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Abstract

Deep Metric Learning (DML) methods aim at learning
an embedding space in which distances are closely related
to the inherent semantic similarity of the inputs. Previous
studies have shown that popular benchmark datasets often
contain numerous wrong labels, and DML methods are sus-
ceptible to them. Intending to study the effect of realistic
noise, we create an ontology of the classes in a dataset and
use it to simulate semantically coherent labeling mistakes.
To train robust DML models, we propose ProcSim, a sim-
ple framework that assigns a confidence score to each sam-
ple using the normalized distance to its class representative.
The experimental results show that the proposed method
achieves state-of-the-art performance on the DML bench-
mark datasets injected with uniform and the proposed se-
mantically coherent noise.

1. Introduction
The problem of quantifying the similarity between im-

ages is typically framed in the context of metric learning,
which aims at learning a metric space in which distances
closely relate to underlying semantic similarities. Deep
Metric Learning (DML) is based on transforming the im-
ages using a neural network and then applying a predefined
metric, e.g., the Euclidean distance, or cosine similarity.

Identifying visual similarities is crucial for tasks such
as image retrieval [28], zero-shot learning [6], and person
identification [44, 45]. Solving these problems with DML
allows the introduction of new classes without retraining, a
desirable feature in applications such as retail [53]. More-
over, the learned similarity model can be easily paired with
efficient nearest-neighbor inference techniques [19].

DML requires labeled datasets, but manual labeling is
cumbersome and, in some cases, infeasible. Automated
labeling, while efficient, introduces errors like duplicates
and irrelevant images, often necessitating manual correc-
tion [46]. Conversely, manual annotations often involve
non-expert annotators on crowdsourcing platforms, leading
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Figure 1. ProcSim handles incorrect labels by reducing the con-
tribution of samples whose learned embeddings are too far away
from their class representatives.

to occasional labeling errors [22]. Labeling mistakes are es-
pecially problematic for DML, which suffer a higher drop
in performance than classification models as the number of
noisy labels increases [10].

While DML with noisy labels has garnered attention,
prior research has mostly focused on building robust mod-
els against uniform noise [25, 56, 60]. However, due to the
annotation techniques in image retrieval, real datasets often
exhibit noise concentrated in clusters of similar images [10].

This paper proposes ProcSim, a new confidence-aware
framework for training robust DML models by estimating
the reliability of samples in an unsupervised fashion. To test
the benefits of our method on noisy datasets, we present a
new procedure for injecting semantically coherent label er-
rors. The empirical results show the superior performance
of ProcSim trained on benchmark datasets injected with
uniform and the proposed semantic noise in front of alter-
native approaches.

The main contributions of this paper are:

• We propose ProcSim, a novel framework for robust vi-
sual similarity learning usable on top of any general-
purpose DML loss to improve performance on noisy
datasets. ProcSim assigns a per-sample confidence that
indicates the reliability of its label and is used to deter-
mine the influence of such a sample during training.

• We introduce a new noise model based on swapping
semantically similar class labels. Sec. 3.6 describes
how to automatically obtain a hierarchy of the classes
in a dataset and use it to inject label noise.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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2. Related work
2.1. Learning with noisy labels

Some approaches dealing with noisy data estimate the
noise transition matrix [35, 55, 60], which requires prior
knowledge or a subset of clean data. Another class of
methods uses the model predictions to correct the labels
[20, 24, 60]. However, this technique can lead to confirma-
tion bias, where prediction errors accumulate and harm per-
formance [57]. Alternatively, one can estimate which sam-
ples are incorrectly annotated [15, 17, 24]. These methods
typically assume that significant loss instances can be asso-
ciated with incorrect labels, a technique commonly known
as the small-loss trick.

The small-loss trick is rooted in the observation that
deep neural networks often learn clean samples before noisy
samples [1], resulting in inputs with accurate labels exhibit-
ing lower-magnitude losses [7].

Some works on noisy classification train two semi-
independent networks that exchange information about
noisy samples to prevent their memorization [15,23,51,59].
Directly adopting these methods to DML is not feasible
[56], but there exist similar approaches in the DML liter-
ature using self-distillation to determine soft labels [60] or
detect noisy samples [17].

If the noise probability is known and the small-loss trick
assumption is satisfied, one can spot noisy samples as those
whose loss value is over a given percentile determined by
the noise probability [17,25]. However, the amount of noise
present in a dataset is generally unknown.

Under the more realistic case where the noise probabil-
ity is unknown, an interesting approach is to fit a bimodal
distribution to explain the loss values [24]. Then, following
the small-loss trick, the samples belonging to the distribu-
tion with the higher mode are treated as noisy.

Once noisy samples are detected, we can split the train-
ing dataset into disjoint sets representing correct and incor-
rect labels. In the context of DML, when we identify a sam-
ple as noisy, we can discard it [25] or only consider it for
negative interactions [17].

Instead of treating all correct and incorrect samples
equally, an option is to use a confidence-aware loss, in
which the loss amplitude is modulated proportionally to the
sample confidence [32]. Ideally, noisy samples will be as-
signed a low confidence score to reduce or even suppress
their contribution. SuperLoss [5] offers a task-agnostic ap-
proach to converting any loss into a confident-aware loss
without additional learnable parameters.

2.2. Inter-class similarities

Inter-class similarities can be considered by clustering
image features and creating a class tree [13] or promot-
ing the clusters formed during training [58]. Another ap-

proach is to modify a margin-based objective so that the
margin depends on the attribute similarity [28]. One com-
pelling alternative is to distill the knowledge of a Large Lan-
guage Model (LLM) to learn semantically consistent metric
spaces [40]. One can also learn a hyperbolic space [12, 56],
which naturally embeds hierarchies.

2.3. Non-uniform noise generation

Swapping labels using semantic similarities results in
plausible labeling mistakes and noisy samples that are more
challenging to spot [24]. Using this idea, some works on
noisy classification considered injecting class label errors
based on the structure of recurring mistakes in real datasets,
e.g., Truck→Automobile, Bird→Airplane, and Dog↔ Cat
[20, 24]. However, inferring these rules is specific to each
dataset and requires statistics about the errors.

In the context of noisy DML, Liu et al. [25] proposed
an iterative procedure to introduce noise. In each iteration,
they choose a class and group its samples by employing
a similarity measure computed using a pre-trained DML
model. Then, they assign the same class label to all cluster
members. Although this method incorporates a notion of
visual similarity for the clustering step, label assignment is
performed uniformly at random, and the number of classes
decreases at each iteration. Dereka et al. [10] introduced
the large and small class label noise models based on only
corrupting the most frequent or rarest classes. While this
method restricts the set of possible labels assigned (asym-
metric noise), the choice is purely based on class frequen-
cies, not semantics.

3. Methodology
3.1. Preliminaries

Let D := {(xi, yi)}i∈[n] be a dataset with pairs of im-
ages xi ∈ X and class labels yi ∈ [C]. DML aims to learn a
metric space (Ψ, d) with fixed d : Ψ×Ψ→ R and a learned
transformation ϕ : X → Ψ such that d(ϕ(xi), ϕ(xj)) <
d(ϕ(xi), ϕ(xk)) if xi is semantically more similar to xj

than it is to xk [2]. Commonly, the space Ψ is normalized
to the unit hypersphere for training stability [43,44,54], and
d is chosen to be the Euclidean or cosine distance.

Instead of computing the confidence of the sample using
a learnable model [9, 32, 42], we prefer to follow a parsi-
monious approach inspired by SuperLoss [5], a technique
that computes a confidence score from the training loss and
uses it for the task of automatic curriculum learning. In the
curriculum learning training, the samples are fed in increas-
ing order of difficulty, which improves the speed of conver-
gence and the quality of the models obtained [3, 14].

For the DML problem, SuperLoss assigns a confidence
σij to each pair of samples. Doing that requires an objective
expressed as a double sum over pairs, e.g., the contrastive
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Figure 2. Distribution of loss values for clean and noisy samples
in the late stages of training on CUB200 [49] with 50% uniform
noise. While the Multi-similarity (MS) loss [50] is a powerful
objective for training DML models, it is unsuited for label noise
identification. Classification of noisy samples using Otsu’s thresh-
old [33] achieved 50% and 90% recall, respectively. More details
in the supplementary.

loss [8]. For a pair of samples (i, j) with loss ℓij , instead of
directly minimizing E(i,j)[ℓij ] as in regular training, Super-
Loss proposes to minimize

E(i,j)

[
min
σij

(ℓij − τij)σij + λ(log σij)
2

]
, (1)

where λ ∈ R+, and τij is the global average of all positive
(resp. negative) pair losses across all iterations if yi = yj
(resp. yi ̸= yj). The optimization of the pair confidence has
the closed form solution

σij = exp

[
−W

(
1

2
max

{
−2

e
,
ℓij − τij

λ

})]
, (2)

where W (·) is the principal branch of the Lambert W func-
tion. The authors of SuperLoss [5] use this analytical solu-
tion to compute the optimal confidence and avoid the mini-
mization in Eq. (1). The confidence is treated as a constant,
meaning that they don’t propagate gradients through it.

3.2. Identifying noisy samples

Curriculum learning down-weights the contribution of
challenging samples, sometimes resulting in the omission
of noisy samples [18, 27]. However, inputs considered hard
in the curriculum learning context change across iterations
while the number of incorrect annotations in a dataset re-
main the same. Particularly for DML, the loss is obtained by
considering interactions–pairs, triplets, or tuples of a higher
order–with the other samples in a batch. Hence, large loss
values may be either because of a wrong label of the an-
chor sample or others included in the considered interac-
tions. Therefore, data points that are hard to explain under
the training objective are not necessarily those with an in-
correct class label.

Fig. 2 shows the distribution of noisy and clean samples
when using two well-known DML losses. The MS [50] ob-
jective penalizes the positive pairs with lower similarity and
the negative pairs with higher similarity. Thus, a clean sam-
ple interacting with a noisy one will almost exclusively con-

sider the latter, which will cause large loss values. Hence,
this loss is unsuited for spotting noisy samples.

Let {pi}i∈[C] be a set of points representing classes and
x an unlabeled sample. The nearest neighbor search on ϕ
returns argmaxi∈[C] ⟨ϕ(x),pi⟩. Softmax is a smooth ap-
proximation of argmax, and replacing it in the previous ex-
pression yields a stochastic nearest neighbor classifier. The
Proxy-NCA [30] loss for sample i, which we will refer to as
ℓProxy
i , is precisely the negative log(·) of the probability that

a stochastic nearest neighbor classifier assigns a sample to
its correct label when {pi}i∈[C] are class proxies.

The class proxies are learnable embeddings representing
data groups and have the desirable feature that they are ro-
bust to noisy labels [21]. Therefore, even when some class
contains wrong annotations, their proxies will be close to
the embeddings of the clean samples of that class. Overall,
Proxy-NCA loss is fundamentally a normalized distance to
the class representative. This observation provides a theo-
retical explanation of why large sample loss values can be
associated with a possibly incorrect label.

3.3. Separating noisy and clean samples

In Fig. 2, we present some empirical evidence of the
identifiability of noisy samples under the Proxy-NCA [30].
Indeed, the distribution follows a bimodal pattern, with
wrongly annotated data points falling within the mode ex-
hibiting higher losses. One option to separate clean and
noisy samples is to use a Gaussian mixture model [24].
However, this method assumes that each distribution is a
Gaussian, which is not the case for the skewed distributions
of clean and noisy samples in Fig. 2. Moreover, this ap-
proach requires an iterative procedure to estimate the suffi-
cient statistics of each distribution.

An alternative is using Otsu’s method, a one-dimensional
discrete analog of Fisher’s discriminant analysis. This ap-
proach selects a threshold that minimizes the intra-class
variance (equivalently, maximizing the inter-class variance)
and is typically used to perform image thresholding. Otsu’s
method does not require any optimization, has no hyper-
parameters, and achieves the same result as globally optimal
K-means [26].

In Alg. 1, we describe the procedure to determine the
Otsu threshold for our case. Note that the tested thresholds
T correspond to the midpoints between consecutive loss
values. Each of these thresholds divides the samples into
two groups with at least two items each, which allows for
computing the variance. Then, Otsu’s method [26] exhaus-
tively tests all thresholds and selects the one with a lower
cost.

3.4. Sample confidence

We previously showed that ℓProxy
i behaves as a bimodal

distribution and that we can use Otsu’s method [33] to sep-
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Algorithm 1 COMPUTATION OF OTSU’S THRESHOLD

1: Inputs: Proxy loss values {ℓProxy
i }i

2: Output: Threshold τ
3: Sort loss values L← sorted(ℓProxy

i )
4: Define thresholds T ← {L[i]+L[i+1]

2 }i∈{2,3,...,|B|−2}
5: for all τ ′ ∈ T do
6: Let C0 ← {ℓProxy

i |ℓProxy
i < τ ′}

7: Let C1 ← {ℓProxy
i |ℓProxy

i ≥ τ ′}
8: Let Cost(τ)← 1

|B| (|C0|Var[C0] + |C1|Var[C1])
9: end for

10: τ ← argminτ ′∈T Cost(τ ′)

arate clean and noisy samples. Having this, we want to de-
sign a confidence score. Unlike SuperLoss [5], we advocate
for computing a confidence score for each data point instead
of doing so for each pair. Concretely, we want a confidence
score σi satisfying the following criteria:

(i) σi is translation invariant w.r.t. ℓProxy
i .

(ii) σi ≥ σj ⇐⇒ ℓProxy
i ≤ ℓProxy

j (i, j in the same batch).

(iii) σi ∈ [0, 1].

(iv) As λ→ 0, σi → 1 if clean, σi → 0 otherwise.

(v) As λ→∞, σi → 1.

Claim 1 The choice

σi := exp

{
−W

([
ℓProxy
i − τ

2λ

]
+

)}
, (3)

where [·]+ is the positive part, and τ computed with Alg. 1
satisfies Conditions (i) to (v).

Equation (3) draws inspiration from SuperLoss [5]. The
reason is that the sample-level version of the SuperLoss
confidence yields a clean expression and already satisfies
Conditions (i), (ii), and (v). While the proposed changes
might seem subtle, they conceptually make a huge differ-
ence and improve the performance by a large margin (see
Tab. 1). Refer to the supplementary material for the proof
of Claim 1 and further discussion.

In stark contrast with SuperLoss [5], the confidence in
ProcSim is not computed from the training loss. Having
a different loss for the confidence computation and the pa-
rameter update can avoid biases, something considered in
the works leveraging two models for unbiased noise sample
identification [15, 17, 23, 51, 59, 60].

3.5. ProcSim

ProcSim can work with any DML objectives writable as
a sum over sample losses, a prerequisite for enabling in-
dependent scaling of the sample loss through σi. In this
scenario, the gradients of the loss monotonously increase

with σi, and low-confidence samples result in diminished
gradient updates.

DML model training typically relies on binary similari-
ties, i.e., identifying whether a pair of samples belong to the
same class. However, evaluation involves unseen classes,
so DML requires learning a notion of similarity rather than
discriminating between training classes.

With this in mind, we add a self-supervised regulariza-
tion loss to implicitly enforce a semantic structure among
classes. Directly applying the confidence score to the regu-
larized objective would alter the magnitude of both the su-
pervised and unsupervised losses. Since the computation of
the unsupervised loss does not rely on labels, we want it to
be unaffected by the confidence.

The final objective then becomes

L =
1

|B|
∑

(xi,yi)∈B

σi · ℓDML
i + ωℓSSL

i , (4)

where ω a hyperparameter weighting the importance of the
regularization loss. Note that setting σi = 1 amounts
to regular training, while for σi = 0 the metric space is
only learned with the semantic knowledge of the LLM. An
overview of the proposed method is presented in Fig. 3.

By default, ProcSim uses MS [50] as the supervised
DML loss, but we also assess the performance using other
losses in Sec. 4.2. In the case of using the MS objective, the
DML sample loss is

ℓDML
i :=

1

α
log

1 + ∑
j∈Pi

e−α(Sij−δ)


+
1

β
log

1 + ∑
j∈Ni

e−β(δ−Sij)

 , (5)

where Sij := ⟨ϕ(xi), ϕ(xj)⟩, which is equivalent to the
cosine distance because we enforce ∥ϕ(xi)∥ = 1 ∀i, and
α, β, δ ∈ R are hyperparameters.

Unless explicitly stated, we choose the Pseudolabel Lan-
guage Guidance (PLG) loss [40] as the self-supervised ob-
jective. To compute the PLG loss images are input to
a classifier pre-trained on ImageNet [41]. For each im-
age, the top−k class names are passed to the language
part of CLIP [37] using the prompt “A photo of a
{label}”. Subsequently, k similarity matrices are gener-
ated from the similarities of text embeddings. The PLG loss
is the row-wise KL divergence between the matrix of visual
similarities and the mean of the k matrices of language sim-
ilarities. We refer the interested reader to the PLG paper for
further details.

3.6. Semantically coherent noise generation

Artificial noise models allow injecting a controlled
amount of noise to assess the robustness of different meth-
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Figure 3. ProcSim model overview using an illustrative example. Here, we showcase the ProcSim model’s functionality with four images
{xi}i∈[4] from the CUB200 dataset [49]. These images have class labels y1 = y2 = y3 ̸= y4, where y1 has been erroneously assigned; it
should be y1 = y4 ̸= y2 = y3. The DML model projects images into the metric space, yielding visual embeddings {ψ(xi)}i∈[4]. Then
we compute the proxy loss ℓProxy

i , which is obtained by evaluating the distance from an embedding to its associated proxy. We determine
a threshold for proxy loss values using Alg. 1, and then calculate the sample confidence {σi}i∈[4] using Eq. (3). Samples with proxy
loss values below the threshold possess unit confidence, while others have a smaller value that decreases as they move farther away from
the proxies. Notably, (x1, y1) is assigned a low confidence score, resulting in its limited contribution to updating the model parameters
compared to other samples.

ods. A simple and ubiquitous noise model is the symmet-
ric noise model [48], based on assigning an incorrect label
picked uniformly at random from all the classes. However,
labeling mistakes are often due to the semantic similarity of
the correct and wrong classes. For this reason, noisy labels
contained in real datasets follow a non-uniform distribution
among classes, differing from the symmetric model.

To mimic label errors where semantically similar images
are confused, we propose computing the inherent taxonomy
of the dataset’s classes and using that in the noise injection
process. Among the considered benchmark datasets, Stan-
dard Online Products (SOP) [46] is the only one that pro-
vides a grouping of classes. Concretely, the 22,634 prod-
ucts belong to one of twelve categories. Hence, for SOP,
one can inject semantic noise by swapping the class label of
a training sample to another class in the train partition that
falls within the same category.

To build a semantic taxonomy for the CUB200 [49] and
Cars196 [22] datasets, we group the natural language class
names in the dataset by finding their hypernyms with Word-
Net [29], as done by Rohrbach et al. [38]. Given that a
word can have multiple meanings, captured by WordNet
synsets [29], and hence several potential hypernyms, we
ensure that all the class names are a hyponym of bird and
car, respectively. In other words, we enforce a common
root node grouping all the classes. Refer to the supplemen-
tary material for further details and visualizations of the ob-
tained class hierarchies.

To inject noise into the training splits of the datasets, we
first filter the taxonomy to the training classes and treat each
sample independently. Then, we traverse the class hierar-

chy starting at the leaf node corresponding to the original
label until we find a node with several children. Finally, we
select the incorrect class label uniformly at random among
all children except the original class. We compute the class
taxonomies only once and generate noisy versions of each
dataset offline.

The fact that the noise model differs from the princi-
ples motivating ProcSim has two main reasons. On the
one hand, using the same class hierarchy for noise gener-
ation and training could lead to unfair biases favoring our
method. On the other hand, using word hierarchies such
as WordNet [29] to resolve inter-class similarities empiri-
cally achieves lower retrieval performance than other meth-
ods such as PLG [40].

4. Experiments

4.1. Experimental details

Datasets: We report results on CUB200 [49], Cars196 [22],
and SOP [46]. For all datasets, the sets of train and test
classes are disjoint.
Implementation details: We implement ProcSim using
PyTorch [34], which also provides the utilized ResNet-
50 [16] backbone model with pre-trained ImageNet [41]
weights. We replace the last layer of the backbone model
with a fully connected layer that provides embeddings of
dimension 512. The PLG [40] and the MS losses [50]
are adapted from the original implementations and use the
hyperparameters proposed by the authors for each dataset.
The reported metrics are obtained by retrieving the nearest
neighbors using the cosine similarity. For a fair compar-
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Table 1. Recall@1 on the CUB200 [49] dataset for different types and levels of noise. The methods included in the ablation study are
classified depending on how the confidence (if any) is computed. All the methods in each group share the same hyperparameters. Best
results are shown in bold. ProcSim and its variants consistently outperform all the other baselines, and ProcSim (base) achieves the best
performance overall in terms of the harmonic mean on all corrupted datasets.

NOISE TYPE→ NONE SEMANTIC UNIFORM HARMONIC
MEANMETHODS ↓ - 10% 20% 50% 10% 20% 50%

Pair-level confidence
SuperLoss [5] 49.8 49.7 48.8 48.3 49.2 48.8 47.3 48.8

Base non-confidence-aware losses
Proxy-NCA [30] 58.0 57.8 56.4 51.9 57.3 56.9 55.7 56.2
MS [50] 67.9 64.8 60.6 49.0 64.0 60.7 49.5 58.6
MS + PLG [40] 69.4 68.7 67.7 62.3 68.5 68.4 55.5 65.4

ProcSim and variants of it (ours)
ProcSim (base) 70.1 72.2 71.0 67.9 69.3 70.4 60.8 68.6
Threshold on MS instead of Proxy-NCA 69.1 69.2 66.9 67.7 67.8 66.0 54.1 65.4
Proxy-NCA instead of MS as DML loss 59.0 58.1 56.9 51.3 58.2 59.2 56.4 56.9
Regularization affected by confidence 65.7 63.4 62.7 56.9 63.0 62.5 52.3 60.6
Global average instead of Otsu’s method 69.6 69.6 69.2 64.1 70.5 71.1 59.0 67.3
Gaussian Mixture Model instead of Otsu’s method 70.2 64.9 69.1 64.4 70.4 71.2 58.0 66.6

ison, we do not apply learning rate scheduling [39]. We
also report the results with fixed hyperparameters for each
dataset to show that our method achieves good performance
without requiring fine-tuning for different types and proba-
bilities of noise. Please refer to the supplementary for addi-
tional implementation details.

4.2. Ablation study

This section presents a study in which we assess the
boost in image retrieval performance obtained with each of
ProcSim’s components. We report the Recall@1 achieved
on the CUB200 [49] dataset and its corrupted versions in
Tab. 1. As baselines, we consider the base DML losses,
which treat all samples equally, and SuperLoss [5].

We implement the SuperLoss framework using the de-
tails provided by Castells et al. [5]: learning rate, weight
decay, scheduling1, contrastive loss [8], and λ hyperparam-
eter. We compute the contrastive loss using the PyTorch
Metric Learning library [31] and weight each loss term by
the confidence in (2) before reducing the loss.

SuperLoss [5] yields poor results, which can be due to
its susceptibility to techniques such as hard-negative mining
and hyperparameter tuning [17]. However, its surprising ro-
bustness to noise motivates the usage of a confidence-aware
objective. Computing confidence scores at the sample level,
as we do in ProcSim, yields much better results than the
pair-level scheme of SuperLoss. Moreover, it can use any
objective written as a sum over samples. Waiving this re-
striction allows the incorporation of more powerful DML
objectives that alone outperform the pair-level confidence
scheme.

1We apply learning rate scheduling to this method since its absence led
to significantly worse results. All the other methods don’t use scheduling
to avoid confounders in the performance boost [39].

Table 2. Recall@1 when ProcSim uses BERT [11] instead of CLIP
[37] for the computation of the self-supervised loss. Difference
with ProcSim inside parentheses.

UNIFORM NOISE (%)→ 10% 20% 50%

CUB200 [49] 71.3 (+2.0) 71.2 (+0.8) 60.3 (-0.5)
CARS196 [22] 86.9 (-0.3) 86.3 (+0.3) 75.6 (+0.4)
SOP [46] 79.1 (-0.2) 77.9 (-0.5) 73.1 (-0.2)

Proxy-NCA loss [30] is preferable for noise identifica-
tion, but its base performance falls behind the MS loss [50].
Adding the PLG term [40] promotes learning a represen-
tation that captures semantics. When using this regular-
ization, we achieve a consistently better performance than
plain MS loss and improved robustness against semantic
noise compared to uniform noise.

We can see that weighting the DML loss by the con-
fidence score and not on the regularization term yields a
consistent improvement. In this case, noisy samples rely
more on the regularization objective than the supervised
DML loss, which is affected by label noise. Finally, us-
ing other thresholding methods like global average, as in
SuperLoss [5], or Gaussian mixtures, as in [24], results in
generally worse performance.

ProcSim does not have a monotonically decreasing per-
formance with noise, a behavior only observed for the
CUB200 dataset [49]. On the one hand, this can be due
to using the same hyperparameters across all corrupted
datasets and Otsu’s method [33] separating the samples into
two groups. Note that this assumes that the Proxy-NCA
loss [30] follows a bimodal distribution, which may de-
crease the contribution of correctly labeled samples when
there are no wrong labels. Solving this is as easy as setting
a larger λ, which accounts for a more equal treatment of
the two sets of samples separated by the threshold. How-
ever, we wanted to show that even if not tuning λ, Proc-
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Table 3. Recall@K (%) on the benchmark datasets corrupted with 30% uniform noise for different values of K. The reported results for
all methods except ProcSim (ours) are taken from Yan et al. [56], and the asterisk (∗) indicates that their method was applied on top of the
indicated DML loss. Best results are shown in bold. ProcSim achieves a superior performance according to most of the metrics. Note that,
similarly to the runner-up method, ProcSim is a robustness framework built on top of the MS loss [50].

BENCHMARKS→ CUB200 [49] CARS196 [22] SOP [46]

METHODS ↓ R@1 R@2 R@4 R@8 R@1 R@2 R@4 R@8 R@1 R@10 R@100

Triplet [44] 54.3 67.1 77.4 85.6 44.3 57.0 69.0 79.1 51.7 69.2 84.1
Triplet∗ [56] 55.5 68.1 78.2 85.9 46.1 58.2 69.6 79.3 52.9 70.1 84.6
LiftedStruct [46] 61.6 73.0 82.1 89.1 77.1 85.3 91.6 94.8 67.9 82.0 91.5
LiftedStruct∗ [56] 64.3 75.5 83.6 90.1 79.2 87.1 82.0 95.0 69.1 83.0 92.1
MS [50] 62.0 73.8 82.5 89.6 79.5 86.7 91.7 95.1 72.0 85.7 94.1
MS∗ [56] 65.3 76.1 84.7 90.7 82.4 89.5 93.8 95.9 73.6 86.9 94.8
ProcSim (ours) 68.8 79.8 87.4 92.4 84.1 90.6 94.7 97.0 77.7 89.5 95.0

Table 4. Recall@1 (%) on the benchmark datasets corrupted with different probabilities of uniform noise. The reported results for
all methods except ProcSim (ours) are taken from the PRISM paper [25] and rounded to one decimal place for consistency with the other
tables. Best results are shown in bold. While MCL+PRISM [25] performs slightly better than ProcSim for low levels of noise on SOP [46],
our method consistently and considerably outperforms it in the other datasets.

BENCHMARKS→ CUB200 [49] CARS196 [22] SOP [46]

METHODS ↓ 10% 20% 50% 10% 20% 50% 10% 20% 50%

DML with Proxy-based Losses
FastAP [4] 54.1 53.7 51.2 66.7 66.4 58.9 69.2 67.9 65.8
nSoftmax [61] 52.0 49.7 42.8 72.7 70.1 54.8 70.1 68.9 57.3
ProxyNCA [30] 47.1 46.6 41.6 69.8 70.3 61.8 71.1 69.5 61.5
Soft Triple [36] 51.9 49.1 41.5 76.2 71.8 52.5 68.6 55.2 38.5

DML with Pair-based Losses
MS [50] 57.4 54.5 40.7 66.3 67.1 38.2 69.9 67.6 59.6
Circle [47] 47.5 45.3 13.0 71.0 56.2 15.2 72.8 70.5 41.2
Contrastive Loss [8] 51.8 51.5 38.6 72.3 70.9 22.9 68.7 68.8 61.2
MCL [52] 56.7 50.7 31.2 74.2 69.2 46.9 79.0 76.6 67.2
MCL + PRISM [25] 58.8 58.7 56.0 80.1 78.0 72.9 80.1 79.5 72.9
ProcSim (ours) 69.3 70.4 60.8 87.2 86.0 75.2 79.3 78.4 73.3

Sim obtains good results. Note that in any case finding λ
is equivalent to finding the noise level of the data, but to
the severity by which we decrease the importance of noisy
sample. On the other hand, surprisingly, the best results are
achieved with some semantic noise. Note that along with
PLG regularization, having some labels swapped to seman-
tically similar samples can force the model to learn a space
with semantically related groups.

4.3. Influence of the language model

The PLG loss uses the language part of CLIP [37], which
is trained on vision-language paired datasets. While this
means CLIP is well-aligned to learn semantic information
for a visual similarity task, it also means that its training set
might overlap with vision datasets [37]. For this reason, we
tested ProcSim with a pre-trained BERT base model [11] as
LLM. The performance in Tab. 2 shows the generalization
capacity of ProcSim and factors out the possibility of unfair
advantages by using CLIP.

Another possible issue arising from the PLG loss is its
limitation by the performance of the image classification
model. Concretely, the classifier discretizes the number
of language embeddings and limits it by the number of
classes. Moreover, the categories may not align with the
downstream dataset. One possible solution to bypass the
classifier is to distill information from CLIP image embed-
dings. This approach takes advantage of the multi-modality
of the model and achieves comparable performance in all
datasets with slight improvements on SOP. Refer to the sup-
plementary for the results and additional discussions.

4.4. Comparison to state-of-the-art

Previous methods for robust DML report results on the
benchmark datasets corrupted with uniform noise. For an
extensive and exhaustive comparison, we present the im-
age retrieval performance that ProcSim obtains compared
to state-of-the-art approaches. We facsimile the results re-
ported in the papers, which means that although the noise

1314



Table 5. Recall@1 (%) on the benchmark datasets injected with different probabilities and models of noise. Best results are shown in bold.
ProcSim obtains a consistently better performance and is significantly more robust to semantic noise than the alternatives.

BENCHMARKS→ CUB200 [49] CARS196 [22] SOP [46]

METHODS ↓ 10% 20% 50% 10% 20% 50% 10% 20% 50%

Uniform noise
LSD [60] 63.0 62.1 57.2 78.5 72.3 65.2 76.6 75.4 68.7
MCL + PRISM [25] 58.1 56.4 54.7 78.7 74.8 68.6 76.4 76.6 72.6
ProcSim (ours) 69.3 70.4 60.8 87.2 86.0 75.2 79.3 78.4 73.3

Semantic noise
LSD [60] 62.8 61.9 58.5 77.5 76.6 73.0 76.8 73.7 69.1
MCL + PRISM [25] 57.7 57.9 50.6 77.8 75.9 63.4 76.6 75.8 72.2
ProcSim (ours) 72.2 71.0 67.9 86.9 86.3 81.1 79.0 77.8 73.3

statistics are the same, the corrupted samples could differ.
We also found methods like MS [50] to be inconsistent
across papers, likely due to different implementations and
hyperparameters.

Tab. 3 presents the results obtained using adaptive hi-
erarchical similarity [56] on top of common DML objec-
tives trained on datasets with a 30% of wrong annotations.
Among all DML objectives augmented with adaptive hier-
archical similarity [56], MS attains the best performance,
further motivating utilizing the MS loss as the base DML
objective for ProcSim. The model trained with ProcSim
outperforms all the other methods in all metrics, proving
to be a better alternative to enhance the MS loss [50].

Liu et al. [25] report results on the benchmark datasets
corrupted with 10%, 20%, and 50% of uniform noise. In
Tab. 4, we report their results along the ProcSim perfor-
mance. We can see further evidence of the superiority of
MS [50] in front of Proxy-NCA loss [30] and of the vastly
higher performance of Procsim on the CUB200 [49] and
Cars196 [22] datasets.

We can observe a slightly lower performance on SOP.
On the one hand, this is because the SOP dataset is much
more fine-grained than the others, and MCL + PRISM [25]
is focusing on it and not on the other datasets, where Proc-
Sim occasionally outperforms it by a 10% difference. On
the other hand, the PLG is less effective on SOP due to its
higher class-to-sample ratio [40].

4.5. Effect of semantic noise

In Tab. 5, we compare the effect of uniform and semantic
noise on the state-of-the-art methods. To assess the perfor-
mance of LSD [60] and MCL + PRISM [25], we use the
code provided by the authors with the proposed hyperpa-
rameters and include the obtained results on uniform noise.
MCL + PRISM [25] requires an estimate of the noise prob-
ability, and although not specified, we used the ground truth
probabilities, thus favoring this method. Doing so achieved
the closest results to those reported by Liu et al. [25] for
CUB200 [49] and Cars196 [22], but not for SOP [46]. We
can observe that the results on the SOP dataset [46] for both

types of noise are alike as expected. The reason being that
semantic noise assigns a label chosen uniformly at random
over only one of the twelve categories for SOP.

ProcSim attains the best performance in all cases. The
competing approaches, especially MCL + PRISM [25], are
more affected by semantic noise. These results show that
semantic noise can be more harmful as it generates samples
with wrong labels that are harder to spot. Instead, ProcSim
shows the opposite behavior, which we attribute to the res-
olution of inter-class relationships.

5. Conclusions

This paper proposed ProcSim, an approach for training
DML models for visual search on datasets with wrong an-
notations. ProcSim is a confidence-aware framework that is
usable on top of any DML loss to improve its performance
on noisy datasets. ProcSim is superior to existing alterna-
tives when applied to datasets with injected noise without
even fine-tuning for different types and levels of noise.

This work also introduced a new noise model inspired by
plausible labeling mistakes. The proposed semantic noise
model yields samples with wrong class labels that are harder
to spot and can occasionally be more harmful than the om-
nipresent uniform noise model. While real noise is complex
and a mixture of different types of noise, including but not
limited to semantic errors, we believe this is a step towards
closing the gap between real-world and simulated noise.
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