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Abstract

Many tasks in video analysis and understanding boil down
to the need for frame-based feature learning, aiming to en-
capsulate the relevant visual content so as to enable sim-
pler and easier subsequent processing. While supervised
strategies for this learning task can be envisioned, self and
weakly-supervised alternatives are preferred due to the dif-
ficulties in getting labeled data. This paper introduces LR-
Prop – a novel weakly-supervised representation learning
approach, with an emphasis on the application of tempo-
ral alignment between pairs of videos of the same action
category. The proposed approach uses a transformer en-
coder for extracting frame-level features, and employs the
DTW algorithm within the training iterations in order to
identify the alignment path between video pairs. Through
a process referred to as “pair-wise position propagation”,
the probability distributions of these correspondences per
location are matched with the similarity of the frame-level
features via KL-divergence minimization. The proposed al-
gorithm uses also a regularized SoftDTW loss for better tun-
ing the learned features. Our novel representation learning
paradigm consistently outperforms the state of the art on
temporal alignment tasks, establishing a new performance
bar over several downstream video analysis applications.

1. Introduction

As in many other domains, deep learning techniques have
brought a revolution to the field of video analysis and un-
derstanding in the past several years [23, 24, 41, 42]. Ap-
plications such as video classification [19, 43, 46], action
detection [18, 25, 47], video captioning [33, 35], forecast-
ing [6, 44], and many others, all have been getting new and
highly effective AI-based solutions with unprecedented per-
formance. Interestingly, within this impressive progress, the
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Figure 1. Video alignment (Pouring dataset) using LRProp fea-
tures and the DTW algorithm. The first row shows a selected set
of key events in a randomly selected video; the bottom shows the
alignment results of these events with five other randomly chosen
videos. As can be seen, LRProp leads to a successful capture of
the key events in the query. Note that we show a single time-line
for all the five selected videos for simplicity.

task of temporal alignment of video pairs has received rel-
atively little attention. This paper offers a novel weakly-
supervised approach towards representation learning for
video, focusing on the temporal alignment application.
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Many events occur in a specific temporal sequence, such as
specific actions in sport activity (e.g., baseball swing), por-
tions of a person’s daily routine, various repetitive medical
procedures, sea tides, intervals within traffic control videos,
or even simple actions such as pouring a glass of fluid. In
all these and other cases, videos that capture such visual
content contain not only information about the cause and
effect of these events, but also the potential for temporal
correspondences across multiple instances of the same pro-
cess. For example, the key moment of reaching for a con-
tainer and lifting it off the ground are common to all pour-
ing sequences, despite differences in visual factors such as
container style, illumination, surrounding items, and event
speed. Broadly speaking, a reliable alignment of such
videos can open the door to new abilities in video anal-
ysis, such as detecting anomaly behavior, enabling quick
search of specific sub-events, identifying the phase within
the whole event, measuring distances between videos for
their clustering, and so much more.

So, how can videos be aligned? Earlier work [7,14,30] sug-
gests to address this task by first learning spatio-temporal
feature representations for each video frame. Given such
representations, their sequential matching over time, which
takes into account temporal correspondences, would re-
sult in the desired alignment [14, 20, 34]. This temporal
matching could be achieved in a variety of ways, ranging
from the simple nearest neighbor search, all the way to Dy-
namic Time Warping, DTW [2]. The sought representations
should capture key visual information while discarding ir-
relevant details, and do this while also providing a dimen-
sionality reduction for ease of later processing.

Representation learning could be achieved in a supervised
fashion when frame-by-frame alignment is readily avail-
able. In this case, our task simply involves learning a com-
mon embedding space from pairs of aligned frames. A few
approaches have been proposed for such supervised action
recognition and segmentation [4,15,38]. However, in many
real-world sequences, such frame-by-frame alignment does
not exist naturally. Obtaining labels for every frame in a
video might be time-consuming and ill-defined task, as it is
unclear what set of labels would be necessary for a com-
plete understanding of the fine-grained details of the video.
A possible remedy to the above could be to artificially ob-
tain aligned sequences by recording the same event from
multiple cameras, but this method may not capture all the
variations present in naturally occurring videos. All this
brings us to self - or weak-supervision alternatives, as prac-
ticed in [7,13,20,26,28]. These methods may rely on video
augmentation or use a SoftDTW [11] loss for training the
representations.

Inspired by the above described work, we present LRProp
(Learning Representations by position PROPagation) – a

novel weakly-supervised approach that does not require ex-
plicit frame correspondences between different video se-
quences. To accomplish our goal, we adopt the trans-
former encoder [39], which has demonstrated effectiveness
in extracting meaningful frame-level features, as shown in
[1, 7, 31]. Our experiments suggest that the transformer en-
coder is particularly beneficial for video alignment, and we
believe that this is due to its positional encoding. In each
step within the learning process, our method involves taking
pairs of videos that depict the same action category, feeding
them into the transformer encoder to generate frame-level
features, and using the DTW algorithm [2] to produce a
path aligning the two. We use this alignment path to de-
fine a pair-wise position propagation (definitions follow),
which we utilize to establish a soft one-to-one linkage be-
tween pairs of frames. This pair-wise position propagation
is used to define a prior distribution for the correspondence
between two distinct frames from different videos, and we
minimize the KL-divergence between this prior and a prob-
ability distribution over the similarity of the frame-level fea-
tures (extracted by the transformer encoder) of the specified
pair of frames. Our learning also employs the SoftDTW al-
gorithm [11] with appropriate regularization to prevent triv-
ial solutions, and to learn a more accurate alignment path
for pairs of videos. Figure 1 demonstrates temporal align-
ment using the features extracted by the proposed method.

To summarize, our contributions include the following,
1) we present a general weakly-supervised framework for
learning frame-wise representations with a focus on video
alignment. 2) The proposed pair-wise position propaga-
tion is shown to result in features that offer better tempo-
ral awareness compared to prior work. 3) Our approach
achieves superior performance to the state-of-the-art on var-
ious temporal understanding tasks on the Pouring [36] and
PennAction [49] datasets, setting a new performance bench-
mark for downstream tasks.

2. Related Work

Since labeled data can be expensive and time-consuming to
collect and annotate, and may not always be available in suf-
ficient quantities for certain tasks, self-supervised learning
has become a widely studied area in the field of deep learn-
ing. As a result, numerous pretext tasks have been proposed
for image-based methods to achieve self-supervision. These
include relative patch prediction [12], jigsaw puzzle solv-
ing [32], colorization [48], rotation prediction [10], instance
discrimination using strong data augmentation [8], knowl-
edge distillation [3, 9], and more. These methods and many
others have been shown to be highly effective in various
downstream tasks. In this study, we investigate the use of
self-supervised and weakly-supervised (definitions follow)

6910



learning techniques to create representations from videos,
taking advantage of both the spatial and temporal informa-
tion contained within the video data.

As we transition from images to video, various supporting
tasks that produce supervision signals have been employed
in representation learning for video frames. These include
predicting the sequence of frames in a video [37, 40] or
predicting audio from video [45]. Recently, the incorpo-
ration of temporal ordering has been demonstrated to be a
strong pretext task to obtain meaningful video representa-
tions. Sermanet et al. [36] proposed Time-Contrastive Net-
works (TCN), which uses attraction and repulsion between
temporally close and far frames, respectively, in order to
learn useful features. Sal [30] proposed to learn features
by sampling tuples of frames and predicting whether the
tuple is in the correct temporal order (obtaining the labels
using the frame indices). Another related work (TCC) was
proposed by [14], which learns representations by finding
frame correspondences across videos.

In this context, we should mention two recent works, SCL
and VAVA [7, 27], which also achieved impressive results
in self-supervised learning for videos. Chen et al. [7] pro-
posed strongly augmenting the input both temporally and
spatially, and using a transformer model [39] as an encoder,
which has been used for videos in recent works [1, 31].
They also used a contrastive loss function to encourage
the embedding of nearby frames to be more similar than
those that are far apart. Liu et al. [27] attempted to learn
video representations while considering the possibility of
background frames, redundant frames, and non-monotonic
frames when aligning two videos in time.Whereas some
work, as the above, assumes a self-supervised setting, in this
paper we consider a weakly-supervised alternative, as de-
scribed in [5]. More specifically, we refer to cases in which
the videos of interest consist of the same action category
sequence. In these cases, we are given an ordered list of
actions during training, but the exact temporal boundaries
or paste of each action are not provided. For example, in a
video of pouring wine, the weak supervision might include
the sequence “take the bottle, pour the wine, place the bot-
tle back.” This leads us to a powerful pretext task known as
temporal video alignment, in which multitude of such cor-
responding videos can be leveraged for supervised learning.

Though there is a significant amount of literature on time
series alignment, only a few of these ideas have been ap-
plied to aligning videos. While traditional methods for time
series alignment, such as DTW [2], are not differentiable
and therefore cannot be used directly for training neural net-
works, a smooth approximation of DTW, called SoftDTW,
was introduced in [11]. Several recent papers [17, 20] at-
tempted to apply a soft DTW approximation in video repre-
sentations learning. As an example, we mention Haresh et

al. [20], which introduced a technique called LAV (Learn-
ing by Aligning Videos in Time) for learning representative
frame embeddings by aligning videos in time using Soft-
DTW during training. However, their method, and other
methods that use a soft DTW approximation during train-
ing, do not take advantage of the alignment path explicitly
during optimization. In contrast, our approach, as unfolded
in the next section, integrates both the SoftDTW cost func-
tion and the DTW alignment path into the optimization pro-
cess.

3. Method

In this section we present Learning Representations by po-
sition PROPagation, LRProp, a framework for learning
frame-wise video representations. We learn an embedding
space where videos with similar content can be aligned
in time; this setting is commonly referred to as weakly-
supervised learning, as discussed in Section 2. More specif-
ically, our method involves taking pairs of videos that depict
the same action category, feeding them into the transformer
encoder to generate frame-level features for each, and using
the DTW algorithm [2] to produce a path aligning the two.
We use this alignment to define a pair-wise position prop-
agation, and establish a soft one-to-one linkage between
pairs of frames. We minimize the KL-divergence between a
reference distribution and the probability function over the
similarity of the frame-level features of the specified pairs
of frames. We also use the SoftDTW algorithm [11] with
appropriate regularization to prevent trivial solutions as part
of our training process. A visualization of our pair-wise po-
sition propagation method is depicted in Figure 2. In what
follows, we detail each of the above-described ingredients.

3.1. Notations and Definitions

We begin by introducing the necessary notations and def-
initions for our discussion. Let V1 and V2 be a pair1 of
videos, where each is represented as Vi ∈ RFi×C×W×H .
Here, Fi represents the number of frames in the ith video
and C, W , and H are the number of channels, width, and
height of each frame, respectively. To begin, we perform
the same random sampling and data augmentation process
described in [7]. This process takes a video Vi and uses
temporal random cropping to generate two cropped videos
of length T , (V i

1 , S
i
1) and (V i

2 , S
i
2), where T is a hyper-

parameter, and Si
1/2 ∈ RT hold the frame indices. Next,

several temporal-consistent spatial data augmentations are
performed on each of the two sampled videos. After this
step on V1 and V2, we are left with (V 1

1 , S
1
1), (V

1
2 , S

1
2), and

1Although discussing video pairs per training step, our approach ex-
tends readily to any number of videos.
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(V 2
1 , S

2
1), (V

2
2 , S

2
2). We will use hereafter capital Latin let-

ters to index the different videos, and greek letters to index
the samplings.

We define a neural model, fθ : RT×C×W×H → Z , which
maps videos from an input space to an embedding space Z1.
We adapt the transformer model [39] used by [7]. Assuming
the existence of a prior distribution that represents the sim-
ilarity between a frame, indexed [SA

α ]i, and a given frame,
indexed [SB

β ]j , which we define by pA,B,α,β(i|j), our goal
is to enforce the model’s embedding (fθ(V ) ≜ Z) similar-
ity to follow this distribution. We propose to achieve this by
minimizing the KL-divergence between p and the following
distribution:

qθ,A,B,α,β(i|j) ≡ Qθ(i|j) = (1)

exp(sim([ZB
β ]j , [Z

A
α ]i)/τ)∑T

i′=1 exp(sim([ZB
β ]j , [Z

A
α ]i′ )/τ)

,

where sim denotes the cosine similarity (sim(u,v) =
uTv/∥u∥∥v∥) and τ is a hyper-parameter controlling the
smoothness of the distribution. The question remains, what
would be a good prior for a given pair of videos?

3.2. Prior Distribution for Frames in the Same
Video

Let (ZA
α , S

A
α ), (Z

B
β , S

B
β ) be a given pair of embeddings, and

their corresponding chosen indices. Following [7], in the
case where A = B (i.e., two sampled versions of the same
video), the prior distribution is chosen as

pA,B,α,β(i|j; A = B) ≡ PA=B(i|j) = (2)

exp(−([SB
β ]j − [SA

α ]i)
2/2σ2)∑T

i′=1 exp(−([SB
β ]j − [SA

α ]i′ )
2/2σ2)

.

For the frame j in video B sampled version β, this expres-
sion forms a Gaussian of width σ for nearby frames, cen-
tered around [SB

β ]j . Using this prior and optimizing the fol-
lowing objective,

Lj
A=B = DKL

(
PA=B(·|j) ∥ Qθ(·|j)

)
, (3)

we enforce that the similarity between the embeddings of
a given frame and its neighboring ones in the same video,
follow such a Gaussian distribution. This assumption is
reasonable, as adjacent frames are more correlated than far
away ones. By accumulating the above over j,

LSame(PA=B,Qθ) =
1

T

T∑
j=1

Lj
A=B, (4)

we obtain the first loss component, which considers two dif-
ferent sampled versions of the same video. Observe that we
omit the indices α, β for simplicity.

1In our implementation Z = RT×128.

3.3. Prior Distribution for Frames in Different
Videos

In the case where A ̸= B, it is more challenging to define
such a prior distribution. To match frames between differ-
ent videos, we propose to rely on the path extracted by the
Dynamic Time Warping (DTW) algorithm. To get a better
understanding of our proposed method, we introduce the
necessary notations and definitions regarding DTW.

Given two sets of extracted embeddings, Z1 =
{z11 , z12 , . . . , z1n} and Z2 = {z21 , z22 , . . . , z2m} from two in-
put videos of lengths n and m, respectively, we can com-
pute the instantaneous distance matrix D ∈ Rn×m, where
each entry is defined as D(i, j) = d(z1i , z

2
j ). The function

d : Z×Z → R is a generic distance measure, implemented
in this paper using the l2-norm. DTW computes the align-
ment loss between Z1 and Z2 by identifying the path of
minimum cost in the distance matrix D:

dtw(Z1, Z2) = minÂ∈An,m
⟨Â,D⟩. (5)

The matrix An,m ⊂ {0, 1}n×m denotes the collection of all
possible alignment matrices that correspond to paths from
the top-left corner to the bottom-right corner of D, using
only {→,↘, ↓} moves. The alignment matrix Â ∈ An,m is
binary, where Â(i, j) = 1 indicates that the embedding z1i
from Z1 is aligned with the embedding z2j from Z2. DTW
can be computed using dynamic programming by applying
the following recursive function,

r(i, j) = D(i, j) + (6)
min{r(i− 1, j), r(i, j − 1), r(i− 1, j − 1)}.

where r(i, j) represents the (accumulated) DTW distance
between the two videos till their frames, i and j, respec-
tively. The minimum function is taken over all possible
pairs of previous elements in the two sequences.

Returning to our video embedding task, we propose to use
the alignment matrix Â to model the prior distribution for
pairs of videos where A ̸= B. By generalizing the expres-
sion in Equation (2), this prior is defined as follows:

pA,B,α,β(i|j; A ̸= B) ≡ PA̸=B(i|j) = (7)

exp(−([SB
β ]j − [SB

β ]argmaxk Â(k,i))
2/2σ2)∑T

i′=1 exp(−([SB
β ]j − [SB

β ]argmaxk Â(k,i′))
2/2σ2)

.

Here, i is a frame in video A, and j is a frame in the
video B. The alignment matrix Â has rows corresponding
to video B and columns corresponding to video A; there-
fore, argmaxk Â(k, i) is the index of the frame in video
B that has the maximum alignment score (which is 1) with
frame i in video A. We define this process as pair-wise posi-
tion propagation. If there are multiple frames with the same
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maximum alignment score, we use the frame with the small-
est index. We should emphasize that in the learning pro-
cess this probability distribution is not differentiated with
respect to the matrix Â. Rather, this alignment matrix is up-
dated during training (due to the modified representations),
and considered as fixed when optimizing for the representa-
tions. Therefore, similarly to Equation (3), given a frame j
in video B, we propose to optimize

Lj
A̸=B = DKL

(
PA̸=B(·|j) ∥ Qθ(·|j)

)
, (8)

and accumulate all these divergence values as our second
loss component,

LProp.(PA̸=B,Qθ) =
1

T

T∑
j=1

Lj
A̸=B. (9)

A visualization of the construction of Equation (8) is de-
picted in Figure 2.

Figure 2. Illustration of pair-wise position propagation, showing
the loss computation for the jth frame in the β sample of video B.
We first calculate the Gaussian distribution of timestamp distances,
centered around this frame. Afterwards, we propagate this distri-
bution from video B to video A and minimize the KL-divergence
between that distribution and the embedding similarity one.

3.4. Better Alignment via SoftDTW

The pair-wise position propagation as described above is
effective only when the features used are representative
enough. To improve this alignment during training, we
suggest to also optimize the smooth DTW (SoftDTW) dis-
tance [11]. This is defined as follows,

rγ(i, j) = D(i, j) + (10)
minγ{rγ(i− 1, j), rγ(i, j − 1), rγ(i− 1, j − 1)},

The term rγ(i, j) holds the soft-DTW distance up to frames
i and j in the two videos, respectively. The expression minγ

is a smooth (and therefore differentiable) version of the min
function, defined,

minγ{a1, a2, . . . , an} = −γ log

n∑
i=1

e
−ai
γ . (11)

Note that minγ converges to the discrete min operator as
γ approaches zero. Therefore, when γ is near zero, the
smooth DTW distance produces results that are similar to
those of the discrete DTW.

Armed with the SoftDTW, given a single pair of videos with
their randomly chosen indices, (ZA

α , S
A
α , Z

B
β , S

B
β ), we opti-

mize the following objective function:

LLRProp(Z
A
α , S

A
α , Z

B
β , S

B
β ) = (12)

δAB · LSame +

(1− δAB) · (λ1 · LProp. + λ2 · LSdtw).

Here, δAB is the Kronecker delta, which is 1 if A = B and 0
otherwise. LSdtw ≡ LSdtw(Z

A
α , Z

B
β ) is the smooth DTW dis-

tance between the two videos, which is computed using the
embedding vectors ZA

α and ZB
β via Equation (10). λ1 and

λ2 are hyper-parameters that control the relative importance
of the different terms in this objective function. For further
implementation details and hyper-parameters, see Section B
in the supplementary material.

4. Empirical Study

In this section, we evaluate LRProp on two datasets using
various evaluation metrics.

4.1. Datasets

The PennAction dataset [49] includes videos of humans
performing various sports activities. We use 13 of these
actions, following TCC [14]. The dataset includes 1140
videos for training and 966 for testing, with each action
set containing 40-134 train videos and 42-116 test videos.
For evaluation, we obtain per-frame labels from LAV [20].
These videos contain 18 to 663 frames.

Pouring dataset [36]. This dataset contain videos showing
the process of a hand pouring a liquid from one object to
another. The phase labels, based on the TCC [14], consist of
five classes. Following TCC, we use 70 videos for training
and 14 for testing. These videos contain 186 to 797 frames.

4.2. Evaluation Metrics

We use the following metrics to evaluate the frame-wise
trained representations:
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Figure 3. An example of aligned frames (Pouring dataset) using the DTW algorithm. In (a), (b), (c), and (d), LRProp is better at capturing
the specific action of placing the bottle/cup, as indicated by the blue circles; in contrast, in SCL, the human hand is missing in the aligned
frame. In (e), the query frame shows the end of the pouring action. Two aligned video results are shown; while LRProp provides a
successful match, SCL features are inferior - observe the human hand still present in the frames, as indicated by the red circles.

Table 1. Comparison with state-of-the-art methods on Pouring using various evaluation metrics: Phase Classification@% (Classifica-
tion@%), Phase Progression (Progress), Kendall’s Tau (τ ), Average Precision@K (AP@K), DTW Accuracy (DTW A). Best method is in
bold, second best in underlined. Our proposed technique (LRProp - highlighted in gray) dominates all other methods.

Method τ Progress
AP@ Classification@

DTW A
K=5 K=10 K=15 10 25 50 100

SCL 99.2 93.5 90.04† 89.69† 88.92† 85.78† 87.14† 89.45† 93.73 84.68†

SAL 79.61 77.28 84.05 83.77 83.79 87.63 - 87.58 88.81 -
TCN 85.12 80.44 83.56 83.31 83.01 89.67 - 87.32 89.53 -
TCC 86.36 83.73 87.16 86.68 86.54 90.65 - 91.11 91.53 -
LAV 85.61 80.54 89.13 89.13 89.22 91.61 - 92.82 92.84 -

VAVA 87.55 83.61 - - - 91.65 - 91.79 92.84 -

LRProp 99.46 94.09 92.41 90.33 90.86 92.7 93.88 94.44 94.36 90.22

Phase Classification Accuracy [14] is a metric that mea-
sures the per-frame accuracy of Phase Classification. To
calculate this metric, we first extract features from the
frames in the training and test data. Then, we train a support
vector machine (SVM) [22] classifier on the phase labels for
the training data, using the extracted features as input. The
classifier is then used to predict the phase labels for each
frame in the test data. The Phase Classification Accuracy
is calculated as the proportion of correctly predicted labels,
and is reported for different percentages of the SVM train-
ing set, in order to evaluate the representativeness of the
learned features.

Phase Progression [14] evaluates the accuracy of the em-
beddings in representing the advancement of a process or
action. To compute this metric, we establish a rough esti-
mate of the progress within a phase by calculating the differ-
ence in timestamps between a specific frame and key events,
and then normalizing this difference by the total number of
frames in the video. This measure is used as the target for a
linear regression model, which is trained on the frame-wise
embeddings. The Phase Progression metric is then calcu-
lated as the average R-squared measure (coefficient of de-

termination) of the regression model on the test data. This
metric captures how well the embeddings capture the rela-
tive progression of the phase within a video.

Average Precision@K [20] is a metric used to evaluate the
accuracy of fine-grained frame retrieval, where K is the
number of retrieved frames. To calculate this metric, we
identify the K nearest frames (using KNN) to a given query
frame, based on the frame-wise embeddings, and calculate
the Average Precision, i.e., the average proportion of re-
trieved frames that have the same phase label as the query
one. This metric is calculated for different values of K,
to assess the performance of the frame-wise embeddings at
different retrieval sizes. No extra training or fine-tuning re-
quired for this metric.

Kendall’s Tau [14] is a correlation coefficient that evaluates
the temporal alignment of two sequences. Unlike the other
metrics discussed above, Kendall’s Tau does not require
additional labels for evaluation. To calculate this metric,
we first sample pairs of frames (ui, uj) from the first
video, which has n frames, and retrieve the corresponding
nearest neighbors (in the feature space), (vp, vq), in the
second video. This quadruplet of frame indices (i, j, p, q)
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is considered concordant if i < j and p < q or i > j and
p > q. Otherwise, it is considered discordant. Kendall’s
Tau is then calculated as the ratio of concordant pairs to
the total number of pairs, which captures how well the
two sequences are aligned in time. More specifically, it is
defined over all pairs of frames in the first video as: τ =
(no. of concordant pairs - no. of discordant pairs)/

(
n
2

)
.

Kendall’s Tau is a measure of the alignment between two
sequences in time, where a value of 1 indicates perfect
alignment and a value of −1 indicates that the sequences
are aligned in the reverse order. One limitation of this
metric is that it assumes that there are no repetitive frames
in a video. We average this metric across all video pairs in
the validation set.

DTW Accuracy is the ultimate metric that measures the
ability of the frame-wise embeddings to capture both the
phase labels and the Phase Progression of actions or pro-
cesses in videos. To calculate this metric, we first apply the
dynamic time warping (DTW) algorithm to a pair of videos,
using the frame-wise embeddings as input. This produces a
sequence of connections between corresponding frames in
the two videos. The DTW Accuracy is then calculated as
the proportion of connections that connect frames with the
same phase label. By definition, DTW does not allow for
discordant indices, and it’s accuracy metric is sensitive to
both the ability of the embeddings to predict the phase la-
bels and the ability to capture the Phase Progression. Over-
all, DTW Accuracy is a useful metric for evaluating the ef-
fectiveness of frame-wise embeddings at capturing the tem-
poral structure of actions or processes in videos. We eval-
uate this metric on all pairs of videos in the validation set,
and take the average as the final result.

Following the work in [7, 14, 20, 20], we use the first four
metrics above to evaluate the effectiveness of frame-wise
embeddings at capturing the temporal structure of actions or
processes in videos. In addition, we propose to use the last
metric (DTW Accuracy) in order to evaluate the suitability
of the learned features for video alignment.

4.3. Comparison to State-of-the-Art

Pouring Dataset. In Table 1 we compare our method with
state-of-the-art methods on the task of Pouring. The best
method for each metric is shown in bold, and the second
best is underlined. Our proposed method outperforms all
previous work on this dataset, with SCL performing the sec-
ond best overall. As not all of our proposed metrics were
reported in their original paper, we reproduced their results
using their Github repository1 for a fair comparison with
our results – these are marked by a †.

1https://github.com/minghchen/CARL code.

Our method demonstrates superiority over all other meth-
ods in all tasks. In particular, with our approach we achieve
a Phase Classification Accuracy of 93.88% by using only
25% of the available labels, surpassing all other methods,
even if they use 100% of the labels. Additionally, our
method excels at identifying frames with similar semantics
from other videos, as demonstrated by an improvement of
almost 2.5% in the Average Precision@K (AP@) column.
We also see significant gains in Kendall’s tau and Phase
progression metrics compared to SCL, which has already
shown a phenomenal improvement of more than 10% over
all previous methods. Finally, the DTW Accuracy metric,
which measures both Phase Classification and Phase Pro-
gression, shows a striking improvement of almost 6% over
the state-of-the-art, indicating that our proposed approach is
highly effective for video alignment. This is also supported
by Figure 3, which demonstrates the superior performance
of LRProp compared to SCL in the alignment task: when
given a query frame, LRProp is able to capture fine-grained
actions more effectively. For further demonstration of LR-
Prop on video alignment, see Figure 1, and the supplemen-
tary material.

PennAction Dataset. As shown in Table 2, our proposed
method demonstrates superior performance in comparison
to all other state-of-the-art approaches on the PennAction
dataset. Utilizing a weakly-supervised approach special-
ized for alignment, we follow the approach of [14] and
train a separate model for each of the 13 action classes in
this dataset. The results shown in the table are the average
across all 13 actions; for a more detailed breakdown of re-
sults see Section A, Table 4 in the supplementary material.

Our method consistently outperforms all prior work, as
highlighted in bold, with SCL performing the second best
overall. It is important to note, however, that SCL trained a
single model for all 13 action classes (the authors did not re-
port results for each class individually), whereas our method
utilizes individualized models for each class. Furthermore,
our method achieves an accuracy of 93.17% using only 75%
of available labels, surpassing all baselines in Phase Classi-
fication (even if they use all the labels). Additionally, we
achieve more than a 1% improvement in the Phase Progres-
sion metric. This suggests that our method produces highly
reliable features for video alignment and fine-grained re-
trieval, as supported by the small but consistent improve-
ment in Kendall’s tau and Average Precision@K metrics.
As we did not re-train SCL on this dataset, we do not re-
port the DTW Accuracy in the table. LRProp achieves an
impressive average DTW Accuracy of 90.15%.
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Table 2. Comparison with state-of-the-art methods on PennAction using various evaluation metrics. Best method is in bold and second
best is underlined. LRProp (highlighted in gray) outperforms all previous methods.

Method τ Progress
AP@ Classification@

K=5 K=10 K=15 10 50 75 100

SCL 98.5 91.8 92.28 92.1 91.82 - - - 93.07
SAL 76.12 69.6 - - - 74.87 78.26 - 79.96
TCN 81.2 72.17 77.84 77.51 77.28 81.99 83.67 - 84.04
TCC 81.35 73.53 76.74 76.27 75.88 81.26 83.35 - 84.45
LAV 80.5 66.13 79.13 79.98 78.9 83.56 83.95 - 84.25

VAVA 80.53 70.91 - - - 83.89 84.23 - 84.48

LRProp 99.09 93.03 92.46 92.2 92.03 91.9 92.96 93.17 93.25

4.4. Ablation Study

SoftDTW and pair-wise position propagation: Is it a win-
ning combination? We now turn to address this question
by assessing the performance of these two loss terms, LProp.
and LSdtw, and their contribution on the pouring dataset. We
measure the Phase Classification Accuracy for a more di-
verse set of label portions, and similarly, we measure the
Average Precision accuracy for a larger range of K values.
We also measure the Phase Progression, Kendall’s Tau and
DTW Accuracy as in previous sections. The results are de-
picted in Table 3.

As can be seen, our design choices consistently im-
prove across all evaluation metrics, with the exception of
Kendall’s Tau, which is already close to saturation. We ob-
serve that the first and second rows of Table 3 have similar
results in the Kendall’s Tau, Phase Progression, and Aver-
age Precision@K metrics. This suggests that the combina-
tion of LProp. and LSdtw is responsible for the improvement,
rather than either one alone. Additionally, LRProp shows
an average improvement of around 5% in the Phase Classi-
fication Accuracy metric for any choice of label percentage.
Also, the striking improvement in the DTW Accuracy met-
ric when using both LProp. and LSdtw is particularly notewor-
thy, as it suggests that the combined loss function is able to
produce features that are highly effective for video align-
ment.

5. Conclusions

In this paper we introduce LRProp, a powerful method for
extracting frame-level features that are particularly effec-
tive for aligning videos. Our approach involves using the
dynamic time-warping (DTW) algorithm for establishing
a prior distribution between frames from different videos
based on their alignment path. In multiple experiments and
commonly used metrics, we demonstrate that our method
significantly outperforms various baselines in learning fea-
ture representations. We also evaluate DTW video align-
ment performance using the learned features and achieve
a striking improvement of more than 5% compared to the
previous state-of-the-art.

Limitations and future directions. A potential area for
future research is to adapt our method for videos that may
contain outlier frames, by identifying and extracting them
from the learning/inference processes. This may enable
more robust features and better overall alignment between
videos. Another challenging task refers to much longer
videos, for which current solutions may face a severe mem-
ory and computational barriers. To conclude, our results
demonstrate that the proposed approach is highly effec-
tive at learning better frame-wise feature representations for
videos. The use of pair-wise position propagation, com-
bined with the SoftDTW, to relate frames between different
videos is a particularly promising direction, as we demon-
strate its potential to significantly improve the task of video
alignment.

Table 3. An ablation study of LProp. and LSdtw using various evaluation metrics. Best result in each column is in bold. Our proposed
technique is highlighted in gray.

LSame LProp. LSdtw τ Progress
AP@ Classification@

DTW AK=1 K=5 K=10 K=15 K=20 K=25 5 10 25 50 75 100

✓ ✓ 98.97 92.58 92.74 90.4 88.68 87.49 86.64 85.94 81.99 83.99 85.08 87 86.62 86.42 81.38
✓ ✓ 99.52 92.25 93.45 90.38 89.02 88.26 87.55 86.69 86.66 87.66 88.61 89.75 89.69 89.69 85

✓ ✓ ✓ 99.46 94.09 94.09 92.41 91.66 90.86 90.45 90.07 91.8 92.7 93.88 94.44 94.46 94.36 90.22
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Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. Advances in neural information
processing systems, 33:21271–21284, 2020. 11

[17] Isma Hadji, Konstantinos G Derpanis, and Allan D Jepson.
Representation learning via global temporal alignment and
cycle-consistency. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
11068–11077, 2021. 3

[18] Yunfei Han and Shan Tan. Twinlstm: Two-channel lstm
network for online action detection. In 2022 26th Inter-
national Conference on Pattern Recognition (ICPR), pages
3310–3317. IEEE, 2022. 1

[19] Yanbin Hao, Shuo Wang, Pei Cao, Xinjian Gao, Tong Xu,
Jinmeng Wu, and Xiangnan He. Attention in attention: Mod-
eling context correlation for efficient video classification.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 2022. 1

[20] Sanjay Haresh, Sateesh Kumar, Huseyin Coskun, Shahram N
Syed, Andrey Konin, Zeeshan Zia, and Quoc-Huy Tran.
Learning by aligning videos in time. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5548–5558, 2021. 2, 3, 5, 6, 7

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 11

[22] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt,
and Bernhard Scholkopf. Support vector machines. IEEE In-
telligent Systems and their applications, 13(4):18–28, 1998.
6

[23] Zeeshan Khan, C.V. Jawahar, and Makarand Tapaswi.
Grounded video situation recognition. In Alice H. Oh, Alekh
Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.
1

[24] Dahun Kim, Donghyeon Cho, and In So Kweon. Self-
supervised video representation learning with space-time cu-
bic puzzles. In Proceedings of the AAAI conference on arti-
ficial intelligence, volume 33, pages 8545–8552, 2019. 1

[25] Jie Lei, Tamara L Berg, and Mohit Bansal. Detecting
moments and highlights in videos via natural language

6917



queries. Advances in Neural Information Processing Sys-
tems, 34:11846–11858, 2021. 1

[26] Mengze Li, Han Wang, Wenqiao Zhang, Jiaxu Miao, Zhou
Zhao, Shengyu Zhang, Wei Ji, and Fei Wu. Winner:
Weakly-supervised hierarchical decomposition and align-
ment for spatio-temporal video grounding. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 23090–23099, 2023. 2

[27] Weizhe Liu, Bugra Tekin, Huseyin Coskun, Vibhav Vineet,
Pascal Fua, and Marc Pollefeys. Learning to align sequential
actions in the wild. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2181–2191, 2022. 3

[28] Fuchen Long, Ting Yao, Zhaofan Qiu, Xinmei Tian, Jiebo
Luo, and Tao Mei. Bi-calibration networks for weakly-
supervised video representation learning. International Jour-
nal of Computer Vision, 131(7):1704–1721, 2023. 2

[29] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016. 11

[30] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuf-
fle and learn: unsupervised learning using temporal order
verification. In European conference on computer vision,
pages 527–544. Springer, 2016. 2, 3

[31] Daniel Neimark, Omri Bar, Maya Zohar, and Dotan Assel-
mann. Video transformer network. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 3163–3172, 2021. 2, 3

[32] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of
visual representations by solving jigsaw puzzles. In Euro-
pean conference on computer vision, pages 69–84. Springer,
2016. 2

[33] Boxiao Pan, Haoye Cai, De-An Huang, Kuan-Hui Lee,
Adrien Gaidon, Ehsan Adeli, and Juan Carlos Niebles.
Spatio-temporal graph for video captioning with knowledge
distillation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10870–
10879, 2020. 1

[34] Senthil Purushwalkam, Tian Ye, Saurabh Gupta, and Abhi-
nav Gupta. Aligning videos in space and time. In European
Conference on Computer Vision, pages 262–278. Springer,
2020. 2

[35] Mingyang Qiao and Tiantian Yuan. Action recognition based
on video spatio-temporal transformer. In 2022 IEEE Inter-
national Conference on Artificial Intelligence and Computer
Applications (ICAICA), pages 477–481. IEEE, 2022. 1

[36] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine
Hsu, Eric Jang, Stefan Schaal, Sergey Levine, and Google
Brain. Time-contrastive networks: Self-supervised learn-
ing from video. In 2018 IEEE international conference on
robotics and automation (ICRA), pages 1134–1141. IEEE,
2018. 2, 3, 5

[37] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudi-
nov. Unsupervised learning of video representations using
lstms. In International conference on machine learning,
pages 843–852. PMLR, 2015. 3

[38] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,
and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In Proceedings of the IEEE inter-
national conference on computer vision, pages 4489–4497,
2015. 2

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2, 3, 4, 11

[40] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba.
Generating videos with scene dynamics. Advances in neu-
ral information processing systems, 29, 2016. 3

[41] Longguang Wang, Yulan Guo, Li Liu, Zaiping Lin, Xinpu
Deng, and Wei An. Deep video super-resolution using hr
optical flow estimation. IEEE Transactions on Image Pro-
cessing, 29:4323–4336, 2020. 1

[42] Xiaolong Wang, Allan Jabri, and Alexei A Efros. Learning
correspondence from the cycle-consistency of time. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2566–2576, 2019. 1

[43] Xiaofang Wang, Xuehan Xiong, Maxim Neumann, AJ Pier-
giovanni, Michael S Ryoo, Anelia Angelova, Kris M Kitani,
and Wei Hua. Attentionnas: Spatiotemporal attention cell
search for video classification. In European Conference on
Computer Vision, pages 449–465. Springer, 2020. 1

[44] Bohan Wu, Suraj Nair, Roberto Martin-Martin, Li Fei-Fei,
and Chelsea Finn. Greedy hierarchical variational autoen-
coders for large-scale video prediction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2318–2328, 2021. 1

[45] Ravindra Yadav, Ashish Sardana, Vinay P Namboodiri, and
Rajesh M Hegde. Learning to predict speech in silent videos
via audiovisual analogy. In ICASSP 2022-2022 IEEE Inter-
national Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 8042–8046. IEEE, 2022. 3

[46] Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong,
Peilin Zhao, Junzhou Huang, and Chuang Gan. Graph con-
volutional networks for temporal action localization. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 7094–7103, 2019. 1

[47] Jiecheng Zhai, Xunxiang Yao, Guangyuan Dong, Qun Jiang,
and Yunfeng Zhang. 3d dual-stream convolutional neural
networks with simple recurrent unit network: A new frame-
work for action recognition. In 2022 4th International Con-
ference on Communications, Information System and Com-
puter Engineering (CISCE), pages 509–515. IEEE, 2022. 1

[48] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In European conference on computer
vision, pages 649–666. Springer, 2016. 2

[49] Weiyu Zhang, Menglong Zhu, and Konstantinos G Derpanis.
From actemes to action: A strongly-supervised representa-
tion for detailed action understanding. In Proceedings of
the IEEE international conference on computer vision, pages
2248–2255, 2013. 2, 5

6918


	. Introduction
	. Related Work
	. Method
	. Notations and Definitions
	. Prior Distribution for Frames in the Same Video
	. Prior Distribution for Frames in Different Videos
	. Better Alignment via SoftDTW

	. Empirical Study
	. Datasets
	. Evaluation Metrics
	. Comparison to State-of-the-Art
	. Ablation Study

	. Conclusions
	. PennAction Breakdown
	. Implementation Details



