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Abstract

Fixed pattern noise (FPN) is a temporally coherent noise
present on videos due to the non-uniformities in the re-
sponse of the imaging sensor. It is a common problem for
infrared videos which degrades the quality of the obser-
vation and hinders subsequent applications. In this work
we introduce a generalization of the FPN removal problem
where the input data consists of several different sequences
with the same FPN. This is motivated by infrared cameras
that capture multiple views with a single sensor via a peri-
odic motion pattern of a mirror or the camera itself, such
as those used in surveillance. This multi-view setting al-
lows for a much more accurate estimation of the FPN in
comparison with the standard FPN removal problem from
a single view. We propose a novel energy minimization ap-
proach for multi-view FPN removal, and two optimization
algorithms that can be applied both in an off-line and on-
line manner. In addition, we show that the proposed energy
can be adapted to the problem of FPN removal from a single
view with a rolling window approach, obtaining a signifi-
cant improvement over the state of the art. We demonstrate
the performance of the proposed method with synthetic data
and real data from surveillance infrared cameras.

1. Introduction
Noise in imaging devices can be caused by factors ex-

ternal to the device, such as photonic noise, or internal,
such as sensor calibration drift and electronic noise. FPN
(for Fixed Pattern Noise) is a specific kind of noise that is
almost temporally constant and is due to an incorrect sen-
sor calibration. Infrared videos are particularly affected by
FPN, due to the nature of IR sensors. In particular the re-
sponses of microbolometer IR sensors are heavily impacted
by their temperature, and calibrating using temperature sen-
sors might not be accurate enough [2]. In practice, the FPN
changes slowly over time. For this reason, most methods for
scene-based FPN estimation are online methods that update

constantly the FPN estimation (e.g. [9,13,17–19,21,30]) to
complement a first factory calibration.

FPN can negatively affect the performance of various
video processing tasks, such as tracking and motion esti-
mation. Often, methods used for these tasks assume that
noise is not temporally correlated, and thus can fail due
to the presence of FPN. In addition, videos with FPN of-
ten contain other types of noise, such as (temporally uncor-
related) photonic noise. Several methods exist for remov-
ing photonic noise, but their performance deteriorates in the
presence of FPN. Figure 1 illustrates the impact of FPN. It
shows on the first row five crops of different views produced
each by averaging 150 consecutive frames in order to re-
duce temporal noise, but not the FPN. The latter is severely
reduced on the second row by our method, using in total 16
views with the same sensor. Details that were invisible on
the original images are revealed on the processed images.

The following linear model is widely for the FPN:

y(t) = a⊗ x(t) + b (1)

where ⊗ is the element-wise product, x(t) and y(t) are
the clean and noisy frames at time t, and a and b are re-
spectively the FPN pixel-wise gain and offset coefficient,
modelling respectively multiplicative and additive compo-
nents of FPN. These components are modeled as white
Gaussian noise, with more realistic models considering also
structured noise, typically noise constant along rows and
columns [10, 12, 28]. Several works omit the multiplicative
component a and focus on additive FPN [5, 17, 21, 30].

In this work, we place ourselves in the case where mul-
tiple views are available from a single sensor. The views
are considered simultaneous (or acquired within a period
of time short in comparison with the rate of change of the
FPN), so they are assumed to have the same FPN. The mo-
tivation for this multi-view FPN removal problem comes
from cameras that acquire multiple views with a cyclic mo-
tion pattern (e.g. surveillance cameras). Such cameras take
N frames per motion cycle, thus resulting in N views.

The main difference of the multi-view case over the
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Figure 1. FPN estimation on real infrared data acquired with a multi-view single-sensor microbolometer camera. We display temporal
averages to reduce temporal uncorrelated noise and unveil the FPN. Crops from 5 views (first row) and the results obtained with the
proposed FPN removal method, estimated using 16 views (second row).

single-view case is that we have access to several views
sharing the same FPN. This enables to extract the FPN by
exploiting the redundancies between the noise realizations
of each view, and the differences between the signal in the
acquired view. This is very different to (single-view) scene-
based FPN extraction methods where it can be challenging
to separate FPN from signal in cases where there is little
motion in the scene.

We propose an energy minimization method to tackle
the multi-sequence FPN removal problem, with an energy
consisting in data attachment terms and total variation (TV)
spatial regularization. The proposed energy can be applied
to N sequences or N single images, and it can be even
applied to the standard single sequence setting by using a
rolling window with the N latest frames.

To minimize the energy we discuss off-line methods
which minimize a static energy, and on-line methods, which
perform one (or a small amount) of iterations per frame.
Off-line methods are suitable for calibration (i.e. estimate a
FPN pattern which is assumed to be constant), whereas on-
line methods are suitable for tracking the (slow) temporal
drift of FPN. This results in a flexible framework which we
can apply to different setups:
Multi-view offline FPN removal: several sequences (taken
from different scenes) that have the same FPN. This is use-
ful as a calibration step assuming that the FPN is constant
in time. We study an extreme case of this setup, in which
the used sequences have a single frame.
Multi-view online FPN removal: The input here is videos
from different views with the same sensor assumed to be
synchronized. In this setting, we use the online optimization
so as to track temporal variations of the FPN.
Online single-sequence rolling window: The input is a
single video, which is processed with an online optimiza-
tion with a rolling window approach.

Our contributions can be summarized as follows:

(i) We introduce a generalized setting of the classical FPN
removal problem, where we assume N input sequences with
T frames, showing different realistic use cases for some par-
ticular cases of the problem.

(ii) A new variational FPNR algorithm that can be used in
different settings, as explained above. We compare different
optimization schemes, both on-line and off-line.

(iii) For the standard single-video FPN removal problem,
the proposed rolling window method achieves state-of-the-
art results.

The next section reviews the related work. In Section 3,
we present the formalization. The results from our method
in different setups are presented in Section 4.

2. Related work

The problem of removing the FPN is called FPN removal
(FPNR) or non-uniformity correction (NUC). FPNR meth-
ods can be divided into two main families: reference-based
and scene-based method. The reference-based methods re-
move noise according to fixed calibration parameters, esti-
mated for example with a shutter, a black body at two dif-
ferent temperatures [6]. However, the FPN changes slightly
over time, which requires regularly updating the calibration
parameters. Because of this, most of the research is focused
on the other scene-based FPN removal.

Scene-based methods seek to estimate the FPN from a
single noisy sequence, without additional external infor-
mation. Scene-based FPN removal is a challenging prob-
lem, specially if the sequence is static or changes slowly.
In such cases it is difficult to separate the FPN from the
scene content. In the extreme case of a constant scene,
the problem becomes equivalent to single frame denoising,
with the added difficulty of the structured row and column
noise. Recursive estimation algorithms often remove tem-
porally constant regions of the scene content as part of the

1670



FPN. From scene-based methods, we can distinguish sev-
eral subfamilies: those that work from image statistics [9]
and update correction coefficient recursively according to
these image statistics. Temporal high pass filters meth-
ods [5,17,21,29,30] apply a simple spatial denoiser to each
frame. The residual contains most of the FPN, plus tem-
porally varying noise and high frequency details from the
clean signal. The main idea is then to extract the FPN as
the temporal low-frequency content of this residual. Regis-
tration methods [8, 18] use the accurate motion estimation
between frames to obtain a reasonable estimate of the true
scene. Optimization-based methods [13, 19, 22, 23, 25, 26]
define an energy with correction coefficients as variable that
are minimized, generally with a gradient descent.

In this work we consider a generalization of the scene-
based FPN problem, where we have at our disposal M
synchronized sequences. To the best of our knowledge,
no other previous work consider this problem before. Our
energy-based formulation is most closely related to [13, 19,
22,23,25,26]. These are online approaches in which the en-
ergy being minimized considers only the current frame. In
contrast, our energy involves multiple images (either from
the different views, or from different frames in our single-
view method). This enables a significantly improved preci-
sion and reduces the amount of images needed for precise
estimation.

Recent approaches [7, 10, 12, 28] are learning-based
methods that use convolutional neural networks (CNN) to
process a single noisy image. These approaches treat the
FPN removal as a single image denoising, thus disregarding
the valuable information in the temporal dimension. An-
other problem of learning-based methods is poor general-
ization. CNNs are known to perform sub-optimally outside
of their training domain. FPN removal is a low level prob-
lem heavily dependent on the specifics of the sensor used.
For this type of problem it is difficult to obtain real train-
ing data. Instead CNNs are trained on synthetic datasets
and might not generalize well to real raw imagery. Our ap-
proach can be applied to synthetic and real data with little
parameter tuning, as opposed to deep networks which re-
quire retraining when the input data distribution changes.

3. Proposed method

Let y1, ..., yN be N images that contain the same addi-
tive FPN b with variance σb:

yn = xn + b, n = 1, . . . , N. (2)

Where {xn}n is the set of N clean images and b is
the additive FPN with standard deviation σb. The im-
ages are defined over a discrete rectangular domain Ω =
{1, 2, ...,W}×{1, 2, ...,H}, and we denote by RΩ the spa-
tial domain of the images.

Total variation (TV) is a regularization term widely used
in image processing and computer vision [3]. Given y a
noisy image with additive Gaussian noise the discrete ver-
sion of TV can be defined as

TV(y) =
∑
p∈Ω

|∇+yp|, (3)

where ∇+ is the discrete forward difference gradient and if
we note p = (i, j), then we have

(∇+y)i,j = (yi+1,j − yi,j , yi,j+1 − yi,j)

and | · | is the Euclidean norm in R2.
Total variation can be used as a regularization term for

AWGN denoising with the following model

min
x̂

TV(x̂) +
λ

2
∥y − x̂∥22 (4)

where y is a noisy version of an image x that we would like
to estimate and λ is a trade-off parameter between the TV
regularization and the data attachment term. This energy is
called the Rudin-Osher-Fatemi (ROF) model [20]. From a
Bayesian perspective, the solution x̂ can be interpreted as
the Maximum A Posteriori (MAP) estimation problem with
a prior induced by the TV regularizer (see e.g. [14, 16]).

A naive extension of the ROF model to our multi-image
case can be written as follows

min
x̂1,...,x̂N

N∑
n=1

TV(x̂n) +
λ

2
∥x̂n − yn∥22. (5)

Since we assume a common noise b, we have x̂i = yi − b
and thus we re-parameterize the energy as

E(b) =

N∑
n=1

TV(yn − b) +
λb

2
∥b∥22, (6)

where λb = Nλ.
This convex energy minimizing problem can be solved

by several ways. In this paper, we will explore the use of
the Adam optimizer [11] with automatic differentiation of
PyTorch and the Chambolle-Pock algorithm [4].

3.1. Chambolle-Pock primal-dual algorithm

Chambolle-Pock [4] is a first-order primal-dual opti-
mization algorithm for convex problems of the form:

min
b∈RΩ

F (Kb) +G(b). (7)

In cases in which F is non-differentiable, it can be bene-
ficial to solve the following equivalent min-max problem:

min
b

max
q,∥q∥∞≤1

⟨Kb,q⟩+G(b)− F ∗(q)

where F ∗ is the convex conjugate of F . The min-max
problem requires an additional dual variable q. Primal-dual
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methods estimate q alongside b. For our energy E in (6), F
corresponds to the sum of the total variation terms, G to the
data attachment, and the linear operator K : RΩ → R2NΩ

concatenates N copies of the discrete gradient of b, for each
one of the N TV terms: K(b) = (∇+b, ...,∇+b).

Algorithm 1 details the Chambolle-Pock algorithm [4],
which it alternates minimization steps on the primal vari-
able with (line 4) and maximization steps on the dual vari-
able (line 3) with time-varying step sizes σm and τm, fol-
lowed by a so-called extragradient step (line 6 with step θ).
The remaining line in the main loop update the time-varying
step sizes. The initial time step sizes σ0 and τ0 are param-
eters of the algorithm. In Algorithm 1, we have defined

g = (∇+y1,∇+y2, ...,∇+yN ) ∈ R2NΩ, (8)

the concatenation of the discrete gradients of the N input
noisy images. Lastly, K∗ =

∑N
n=1 div− is the adjoint of

K, where div− is a discrete divergence operator. We refer
the reader to the supplementary material for more details.

3.2. Adam optimizer

The Adam optimizer was introduced in the context of
deep learning [11], where it is widely used. It is an adaptive
gradient descent method with momentum. We apply it to
our primal problem. We use automatic differentiation for
simplicity of implementation, but the gradient can be easily
computed in closed-form.

3.3. Online optimization

So far we have considered N different images y1, ..., yN
affected by the same FPN. In this section we consider the
case in which we have N synchronized sequences (which
we denote yn(t), as a function of the frame index t) and a
temporally varying FPN b(t):

yn(t) = xn(t) + b(t), n = 1, ..., N.

We estimate b(t) by minimizing for each frame t the energy

Et(b(t)) =

N∑
n=1

TV(yn(t)− b(t)) +
λb

2
∥b(t)∥22. (9)

This defines a temporal sequence of energies. We could
minimize each one of them by running an iterative solver
until convergence at each frame. But due to the tempo-
ral consistency in the sequences yn(t), the energy changes
smoothly with time t. Thus, we perform a single iteration
per frame hoping that the resulting iterates will track the
temporal changes in the energy. In Algorithm 1, this implies
that the iteration index m becomes the frame index t, thus
g(t) = (∇+y1(t), . . . ,∇+yN (t)) is now dependent on t
(and changes in each iteration). In doing so we are not guar-
anteed to have an optimal solution for any frame, but we
significantly reduce the computational cost. Similar online
minimization algorithms have been proposed previously for
FPN removal from a single sequence [19, 22, 26, 27].

Algorithm 1: Chambolle-Pock FPN Estimation
Input y1, ..., yN : noisy H ×W images
Output b: estimated FPN

1 b0, b̄0,q0 := zeros # init with zeros

2 for m from 1 to M do

3 qm+1
n,p =

qm
n,p + σmKb̄m − σmgn,p

max{|qm
n,p+σmKb̄m−σmgn,p|2, 1}

4 bm+1 = 1
1+τmλb

(bm − τmK⋆qm+1)

5 θ = 1

(1+2γτm)
1
2
; τm+1 = θτm; σm+1 = σm

τm

6 b̄m+1 = bm+1 + θ(bm+1 − bm)

3.4. Use cases

We discuss 3 use-cases for our FPN removal framework.

Multi-view offline FPN estimation. In this setting, we as-
sume that the FPN is constant, or has a negligible temporal
drift. The FPN calibration process can be done once in a
while, by taking N still images y1, ..., yN . The N images
should be as different as possible, for example obtained by
pointing the camera at different scenes, or by extracting N
distant frames from a long video where the scene is not
fixed. Since the images have the same FPN, which is es-
timated by minimizing energy E in (6).

Multi-view online FPN estimation. For this use-case, we
assume the sensor captures images cycling over N differ-
ent views. For example a mirror (or the camera itself) is
moved in a pre-determined cyclic pattern. We thus have N
synchronized sequences with the same FPN, and can esti-
mate its slow temporal variation using online minimization
described in Section 3.3 for the sequence (9) of energies Et.

Single-view online FPN estimation. This is the standard
FPN removal problem, in which we only have a single noisy
video y(t). In this case, we propose a rolling window ap-
proach that considers the previous N frames to define the
following sequence of energies:

ERW
t (b(t)) =

t∑
s=t−N+1

TV(y(s)− b(t)) +
λb

2
∥b(t)∥22. (10)

Note that if N = 1, then we end up a sequence of ROF
problems as in Eq. (4).

4. Experiments

In this section we evaluate the proposed energy for FPN
estimation in the three uses cases described before. We
show results on synthetic and real data. We use PSNR for
quantitative evaluation.
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Figure 2. Online multi-view FPN removal on real microbolomer camera. Crops from 2 different views corresponding to averages (50
frames) to reduce temporal noise, and the corresponding results with our estimated FPN removed (adam) using 16 views (second row),
bilateral-THPF (third row), SL-THPF (fourth row).

Noise modelling. Real FPN usually features both a struc-
tured component and an unstructured component [2]. We
will consider the structured component as row and column
noise as follows:

b(i, j) = bw(i, j) + br(j) + bc(i) (11)

where (i, j) is a position on the image plane, bw(i, j) ∼
N (0, σbu) models the unstructured noise, br(j) ∼
N (0, σbr ) is constant along rows, and bc(i) ∼ N (0, σbc)
is constant along columns. Note that we consider the same
variance for the row and column. For the experiments, we
set σbc = σbu = 5.

Discussion about parameters. The main parameter of
the method is λb which controls the trade-off between data
attachment and regularization in the energy. Thus it con-
trols the denoising strength, and should be a function of the
noise level (smaller λb will produce a stronger denoising).
For the offline method, the number of input images N is
also an important parameter. Larger values of N lead to
better results (albeit at a higher computation cost: for both
optimizers, the cost per-iteration scales linearly with N ).

The step sizes of the optimization algorithm (η for
Adam, σ0, τ0 for Chambolle-Pock) are additional parame-
ters which determine the convergence speed and how close
to the global minimum the result is. Larger step sizes lead
to faster convergence, but if they are too large the algorithm
to diverge [4]. Other parameters of Adam were left with
their default values.

4.1. Multi-view offline FPN estimation

We start with the multi-view offline FPN estimation via
the minimization of energy E in (6). This is a static energy

and thus it fits the setting in which optimizers have been
shown to converge. The input data is a set of N still images
assumed to have the same FPN.

Synthetic visual results are shown in figure 3 and quan-
titative results in table 1. We use images from the DIV2K
dataset [1], converted to grayscale and with additive FPN
as modeled above. Both optimization algorithms produce
good results. Using several images from different views
help these methods separate the FPN from the signal (see
figure 3), and the quality of the results increases with the
number of available views N . The results produced by the
Chambole-Pock algorithm are on par with Adam, which is
reasonable since the energy is convex and has a unique min-
imizer. A visual inspection of the results shows that both
methods produce similar results.

The optimal value of λb depends on the noise variance.
All our experiments were done with fixed variances for the
three noise components. Best results are achieved with
λb ≈ 5 · 10−2 for Adam and CP. For the step-size, values
around 5 · 10−1 seem to guarantee convergence relatively
fast for Adam.

To validate the synthetic experiments, figure 1 shows the
result of Adam on real data taken with a microbolometer
camera with a cyclic motion pattern of N = 16 views cap-
tured with the same sensor. The original data (not shown)
features photonic noise, electronical noise and FPN with
small slow temporal variations. For each view, an image
with reduced temporal noise is estimated by averaging 150
frames of the same view. The first row of the figure shows
the averaged images for 5 views. After removing the tem-
porally uncorrelated noise the FPN becomes apparent. We
estimate it by minimizing our off-line multi-view energy us-
ing the N = 16 temporal averages as the (yn)n in (6). The
images with the FPN removed are shown in the second row.
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(a) ground truth (b) noisy (c) Denoised Adam (d) Denoised CP

(e) ground truth (f) noisy (g) Denoised Adam (h) Denoised CP

Figure 3. Visual comparison of images from the DIV2K dataset. Simulated additive (no temporal independent noise), spatially structured
and spatially independent noise with a standard deviation of σbc = σbu = 5 was added to the frames. (a)(e), (b)(f), (c)(g), (d)(h) are
respectively the ground truth clean images, the noisy image with simulated FPN, the image denoised by our method with Adam, the image
denoised by our method with CP. The results were obtained with N = 16 for both, λb = 5× 10−2 and step size equals to 0.5 for Adam,
λb = 5× 10−2, τ = 0.02, σ = 0.5, for Chambolle Pock.

Table 1. Multi-image FPN estimation. Average PSNR results
obtained with simulated additive FPN (no temporal independent
noise), spatially structured and spatially independent with a stan-
dard deviation of σbc = σbu = 5. The number of iteration is set
to 500. Images are from DIV2K. N is set to 16 except specified
otherwise.

N → 16 16 16 8 32
Method λb → .05 .005 .0005 .005 .005

Noisy 29.4 29.4 29.4 29.4 29.4
Adam η= .05 38.9 39.0 39.0 37.6 40.2
Adam η= .5 40.5 38.9 38.1 35.2 43.1
Adam η=5 40.4 38.1 34.9 35.0 42.3
CP σ0= .1, τ0= .1 40.3 38.8 38.4 35.6 38.5
CP σ0= .5, τ0= .02 40.5 40.2 40.2 37.8 43.9

4.2. Multi-view online FPN estimation

In this setting, we assume that the FPN might have slow
variations and that we have frequent acquisitions from mul-
tiple views with the same sensor. Thus, we have N temporal
sequences with the same slowly varying FPN.

For the synthetic experiments, we use N sequences from
the REDS dataset [15] converted to grayscale to simulate
the different views. Table 2 shows the performances of our
method with Adam or CP against our own implementation
of two baseline methods from the literature SL-THPF (Spa-
tial Low-pass and Temporal High-pass Temporal High Pass
Filtering) [17] and bilateral THPF (Bilateral Temporal High
Pass Filtering) [30]. Note that these methods were devel-

oped for a single-view video. We adapt them to the multi-
view case by running them on each of the N views, but
keeping a single estimate of the FPN which is updated at
each time t. At time t, we run the update rule of the method
for each view and obtain N updates, which we average to
update the FPN estimate. The proposed methods show a
huge improvement with respect to the baselines, with Adam
obtaining better results than CP.

For the experiment on real data, we use the moving mi-
crobolometer camera with N = 16 different views, each
with 150 frames. We apply the multi-view online method
(9) on the raw data which contains the temporally vary-
ing noise in addition to the FPN. In this case, the algo-
rithm should ideally remove only the FPN leaving the tem-
porally varying noise untouched. To evaluate visually the
performance of the algorithm we show temporal averages
of the outputs sequences on the last 50 frames (we use
the first 100 frames as warm-up due to the slow conver-
gence of the baseline methods). The first column of fig-
ure 2 shows the selected views, while the second, third
and fourth columns present respectively the results with our
method (using Adam), and the adapted bilateral THPF and
SL-THPF. Looking at the results they seem to still contain a
portion of FPN that is not removed, while our method gives
significantly smoother results.

4.3. Single-view online FPN estimation

In this setting, a standard single view video is used to
estimate the FPN (which can have a smooth temporal drift)
using the rolling window energy (10). For the experiments
we evaluate our results on several sequences of the REDS
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Table 2. Average PSNR results of the last frames of several se-
quences of the REDS dataset, as described above, obtained with
simulated additive FPN (no temporal independent noise), spatially
structured and spatially independent with a standard deviation of
σbc = σbu = 5. N is set to 16. For Adam the step size is equal to
0.5, for CP τ0 and σ0 are respectively equal to 0.02 and 0.5.

FPN Noisy SLTH* bilateral* Adam CP
Constant 29.5 36.8 35.5 43.4 42.6
Varying 29.4 36.2 35.0 42.7 40.6

dataset converted to grayscale and temporally downsampled
by a factor of 3. In addition we use a window of size N =
16.

The single-view sensor setting is the standard setting
in which existing FPN removal algorithms operate, thus
we can compare the performance of the proposed method
against other approaches in the literature. We include re-
sults of our own implementations of SL-THPF [17] and bi-
lateral THPF [30] (note that these are not the multi-view
adaptations of the previous section). We also included re-
sults from a single image deep neural network SNRWDNN
[7]. We used the authors’ implementation and re-trained it
with our noise model. For more details and additional re-
sults, please refer to the supplementary material. Whereas
our algorithm uses N images for each FPN update (the
frames in the rolling window), all existing online FPN re-
moval methods, including [17] and [30], use a single frame
per update.

Table 3 shows the PSNR obtained at the last frame for 5
test sequences. Our methods achieve several dBs over both
THPF methods. Results from SNRWDNN are worse than
the others as it is a single image network and only the PSNR
of the last frame is reported. Figure 4 features plots of the
evolution of the PSNR with the frame index of the com-
pared methods for one sequence of REDS. The first plot
considers the case of constant FPN. In the second plot the
FPN varies slowly, as a linear interpolation between two re-
alizations of FPN at frames t = 1 and t = 150. In both
cases, the proposed rolling window method with Adam and
CP has significantly improved performance compared to its
competitors (with CP achieving the best results). In addition
the convergence is faster, surpassing the single frame CNN
SNRWDNN after 10 to 20 frames, and reaching a steady
state after around 50 frames. Instead the competitors do not
seem fully converged after 150 frames on the first plot. Plus,
on the second plot, the competitors converge to lower per-
formance, indicating troubles to estimate the changing FPN.
On the first plot, we include variants of our algorithm with
several values of N . As before, there is a small performance
increase with higher values of N .

The difference of PSNR can be seen in the output im-

ages, shown in figure 5. Most of high frequencies of the
FPN is removed by all methods, but the images denoised by
the SL-THPF and the bilateral THPF algorithm still show
considerable low frequency noise.

The third plot in figure 4 corresponds to the more re-
alistic case where in addition to the FPN, the sequence is
contaminated with temporally uncorrelated additive white
Gaussian noise. We first remove the FPN using different
FPN removal methods, and then remove the temporally un-
correlated AWGN with a video denoising network (FastD-
VDNet [24]) trained for blind AWGN denoising. The base-
line curve labeled “FastDVDNet” shows the performance
obtained by applying the AWGN video denoiser without re-
moving the FPN. We can see that when removing the FPN
before FastDVDNet is applied, the denoising performance
is greatly improved. This plot shows that the proposed FPN
removal methods can work properly in presence of tempo-
ral noise, which makes them a suitable pre-processing for
further video restoration tasks.

Table 3. PSNR results of the last frame of sequences from the
REDS dataset obtained with simulated additive FPN (no temporal
independent noise), spatially structured and spatially independent
with a standard deviation of σbc = σbu = 5. N is set to 16. For
Adam the step size is equal to 0.5, for CP τ0 and σ0 are respec-
tively equal to 0.02 and 0.5.

Method \ Seq 001 002 003 004 005
Noisy 29.5 29.4 29.5 29.4 29.3
SL-THPF 36.1 36.2 35.7 36.5 36.4
Bilateral THPF 35.2 35.2 34.7 35.2 35.2
SNRWDNN 33.8 34.1 33.2 34.7 33.7
Ours (Adam) 38.9 39.7 38.2 42.0 40.2
Ours (CP) 40.3 41.0 39.5 42.3 40.9

5. Conclusion
In this paper, introduced a multi-view generalization of

the FPN estimation problem and proposed a novel energy
minimization approach to remove FPN that exploits differ-
ent views having the same FPN. The proposed energy is
convex and we compare two optimization methods Adam
and the algorithm Chambolle-Pock, which is better suited
for convex energies with non-differentiable regularization
terms (such as TV).

The method require little parameter tuning, and thus can
be easily adapted to different kinds of data. We demonstrate
the effectiveness of the proposed approach on synthetic and
real data from microbolometer IR multi-view cameras for
the three use cases: an off-line multi-view calibration for
constant FPN, an online multi-view FPN removal, and also
a single-view FPN removal where the proposed approach
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Figure 4. Single-view online FPN estimation. Graphs showing the evolution of the PSNR (vertical axis) per frame (horiz. axis) for the
sequence 001 of the REDS dataset. We compare the results of two baseline methods from the literature of video FPN removal, bilateral
THPF [30] and SL-THPF [17] with our rolling window approach (10) with N = 16 (unless specified otherwise) minimized with online
versions of Adam and Chambole-Pock (CP). We also include the results of a single frame FPN removal network SNRWDNN applied
on every frame. For Adam the step size is equal to 0.5 and λb = 10−2. For CP, τ0 and σ0 are respectively equal to 0.02 and 0.5 and
λb = 10−2. Left: Constant FPN has been added to the sequence. We show results obtained with different number of frames N in the
rollowing window. Center: The FPN changes slowly over time, linearly interpolating two realizations of noise at t = 0 and t = 150. Both
temporal high pass filtering methods (THPF) fail to track the change in FPN. Right: In addition to the FPN (which is constant) we add
additive white Gaussian noise (temporally uncorrelated) of σ = 10. To denoise this sequence, we first apply FPN removal methods and
then apply a FastDVDNet network [24] trained grayscale images with AWGN. We report the PSNR obtained by FastDVDNet (without
prior FPN removal) to highlight the need of FPN removal.

(a) ground truth (b) noisy (c) ground truth (d) noisy

(e) Denoised SL-THPF (f) Denoised bilateral (g) Denoised SL-THPF (h) Denoised bilateral

(i) Denoised Adam (j) Denoised CP (k) Denoised Adam (l) Denoised CP

Figure 5. Visual comparison on two sequences of the REDS dataset, contaminated with simulated additive FPN with two components:
spatially structured and spatially independent with a standard deviations of σbc = σbu = 5 (no temporal independent noise was added).
(a), (b), (e), (f), (i), (j) are respectively the ground truth clean image, the noisy image, the image denoised by SL-THPF, the image denoised
by bilateral THPF, the image denoised by our method with Adam, the image denoised by our method with CP. Images (c), (d), (g), (h), (k),
(l) are the same for another sequence from the REDS dataset.

outperforms previous works by a significant margin.
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