to obtain precise annotations for vision-related tasks.
However, in a practical scenario, some amount of labeled
and unlabeled data may be available, consisting of images
belonging to previously seen classes, as well as classes that
are somewhat related but previously unseen. For instance,
an image recognition system for self-driving cars may be
trained to recognize a hundred classes of objects commonly
observed on roads. However, it may also encounter similar
objects from outside the classes it has been trained on, such
as a new car brand or a new street sign. This is exactly what
Generalized Category Discovery (GCD) aims to solve, i.e.
discover and cluster images from previously unseen classes,
in addition to correctly classifying images from the already
seen classes. GCD [30] is a more challenging and realis-
tic extension of the Novel Class Discovery (NCD) problem
[11], where the goal is to discover and categorize the data

present in the unlabeled data, which consists of data only
from previously unseen classes. Though several approaches
have been proposed in the literature [8, 24, 30, 36], we ob-
serve that there is a tradeoff between computational require-
ment and performance. Some of the approaches are quite
efficient [30], but their performance is not at par with the
the state-of-the-art prompting based approach [36], which
is quite computationally intensive.

In this work, we propose a novel framework,
termed AMEND (Adaptive Margin and Expanded
Neighbourhood) for addressing the challenging GCD task.
The proposed approach bridges this gap, thus achieving
on-par or better performance with the state-of-the-art
approaches, while being computationally efficient. Mo-
tivated by several recent approaches [39] [7] [34], [36],
AMEND utilizes expanded neighbors of each instance
along with its direct neighborhood information. This helps
to compute robust feature representations in a contrastive
learning framework, which leads to better clustering. The
majority of the existing approaches [8, 26, 30, 33] treat
all classes identically. However, for fine-grained datasets
and for confusing classes, feature representations can be
close to each other in feature space, thereby adversely
affecting the clustering quality. This causes a decrease
in final performance due to an increase in confusion.
Our second contribution is a class-wise adaptive margin
regularizer that aims to better separate the prototypes which
act as representatives of each class. During training, we
propose to increase the angular separation between the
corresponding prototypes based on whether the prototypes
are coming close to each other, thus ensuring less confusion
between instances belonging to those classes. In summary,
the contributions of this work are:

1. We propose a novel framework termed AMEND for
the challenging GCD task.

2. We propose to incorporate expanded neighborhood in-
formation in the standard contrastive loss for unlabeled
data to ensure better clustering of same class samples.
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3. We also propose a class-adaptive margin regularizer
to reduce the confusion between adjacent classes, thus
improving the class discriminability and classification
performance.

4. Extensive experiments on several generic and fine-
grained benchmark datasets and comparisons with
state-of-the-art techniques justify the effectiveness of
the proposed framework.

5. The proposed AMEND framework is significantly less
resource intensive compared to the existing state-of-
the-art approaches.

In the following sections, we discuss the related work, fol-
lowed by a description of the proposed framework along
with results of the extensive evaluation and analysis.

2. Related Work
Here, we briefly discuss the related work in literature.

Category Discovery: Novel Category Discovery
(NCD) [11] refers to the weakly supervised setting in
which a labeled set of known classes and an unlabeled set
of unknown classes are given during training, and we are
tasked with discovering and classifying the instances of the
unknown or ’novel’ classes. Initial works in NCD focused
on a two-stage approach [11, 13, 14], where the first stage
focused on representation learning with just the labeled
data, and the second stage involved transfer learning on the
unlabeled data. More recent works [9, 10, 37, 39, 40] focus
on learning representations for both the labeled and unla-
beled data simultaneously with separate classification heads
and objectives, specifically classification on the labeled
data and clustering or classification with pseudo-labels
on the unlabeled data. Notably, UNO [9] uses a unified
loss function with the help of pseudo-labels using the
Sinkhorn-Knopp [4] algorithm, while RankStats [10, 37]
uses ranking-statistics to obtain pseudo-labels for the
classification heads.

Generalised Category Discovery (GCD) was formalized
by GCD [30] and ORCA [31], as a practical extension of
NCD, where the unlabeled data also contains instances of
classes that are seen in the labeled data, in addition to in-
stances from completely novel classes. The baselines for
NCD such as UNO [9] and RankStats [10] were adopted
to the GCD setting by [30] by extending their classification
heads. In [30], the unsupervised and supervised contrastive
losses [3] are used to finetune a ViT [18] model pre-trained
with DINO [2], which increases the similarity between the
feature representations for different views of the same im-
age, and between different images of the same class.

Recently, a few extensions of GCD have been proposed.
XCon [8] first partitions the dataset into subsets by clus-
tering them using kmeans, and then performs contrastive

learning separately on each of the clusters now obtained,
while OpenCon [26] adds an additional novel class loss by
performing out-of-distribution detection to identify the in-
stances belonging to novel classes with the help of proto-
type vectors. SimGCD [33] simplifies the framework pre-
sented by GCD [30] by reintroducing parametric classifi-
cation with the help of prototype vectors and by applying
self-distillation to obtain pseudo-labels.

Prompt tuning has emerged as a powerful technique
in the field of Natural Language Processing (NLP) and
has been extended to images with visual prompt learning
(VPT) [16]. VPT involves fine-tuning embedded visual
prompts using a pre-trained Vision Transformer (ViT)
backbone supervised by downstream objectives, aiming to
improve transfer learning performance. PromptCAL [36]
was the first to adapt VPT to the GCD setting. It utilizes
prompts to provide a weaker semantic supervision signal.
In [24], conceptional contrastive learning is used, consid-
ering the relationships between instances and improving
clustering accuracy compared to methods solely relying on
instance-level contrastive learning.

Contrastive Learning: Contrastive Learning is a
commonly used unsupervised learning technique which
involves learning representations of data by contrasting
similar and dissimilar pairs of data. CPC [23] introduced
InfoNCE, a contrastive loss that can be used to learn
representations of speech that is invariant to certain factors
of variation, such as the identity of the speaker or the
language of the speech. SimCLR [3] established the
importance of data augmentations, a large batch size, and a
modified loss function that encouraged the representations
of two different views of the same image to be similar,
while pushing apart the representations of different images.
Weakly-supervised and completely supervised variations of
this loss [17, 38] have also been proposed, which consider
images of the same class to be positives if the labels are
available, on top of using just the augmentations.

Neighborhood Clustering: Several works [34, 35] in
Source-Free Domain Adaptation exploit the intrinsic
neighborhood structure to learn better representations in the
feature space. In the context of contrastive learning, [7, 25]
use of the nearest neighbors of a sample in the feature space
as positives to cover for more semantically meaningful vari-
ations within a class than just augmentations. In FNC [15],
the authors show how performance can be improved
significantly by identifying and repelling nearest neighbors
that are false negatives and true positives appropriately.
Notably, the NNCLR [7] loss uses the nearest neighbors
of a sample stored in a support set over the training period
as positives in the contrastive loss, which improves the
performance significantly.
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Figure 1. Illustration of the proposed AMEND framework. Images in a batch are passed through the ViT-DINO backbone (f ) and the
MLP projection head (ϕ) to obtain the corresponding feature representations h and z respectively. Here, N represents the module used for
computing neighbors. An image xi is initially subjected to module N to enumerate the nearest neighbors of the image. After obtaining
the nearest neighbors xq , we again employ the module N for obtaining the expanded neighbors xp (neighbors of the neighbors). The
feature representations (zi, z′i, zq, zp) obtained from the MLP projection head (ϕ) are then used to compute the representation loss LEND .
The feature representation of the image and its augmentation (hi and h′

i) obtained from the ViT-DINO backbone are used to obtain soft
class predictions with the help of Prototype Vectors. The Soft class predictions are then in turn used to compute the classifier loss Lcls.
Lastly,the adaptive margin regularizer, LAM is calculated using the prototype vectors, C.

Margin Regularization: Computing class-specific or
adaptive margins has proved to be very successful in han-
dling imbalances in training data. The work in [5] proposed
a loss that uses an angular margin penalty which can be
adjusted dynamically during training based on the angular
distance between the feature vectors of the query and the
positive samples to improve the discriminative power of
the learned representations. In [12], the authors propose
a max-margin framework based on an affinity measure
in the Euclidean space that jointly reduces intra-class
variations and maximizes inter-class distances . Extending
this idea, [6] computes the regularizer from the class-wise
training data distribution in the zero-shot sketch-based
image retrieval setting in order to handle class imbalances
by enforcing a broader margin for the classes with a lesser
number of training samples. Our Adaptive Margin loss is
an extension of the ideas presented in [6, 12] to the GCD
setting, where we focus on spreading out the prototypes
in the feature space taking the similarities between the
prototypes into consideration.

3. Proposed AMEND Framework
Consider a dataset D containing two parts: a labeled set

DL and an unlabeled set DU , where the objective is to clus-

ter all the images in the unlabeled set. The labeled and un-
labeled set can be described as follows: DL = (xi, yi)

N
i=1 ∈

X×YL and DU = {xi}Mi=1. The images in the unlabeled set
belong to classes YU , and YL ⊂ YU . During training, the
model does not have access to the labels in DU , because it is
tasked with predicting them at test time. Many techniques
have been proposed [9, 11, 30] to calculate the total number
of classes k in DU . In this work, as in [36], we assume that
k is known apriori or has been estimated using one of the
existing approaches.

This proposed framework (AMEND) (Figure 1) makes
two significant contributions, namely (i) Neighbors and ex-
panded neighborhood for obtaining robust representations;
and (ii) Adaptive Margin between the class prototypes to
reduce the confusion between the adjacent classes, thereby
improving the class discovery. We describe these two com-
ponents in detail below:

3.1. Neighbors and Expanded neighborhood

Contrastive learning has been very successful in cluster-
ing input data, thereby discovering new classes for GCD
task [8, 26, 30, 33]. For unlabeled data, usually, the origi-
nal image and its augmentations are used as positive pairs,
while for the labeled data (as in supervised contrastive
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learning), other samples from the same class can be utilized.
Because of this difference in the way of handling samples
from old (seen) and new (unseen) classes, the performance
of the old classes is in general much better than that of the
new classes. To bridge this difference in performance and
also inspired by the recent GCD approaches, we propose
to use the neighborhood information of each sample for all
classes, which will give multiple positives for all data on
top of their augmentations. Here, we propose not only us-
ing the nearest neighbors but also the expanded neighbors
as positive pairs. Exploring the neighborhood of the sam-
ples helps to significantly increase the semantic knowledge
of the latent space learned by the model.

Given an image xi, we obtain the l2 normalized feature
zi = ϕ(f(xi)) by using a feature extraction backbone f
and an MLP projection head ϕ. To store a subset of these
normalized features, we employ a feature bank denoted as
F. To compute the neighbors of an image xi, we compute
the cosine similarities between its normalized features and
all the samples present in the feature bank F. Finally, we
select the top n samples with the highest cosine similarity
values as the neighbors of xi. We denote these neighbors
as { xj ;∀j ∈ N(xi) }, which are used along with the aug-
mentations x′i as positive instances, thus allowing for a com-
prehensive characterization of its neighborhood. Now, the
neighborhood contrastive loss can be formally written as:

LN
i = − 1

|N(xi)|
∑

q∈N(xi)
log

exp(zi · zq/τ)∑
n 1[n̸=i] exp(zi · zn/τ)

(1)

where q ∈ N(xi) and |N(xi)| = n, number of neighbors
that are taken as positives.

To enhance information aggregation, one simple strat-
egy is to consider a greater number of nearest neighbors.
However, as the neighborhood expands, it is more likely to
encompass data points belonging to different classes, which
hampers the desired objective of preserving class consis-
tency. An effective alternative to capture additional target
features is by leveraging the concept of expanded neigh-
bors [34]. Here, we consider M-nearest neighbors of each
neighbor in the original set, { xj ; j ∈ N(xi) }. By doing
so, we obtain a larger pool of expanded neighbors that offer
a more comprehensive representation of the data. The in-
dex set of the expanded neighbors of image xi are defined
as EM (xi) = N(xj);∀j ∈ N(xi) . In essence, instead
of directly increasing the size of the initial neighborhood,
we focus on exploring the surrounding data points in a con-
trolled manner. This way, the expanded neighbors include
relevant samples that can contribute to a more robust and ac-
curate analysis while still maintaining the principle of class
consistency. The expanded neighborhood loss is formally

written as :

LEN
i = − 1

|EM (xi)|
∑

q∈EM (xi)
λen ∗

log
exp(zi · zq/τ)∑

n 1[n̸=i] exp(zi · zn/τ)

(2)

where |EM (xi)| = M , the number of expanded neighbors
that are taken as positives, λen denotes the affinity value
used for weighing the expanded neighborhood loss. While
the affinity value used for all expanded neighbors are iden-
tical, it is important to note that they may not have equal
significance. Upon closer inspection of the expanded neigh-
bors, denoted as { xk ; k ∈ EM (xi) }, it becomes evident
that certain neighbors might appear multiple times. For in-
stance, a neighbor xm could be the nearest neighbor for both
xh and xj , where h and j belong to the set N(xi). Further-
more, the nearest neighbors themselves can also be consid-
ered as expanded neighbors. These duplicated neighbors
have the potential to be semantically closer to the anchor
image xi by contributing to larger affinity values for these
expanded neighbors, which may capture the inherent cluster
structure and potentially establish stronger semantic con-
nections. Hence, our total neighborhood loss is given by:

L̂END
i = LN

i + LEN
i (3)

When considering the neighbor set N(xi) and expanded
neighbor set EM (xi) as positives, we carefully select nega-
tives from the feature bank F, to avoid inadvertently clas-
sifying potential positives as negatives. To mitigate this
risk, we exclusively designate samples from mini-batch B
as negatives. However, we exclude the augmentation (x′

i)
and the top n neighbors within the mini-batch from the neg-
ative set. This reduces the likelihood of mistakenly labeling
potential positives as negatives within the mini-batch. This
approach helps to maintain more reliable discrimination be-
tween positive and negative pairs.

For labeled data, we use supervised contrastive loss as
originally given in [30], which can be written as:

Ls
i = − 1

|M(i)|
∑

q∈M(i)
log

exp(zi · zq/τ)∑
n 1[n ̸=i] exp(zi · zn/τ)

(4)

where M(i) denotes a set of indices of all the other labeled
samples belonging to the same class as that of xi in the mini-
batch B. The main difference between supervised and unsu-
pervised contrastive loss is that the positive examples are
matched by their labels in the supervised case. Hence, the
final representation learning loss can be expressed as:

LEND = (1− λ)
∑
i∈B

L̂END
i + λ

∑
i∈BL

Ls
i (5)

where BL denotes the labeled subset of the mini-batch B
and λ is the weight coefficient balancing the loss.
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CIFAR10 [20] CIFAR100 [20] Imagenet-100 [28] Stanford Cars [19] CUB [32] FGVC-Aircraft [22] Herbarium-19 [27]
|YL| 5 80 50 98 100 50 341
|YU | 10 100 100 196 200 100 683
|DL| 12.5k 20k 31.9k 2.0k 1.5k 1.7k 5.0k
|DU | 37.5k 30k 95.3k 6.1k 4.5k 8.9k 25.4k

Table 1. Datasets used for our experiments. Their standard split in terms of the number of labeled and unlabeled classes (|YL|, |YU |) and
the number of images in the labeled and unlabeled set (|DL|, |DU |) are given.

3.2. Adaptive Margin Regularizer

On the classification front, inspired by [33] to train an
end-to-end framework, we use a parametric classifier that
uses prototype vectors that act as representatives of each
class. The motivation for using an Adaptive Margin Reg-
ularizer on top of the existing classification loss is that if
the prototypes of each class are well separated, the samples
belonging to those classes will be better clustered.

In [12], the issue of data imbalance in image classifica-
tion is tackled by repositioning the prototypes to be evenly
distributed across the feature space. On the other hand, [6]
proposes an adaptive approach to adjust the class proto-
types, taking into consideration the data imbalance present
in the training set. This technique ensures that minority
class prototypes have more margin around them, reducing
the likelihood of confusion between these classes with their
adjacent ones. In our setting, since we don’t have access
to the classwise data imbalance information, we design our
regularizer to adjust the prototypes adaptively by taking the
current similarity between the prototypes into considera-
tion.

A set of prototypes {ci}Ci=1 are randomly initialized such
that they correspond to each of the classes present in the
dataset. C denotes the total number of classes (seen and
unseen combined). The objective of the regularizer is to in-
crease the angular separation when a pair of prototypes are
very similar. We adjust the relative distance between ci’s
such that they are at least separated by a distance greater
than the mean distance between all pairs of prototypes. As
the prototypes are l2 normalized, the dot product of the
prototypes denotes the cosine of the angular separation be-
tween them, minimizing which maximizes the angular sep-
aration. The adaptive margin regularizer can be written as

LAM =
1

C

∑
i<j

[−||ci − cj ||22 + dmean +∆ij ]

∀j ∈ 1, ..., C (6)

where ∆ij = ci · cj which tends to one when the prototypes
ci and cj are very similar. Here, dmean is the mean distance
between each pair of the prototypes and it is used to stabilize

the value of the regularizer. It is formally described as:

dmean(C) =
2

C2 − C

∑
i<j

[−||ci − cj ||22],∀j ∈ 1, ..., C

(7)

3.3. Final Loss

The classification objective from [33] comprises of
cross-entropy loss between the soft class predictions pi and
ground truth labels yi (for labeled data) or pseudo-labels qi

produced by self-distillation (for unlabeled data). The soft
class predictions are obtained by applying softmax on co-
sine similarity between prototypes and the hidden features
hi = f(xi), scaled by the temperature τs:

p(k)
i =

exp(hi · ck/τs)∑
k′ exp(hi · ck′/τs)

(8)

where hi, ck and ck′ are l2 normalized. The classification
loss is formally written as:

Lcls = λcls

 1

|Bl|
∑
i∈Bl

l(yi,pi)

+

(1− λcls)

(
1

|B|
∑
i∈B

l(q′
i,pi) + εH(p)

)
(9)

where l(y,p) refers to the cross-entropy loss between y and
p, and H(p) refers to the mean-entropy maximization reg-
ularizer [1], where p = 1

2|B|
∑

i∈B(pi + p′
i); q′

i is a soft
pseudo-label produced by an augmentated version of xi us-
ing a model with a sharper temperature τt, and yi denote the
one hot encoding of the ground truth of xi; ε and λcls are
the corresponding weight coefficients. The overall objective
can be written as:

LAMEND = Lcls + λ′LAM + LEND (10)

where λ′ is the weight coefficient for the adaptive margin
regularizer.
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4. Experiments
Here, we perform extensive experiments to evaluate

the proposed framework. First, we describe briefly the
different datasets used in this work.

Data Description: We have performed experiments on
three generic and four fine-grained benchmark datasets.
The generic datasets used are CIFAR10, CIFAR100 [20]
and ImageNet-100 [28], while the fine-grained datasets,
namely Stanford Cars [19], CUB [32], FGVC Aircraft [22]
and Herbarium-19 [27] are obtained from the Semantic
Shift Benchmark (SSB) [31]. The presence of data imbal-
ance is exclusively observed in the Herbarium-19 dataset,
which is characterized by long-tailed data distribution. The
dataset details are provided in Table 1.

Taking the training set of these datasets as D, we sample
a set of classes to belong to YL. These are referred to as
the seen classes. We further sample 50% of the images
for each seen class. These images then form the labeled
set DL, while all the other images form the unlabeled set
DU . In the fine-grained datasets, there is a clear semantic
variation across DL and DU due to the use of SSB [31].
Thus, we can evaluate if the model is learning to categorize
based on clear semantic differences rather than because
of underlying correlating factors present in the generic
datasets. It is also assumed that there is access to a disjoint
validation set DV = (xi, yi)

N ′

i=1 ∈ X × YU , where a subset
of labels are masked to get the unlabeled set.

Evaluation Protocol: The model is trained using
both the labeled and unlabeled data in the training set, D,
and evaluated on the unlabeled data, DU . The clustering
accuracy (ACC) is calculated during test time by making
use of the ground truth labels yi and the predicted cluster
labels ŷi:

ACC = max
p∈P(YU )

1

|DU |

|DU |∑
i=1

1 {yi = p (ŷi)} (11)

where P (YU ) denotes the set of all possible permutations
of the class labels in DU . The optimal assignment is calcu-
lated using the Hungarian algorithm [21].

The ACC is reported individually over the ‘Old’ classes
(indicating the instances in DU that belong to the seen
classes YL) and the ‘New’ classes (indicating the instances
in DU that belong to the unseen classes in YU \YL). Finally,
the ACC over the entire DU is reported under ‘All’. The
model used for obtaining the performances reported follows
the same protocol used by SOTA (PromptCAL [36]). The
authors in [33] have employed a different protocol hence
the performances are not comparable.

Implementation Details: A ViT-B-16 model pre-trained

with DINO on Imagenet is used as the backbone as in
the recent works [8, 30, 33], and a three-layer multi-layer
perceptron (MLP) is used as the projection head, which
produces a 256-dimensional feature vector as the output.
We only fine-tune the last block of the ViT backbone.
During training, a batch size of 128 is employed, and
a feature bank with a capacity of 2048 is utilized. We
follow the FIFO (First In First Out) queuing policy for
storing batches of normalized features in the feature bank.
The initial learning rate is set to 0.1 which is gradually
annealed using a cosine scheduler with warm restarts. The
weights corresponding to the representation loss and the
regularizer, λ and λ′ are set to 0.35 and 1.0, respectively.
The affinity value λen is set to 0.1. The weight for the
mean entropy maximization regularizer, ε, is set to 2. We
train all the datasets for 200 epochs. For all the datasets,
the number of expanded neighbors is taken as 5. The
number of neighbors for all the fine-grained datasets is
taken as 4. For the coarse-grained datasets, we use the
number of neighbors as 5 for CIFAR10 and CIFAR100,
and 6 for Imagenet-100. Though the number of neighbors
for which the best performance is obtained varies slightly
for different datasets, we observe (from analysis section)
that the performance varies gracefully when the number of
neighbors and expanded neighbors are varied. We conduct
all our experiments on a single NVIDIA RTX A5000 GPU.

4.1. Comparison with Existing Approaches:

Table 2 presents the results of the proposed AMEND
framework on three generic and three fine-grained datasets,
along with comparisons with recent state-of-the-art meth-
ods. We observe that the proposed framework signifi-
cantly outperforms the SOTA approaches on all the three
fine-grained datasets, namely CUB, FGVC aircraft and
Stanford Cars. For example, for the challenging Stand-
ford Cars dataset, AMEND outperforms the state-of-the-
art PropmtCAL, which is also the closest competitor by
6.2%. The performance comparison on the challenging and
highly imbalanced Herbarium-19 dataset is reported in Ta-
ble 3. We observe that the proposed framework with its ex-
panded neighbors and adaptive margin for handling confus-
ing classes can effectively address the issues posed by im-
balanced data, achieving the highest performance of 44.2%,
which is significantly higher than the second-highest per-
formance of 37% obtained by PromptCAL. For the generic
datasets, the AMEND framework outperforms all the other
approaches for the largest and most challenging ImageNet-
100 dataset, while it is only second (and very close) to
PromptCAL for CIFAR10 and CIFAR100 datasets.

Figure 2 shows a few qualitative results on the CIFAR10
dataset. The first (last) five columns shows examples of
images which are correctly (incorrectly) classified by the
proposed AMEND framework. The top two rows show
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CIFAR10 CIFAR100 Imagenet-100 CUB FGVC Aircraft Stanford CarsMethods All Old New All Old New All Old New All Old New All Old New All Old New
k-means 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3 34.3 38.9 32.1 16.0 14.4 16.8 12.8 10.6 13.8
RankStats+ [37] 46.8 19.2 60.5 58.2 77.6 19.3 37.1 61.6 24.8 33.3 51.6 24.2 26.9 36.4 22.2 28.3 61.8 12.1
UNO+ [9] 68.6 98.3 53.8 69.5 80.6 47.2 70.3 95.0 57.9 35.1 49.0 28.1 40.3 56.4 32.2 35.5 70.5 18.6
ORCA 81.8 86.2 79.6 69.0 77.4 52.0 73.5 92.6 63.9 35.3 45.6 30.2 22.0 31.8 17.1 23.5 50.1 10.7
GCD [30] 91.5 97.9 88.2 73.0 76.2 66.5 74.1 89.8 66.3 39.0 57.6 29.9 45.0 41.1 46.9 39.0 57.6 29.9
XCON [8] (*) 96.0 97.3 95.4 74.2 81.2 60.3 82.4 90.7 78.3 52.1 54.3 51.0 47.7 44.4 49.4 40.5 58.8 31.7
DCCL [24] 96.3 96.5 96.9 75.3 76.3 70.2 80.5 90.5 76.2 63.5 60.8 64.9 - - - 43.1 55.7 36.2
PromptCAL [36] 97.9 96.6 98.5 81.2 84.2 75.3 83.1 92.7 78.3 62.9 64.4 62.1 52.2 52.2 52.3 50.2 70.1 40.6
AMEND (Ours) 96.8 94.6 97.8 81.0 79.9 83.3 83.2 92.9 78.3 64.9 75.6 59.6 52.8 61.8 48.3 56.4 73.3 48.2

Table 2. Performance (ACC %) of the AMEND framework and comparisons with the state-of-the-art approaches on various datasets. (*)
XCON uses a batch size of 256 while other methods use a batch size of 128.

Figure 2. Few examples of correct (first five columns) and incorrect classification (last five columns) by the proposed AMEND framework
for CIFAR10 dataset. The top two rows are for the seen classes and the bottom two rows are for the unseen classes.

Herbarium-19Methods All Old New
k-means 13.0 12.2 13.4
RankStats+ [37] 27.9 55.8 12.8
UNO+ [9] 28.3 53.7 14.7
ORCA 20.9 30.9 15.5
GCD [30] 35.4 51.0 27.0
PromptCAL [36] 37.0 52.0 28.9
AMEND (Ours) 44.2 60.5 35.4

Table 3. Performance of the AMEND framework on the challeng-
ing and imbalanced Herbarium-19 dataset.

examples from seen classes, while the bottom two rows
are examples from unseen classes. The tSNE plots for the
Baseline and the AMEND framework is shown in Figure 3.
We observe that the proposed framework is able to separate
all the seen and unseen classes much better compared to
the baseline.

Comparison with PromptCAL [36]: We observe
from Tables 2 and 3 that the proposed AMEND framework

Figure 3. tSNE [29] visualization of the representations obtained
from the ViT backbone for CIFAR10 for the Baseline and the pro-
posed AMEND framework. We observe that adding the neighbors
along with the adaptive margin regularizer leads to well-separated
clusters, with semantically similar classes clustering together.

outperforms all the existing approaches for five datasets,
and achieves close performance to the SOTA PromptCAL
for the remaining two. Here, we highlight the advantages of
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our approach, especially compared to PromptCAL, which
lies in its simplicity and efficient implementation.

One key advantage of our method is its memory effi-
ciency. We utilize a single feature bank to store 2048 fea-
tures. In contrast, PromptCAL employs two separate fea-
ture banks, each with a size of 4096, for storing class em-
beddings and prompt embeddings, respectively. In terms
of hardware requirements, all our experiments are con-
ducted using a single NVIDIA RTX A5000 GPU with a
capacity of 24 GB. In comparison, PromptCAL requires
48GB GPU. PromptCAL requires warmup training of the
prompts for 200 epochs on the ImageNet-1K dataset before
it can be trained on the given dataset in hand. In addition,
the second training stage requires 70 epochs for generic
datasets and 100 epochs for fine-grained datasets. The
AMEND framework has no such requirement of warmup
training and uses a single training stage for 200 epochs for
all datasets. Thus, in addition to the advantages of being
significantly less resource intensive, the proposed simple,
yet effective AMEND framework outperforms the current
state-of-the-art for five out of seven datasets, and performs
at par on the remaining two.

5. Further Analysis
Here, we provide additional analysis to better understand

the different components of the proposed framework. This
analysis is done on CUB and Stanford Cars datasets.

Ablation Study: To evaluate the effectiveness of the
different components of the proposed AMEND framework,
we perform an ablation study and the results are reported
in Table 4. The feature bank size is 2048, while the number
of neighbors and expanded neighbors are taken as 4 and 5
respectively. We report results for the following: Baseline
denotes the base framework which utilizes feature bank
and data augmentations. We observe from the second
row (Baseline + Neighbors) that adding the neighbors
(nearest and expanded) help to improve the performance.
Further incorporating the adaptive margin regularizer i.e.
the complete AMEND framework gives the best overall
performance. For the Stanford Cars dataset, inclusion of the
neighbors improved the baseline performance from 52.1%
to 53.2%. Finally, with the adaptive margin regularizer, the
performance improves further by 3.2 %, thus achieving the
state-of-the-art performance for this dataset.

Number of Neighbors and Expanded Neighbors: Here,
we analyze the effect of the number of neighbors and ex-
panded neighbors on the classification accuracy and the re-
sults are reported in Table 5. We observe that the best over-
all performance for different datasets are obtained with the
same number of expanded neighbors (= 5). But the number
of neighbors which gave the best accuracy varied slightly

Methods CUB Stanford Cars
All Old New All Old New

Baseline 62.2 67.9 59.4 52.1 73.2 42.0
Baseline+Neighbors 63.1 72.3 58.6 53.2 74.2 43.0

AMEND (Ours) 64.9 75.6 59.6 56.4 73.3 48.2

Table 4. Ablation Study: Baseline refers to the base network
which uses feature bank and augmentation. We observe from the
second row that utilizing the neighbors and expanded neighbors
improves the performance. Adding adaptive margin to separate
confusing classes further improves the performance (third row).

Neighbors Expanded
Neighbors

CUB Stanford Cars
All Old New All Old New

4 5 64.9 59.6 56.4 56.4 73.3 48.2
5 5 62.8 71.2 58.6 52.6 73.1 42.7
5 4 62.1 71.2 57.6 54.5 72.9 45.7
5 6 62.7 71.7 58.2 57.7 76.3 48.8

Table 5. Performance of AMEND framework for different num-
bers of neighbors and expanded neighbors. We observe that the
performance varies gradually with these hyper-parameters.

with the datasets. Still, the performance is quite stable with
varying the number of neighbors. Finding the optimal num-
ber of neighbors can be a future research direction.

6. Conclusion

In this work, we propose a simple, yet effective AMEND
framework for the task of generalized category discovery.
Specifically, we propose to incorporate neighborhood infor-
mation using not only the nearest neighbors, but also ex-
panded neighbors in the contrastive learning framework for
generating robust features. Additionally, we used a class-
wise adaptive margin regularizer to generate more discrim-
inative feature representations, particularly for fine-grained
datasets and confusing classes. The regularizer aimed at in-
creasing the angular separation among the prototypes of all
classes. We report results of extensive evaluation on sev-
eral generic and fine-grained datasets. The AMEND frame-
work achieves second best performance for two datasets,
and establishes the new state-of-the-art performance for five
datasets, including the challenging Herbarium-19 dataset.
The AMEND framework offers several additional advan-
tages in terms of less memory requirements, less hardware
requirement as well as significantly lower training time as
compared to the existing approaches.
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