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Abstract

Unsupervised Open-Vocabulary Semantic Segmentation
aims to segment an image into regions referring to an ar-
bitrary set of concepts described by text, without relying
on dense annotations that are available only for a subset
of the categories. Previous works rely on inducing pixel-
level alignment in a multi-modal space through contrastive
training over vast corpora of image-caption pairs. However,
representing a semantic category solely through its textual
embedding is insufficient to encompass the wide-ranging
variability in the visual appearances of the images associ-
ated with that category. In this paper, we propose FOSSIL, a
pipeline that enables a self-supervised backbone to perform
open-vocabulary segmentation relying only on the visual
modality. In particular, we decouple the task into two com-
ponents: (1) we leverage text-conditioned diffusion models
to generate a large collection of visual embeddings, starting
from a set of captions. These can be retrieved at inference
time to obtain a support set of references for the set of tex-
tual concepts. Further, (2) we exploit self-supervised dense
features to partition the image into semantically coherent
regions. We demonstrate that our approach provides strong
performance on different semantic segmentation datasets,
without requiring any additional training.

1. Introduction
Semantic segmentation is a classical Computer Vision

task that aims at partitioning an image into coherent regions
by labeling each pixel according to a predetermined set of
categories. The expensive costs of manually annotating train-
ing datasets have posed constraints on fully supervised mod-
els, restricting their utility to only a narrow set of categories.
Consequently, open-vocabulary semantic segmentation has
garnered increasing interest in recent years. This paradigm
enables models to segment arbitrary categories from free-
form textual queries, expanding their applicability to novel
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real-world scenarios.
The main challenge in open-vocabulary semantic segmen-

tation is how to recognize and localize arbitrary concepts in
the image. Previous works focus on learning an alignment
in a multi-modal space between textual and dense visual
features. A line of research [1, 11, 16, 32–34] exploits dense
annotations, that are available for a limited set of categories,
to transfer the alignment learned by a large-scale vision-
language model (e.g., CLIP [20]) from image to pixel granu-
larity. Instead, other works [4, 30, 31, 37] leverage the vast
variability of concepts in large web-crawled sets of image-
caption pairs through extensive contrastive learning to bring
out the multi-modal alignment in a weakly-supervised fash-
ion. However, a single embedding representing an arbitrary
concept is not enough to capture the intra-class variance in
the visual appearances of that concept, and such approaches
lack explainability.

Few recent works [14, 25] tackle this challenge through
the creation of multiple visual prototype embeddings associ-
ated with arbitrary concepts, which allow them to avoid the
usage of multi-modal feature spaces. Notably, Karazija et
al. [14] introduces a dynamic strategy where a support set
of images is generated on-the-fly. This is achieved by en-
capsulating textual inputs within a fixed template (i.e., “A
good photo of a ⟨ci⟩”) and providing them to a text-
conditioned diffusion model. The resultant support set serves
to construct prototype features within the unimodal embed-
ding space of a visual backbone. These prototype features
are then employed in the classification of the dense features
derived from the input image through a nearest neighbor
search in the same embedding space. Nevertheless, generat-
ing images at inference time presents notable computational
demands. Moreover, the utilization of a pre-determined
template constraints the personalization of the textual in-
put, avoiding the formulation of descriptions for arbitrary
concepts that encompass their context in the real-world.

To address these problems, we introduce FOSSIL, an
architecture that exploits a collection of synthetic visual ref-
erences that can be retrieved at prediction time to efficiently
segment arbitrary textual concepts. Given a large set of web-
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crawled captions, we provide them to Stable Diffusion [21]
to generate a collection of images. With the recent advances
proposed by Tang et al. [26], a cross-attention between a
word embedding and the dense features within the denois-
ing subnetwork of a diffusion model can be leveraged to
extract a heatmap that indicates where that word is active
in the generated image. Hence, for each noun in the cap-
tion we compute its corresponding heatmap on the generated
image and we extract a pair of feature vectors: 1) a Visual
Reference Embedding through a visual backbone, pooling
its dense features on the most active region in the heatmap,
and 2) a Textual Retrieval Embedding, through a text en-
coder. This embedding is computed as the weighted average
between the feature vectors of a pre-determined prompt in
which we encapsulate the word and the caption itself. Thus,
the Textual Retrieval Embedding mainly represents the noun
but considers also the context in which it has been extracted
in the caption. At inference time, an arbitrary input con-
cept is embedded using the text encoder to retrieve its most
similar Textual Retrieval Embeddings, and, consequently, to
obtain their corresponding Visual Reference Embeddings.
They can be clustered to produce a set of prototypes in the
unimodal space of the visual backbone that represents the
arbitrary concept.

Assigning semantic concepts by considering pixel-level
features independently would present noisy regions, in par-
ticular along borders. However, detecting class-agnostic
mask proposals in an unsupervised open-vocabulary set-
ting is a nontrivial problem. To address this challenge, we
propose OpenCut, an extension of the recent unsupervised
instance segmentation method MaskCut [27]. This method
interprets the patches of DINO [3], a self-supervised vision
transformer, as nodes of a fully-connected graph and the
similarities among their corresponding features as edges of
that graph. A fixed threshold is applied to these similarities
to compute the optimal cut and bipartition of the graph, cre-
ating a mask proposal. In OpenCut, we propose to iteratively
shift the threshold to first detect and refine the objects in
the foreground and then detect the masks corresponding to
the background to cover the majority of the pixels with a
unique mask. Thus, we can compute a mask visual feature
vector by averaging the dense features that are covered by the
same mask, and perform classification at mask-level through
prototypes.

Contributions. To sum up, the contributions of this paper
are as follows:

• We introduce a novel pipeline for open-vocabulary se-
mantic segmentation, named FOSSIL, that creates a
synthetic collection of visual references from a large
set of captions using diffusion models and retrieves the
reference corresponding to the input text to perform
prototype-based segmentation.

• We propose a novel mask proposer approach, named

OpenCut, that iteratively bipartitions the features ob-
tained with a self-supervised visual backbone to pro-
duce high-quality masks for both foreground and back-
ground regions.

• We achieve the new state-of-the-art unsupervised open-
vocabulary semantic segmentation performance on 4
segmentation datasets.

2. Related Work

Unsupervised Open-Vocabulary Segmentation. There are
two lines of research in the literature on open-vocabulary se-
mantic segmentation. The first exploits a manually annotated
training dataset on a fixed set of categories to learn a model
capable of generalizing to unseen classes. OpenSeg [11] de-
couples the task of learning class-agnostic region proposals
and aligning multi-modal regions from image-caption pairs.
Also, OVSeg [16] proposes a two-stage method, in which a
mask proposer produces regions that are given to a fine-tuned
CLIP [20] with learnable visual prompts. ODISE [32] di-
rectly leverages the internal features of a diffusion model to
extract dense features in a multi-modal space. SAN [33] aug-
ments a frozen CLIP with a side network that aims to both
propose regions and recognize their corresponding textual
class.

The second line of research, instead, aims to make the
correspondence emerge between visual dense representa-
tion and text without the usage of dense annotations. Some
works are based on creating an alignment between vision and
text in a multi-modal space leveraging a large set of image-
caption pairs. GroupViT [30] proposes to hierarchically
group semantic regions and align them with the text through
contrastive learning. MaskCLIP [37] modifies the CLIP ar-
chitecture in the last attention layer to align single pixels with
text instead of entire images. TCL [4] introduces a grounder
on top of a frozen CLIP that learns to ground text to regions
through contrastive learning. Other works consider two sepa-
rate feature spaces and create correspondence between vision
and text through external collections. ReCo [25] builds a
collection of image representations that can be queried using
the input texts, due to the ability of CLIP to compute similar-
ities in the visual space. OVDiff [14] generates on-the-fly a
set of visual prototypes through a text-conditioned diffusion
model for each input text. Our work positions itself in this
research direction and improves the quality of the support set
of prototypes by providing both computational and quality
gains.

Diffusion models. In recent years, diffusion models have
garnered considerable interest due to their capacity to pro-
duce high-quality images. In particular, Stable Diffusion [21]
represents a lightweight solution that diffuses on a VAE-
based latent space instead of raw pixels. In this model, text-
conditioning is induced in the denoising subnetwork through
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a cross-attention mechanism. In this respect, Tang et al. [26]
focused on how input words influence the generated image
and proposed DAAM, a model that can produce pixel-level
heatmaps by upscaling and aggregating cross-attention word-
pixel scores. DiffuMask [29] further exploited the advances
of DAAM to automatically obtain accurate semantic masks
on a synthetic set of images generated by Stable Diffusion.
In this paper, we build upon these recent advances to detect
objects in a large collection of generated images, extract their
dense features, and couple them with text representations to
perform open-vocabulary segmentation.

Unsupervised Object Detection and Segmentation. Re-
cently, an area of investigation focused on leveraging the
dense features of self-supervised backbones to detect fore-
ground objects in a scene. NCut [24] is an algorithm that
interprets the image segmentation task as a fully-connected
graph partitioning problem. Each pixel feature is represented
as a node and each pair of nodes is connected with an edge
that presents a weight equal to the similarity between the
corresponding pixel features. To do so, NCut minimizes the
energy to partition the graph into two disjoint sets by solv-
ing a generalized eigenvalue system defined on the weight
matrix and considering the eigenvector corresponding to the
second smallest eigenvalue.

On a different note, TokenCut [28] exploits the features
of a self-supervised backbone (i.e., the keys from the last
attention layer of DINO [3]) as pixel features to apply the
NCut algorithm for detecting and segmenting salient objects
in images and videos. In particular, a threshold is applied
to the weight matrix before computing the eigenvector to
enhance the distance between the salient region in the image
and the background. CutLER [27] proposes an extension
of TokenCut, called MaskCut, to discover multiple objects
per image by applying NCut multiple times and masking
the weight matrix after each iteration. Thus, the masks ex-
tracted on an unlabelled set of images are used to train a
supervised segmentation model. We propose to further ex-
tend this research direction by iteratively applying MaskCut
with different thresholds to segment both foreground and
background objects while refining the detected masks.

3. Proposed Method
3.1. Preliminaries

Task definition. Open-Vocabulary Semantic Segmentation
aims at segmenting an image I ∈ RH×W×3 according to
a set of arbitrary concepts ci ∈ C described by text. Exist-
ing approaches usually tackle the task by associating fea-
tures extracted from a visual encoder Φv(I) : RH×W×3 −→
RH′×W ′×D to those extracted from a reference encoder
Φr(ci) : Rdt −→ RD, exploiting a similarity function (e.g. co-
sine similarity), so that visual and textual features are treated
as lying in a shared multi-modal space. However, a single

textual embedding is not sufficient to represent the intra-
class variability in the visual appearances of a given con-
cept. Moreover, individually classifying pixel-level features
produces noisy semantic regions, especially along borders,
whose coherence with the underlying visual object is not
guaranteed.

Overview of our approach. To address these weaknesses,
we decouple the task into two phases: grouping pixels into
visually coherent regions and associating a concept from
the set C to each region. A region proposer in an open-
vocabulary setting should be able to detect regions based
mostly on visual appearance to maintain a good quality
across a large range of concepts. To tackle this challenge, we
introduce OpenCut, which aims to iteratively apply Mask-
Cut [27] by varying the threshold τ to accurately detect
foreground objects and then the background.

To assign an arbitrary concept to each region, we propose
FOSSIL, an architecture that exploits a collection composed
of pairs of synthetic Visual Reference Embeddings and Re-
trieval Textual Embeddings that can be retrieved through an
arbitrary textual query and be used to compute similarity
against regions in the unimodal visual space. The synthetic
visual references are created by providing a large set of cap-
tions to Stable Diffusion and, for each noun in the captions,
by extracting the corresponding heatmap on the generated
image Ig. These heatmaps are binarized to obtain a mask
for each noun. The generated image is processed with the
visual encoder Φv to obtain its dense features and, for each
word, a region pooling on the corresponding binary mask
is performed to produce a representative Visual Reference
Embedding. At the same time, for each noun, a text encoder
Φt is applied on a pre-determined prompt template in which
the noun is inserted and to the caption. Then, the two re-
sulting feature vectors are linearly combined to produce the
Retrieval Textual Embedding.

At inference time, the set of textual arbitrary concepts is
embedded with the text encoder Φt and is used to retrieve
the N most similar Textual Retrieval Embeddings. The
corresponding Visual Reference Embeddings are clustered
to obtain a set of K prototypes. The input image is encoded
with the visual encoder Φv to obtain its dense features and
a set of region proposals is produced using OpenCut. Then,
for each region, we perform region pooling on the dense
features to create a unique feature vector for that region.
Thus, we compute the similarity between the feature vector
and the prototypes, to assign the most similar concept to the
pixel covered by that region.

3.2. Reference Collection Generation

Our objective is to enable a self-supervised visual back-
bone to perform open-vocabulary semantic segmentation on
an image given a set of free-form arbitrary texts. To achieve
so, we want to create a collection of pairs composed of a
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Figure 1. Overview of the proposed FOSSIL approach for training-free Open-Vocabulary Semantic Segmentation.

Visual Reference Embedding, in the backbone space, and a
Textual Retrieval Embedding, in the space of a text encoder,
for a vast vocabulary from segmentation data. These pairs
would couple the visual aspect described by the dense fea-
tures of the backbone to the corresponding label. However,
manually annotated datasets do not cover a vast set of terms
and expressions due to the expensive costs of annotating.
Hence, we propose to exploit a large web-crawled set of
captions that we provide to Stable Diffusion to generate a
collection of synthetic images. Thus, we parse nouns from
the captions to extract their corresponding heatmap on the
generated image through the cross-attention mechanism pro-
posed in DAAM [26]. Since these heatmaps often present
peaks on particularly significant portions of the image (e.g.,
eyes for animals, faces for humans), we apply the sigmoid
function on the values of a heatmap followed by a thresh-
old to flatten it. The resulting binary mask can be used to
compute the average of the dense features covered by the
mask. This produces a Visual Reference Embedding, namely
a representative feature vector for the region corresponding
to the parsed noun in the caption.

A straightforward approach to building the Textual Re-
trieval Embedding would be to insert the parsed word in
some pre-determined prompt templates, encode them with
the text encoder, and compute their average. Nevertheless,
this would allow us to only build Textual Retrieval Embed-

dings for single words, whereas the input text can correspond
to any textual description. Hence, we propose to combine
the average feature vector of the pre-determined templates
with the feature vector of the entire caption. This method
moves the vector corresponding to that word towards the
real context in which it has been found. Finally, we create an
efficient retrieval index on the whole set of collected Textual
Retrieval Embeddings.

3.3. Prototype Creation

Given an arbitrary text, we embed the same pre-
determined templates used when creating the Textual Re-
trieval Embeddings using the text encoder to retrieve the N
most similar Textual Retrieval Embeddings using the cosine
similarity. At inference time, we could interpret the corre-
sponding N Visual Reference Embeddings as prototypes.
However, a low value of N risks to be not sufficient to repre-
sent the concept, whereas a large N would add outliers that
diminish the robustness of the segmentation. So, we cluster
the N Visual Reference Embedding through K-Means and
we consider the resulting K centroids as prototypes to obtain
a trade-off between robustness and representativeness.

3.4. OpenCut

Open-vocabulary segmentation approaches that only
leverage pixel-level similarities without considering more
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high-level perspectives can produce noisy segmented regions,
especially along borders. When multiple objects in a scene
come close, indeed, the features along their border embed
clues related to multiple semantic elements. On the other
hand, implementing region proposal methods in an open-
vocabulary setting presents significant threats, as generating
high-quality masks for a wide range of concepts requires
dense supervision. Following this insight, we propose an
extension of the NCut algorithm [24] to provide training-free
mask proposals based on the extraction of dense features
from a self-supervised backbone.

Preliminaries. Given a dense feature map Φv(I) ∈
RH′×W ′×D, NCut builds a fully-connected undirected graph
in which each feature vector corresponds to a node, and adds
an edge between each pair of features with a weight corre-
sponding to their cosine similarity. A threshold τ is applied
on the resulting similarity matrix W to obtain W̄ such as

W̄ij =

{
1e−5 where Wij < τ

1 where Wij ≥ τ ,
(1)

to binarize and enhance similarities scores. Then, the graph
is split into two disjoint graphs by minimizing the energy
of the resulting sub-graphs. This operation corresponds to
solving the following generalized eigenvalue system

(D − W̄ )x = λxD, (2)

and considering the eigenvector x relative to the second
smallest eigenvalue λ. In the above equation, D is a diagonal
matrix with size N ×N and with Dii =

∑
j W̄ij , while W̄

is a symmetric matrix with size N ×N .
As the resulting eigenvector can be interpreted as a

heatmap, we obtain two complementary binary masks by
thresholding the eigenvector on its mean value, as

M t
ij =

{
1 xij > mean(x)
0 otherwise.

(3)

Following MaskCut [27], we first heuristically label the
binary mask that contains the patch corresponding to the
maximum absolute value in the eigenvector as the foreground
mask. Then, in order to obtain the mask relative to the next
object, we update the weight matrix by setting to zero the
features vector of the nodes corresponding to the current
foreground mask and recomputing the weight matrix. This
process is repeated until a maximum of t times to detect
multiple objects. Also, the procedure is stopped when the
thresholded weight matrix is composed of either all 1s or
1e−5s.

OpenCut. The value of the threshold τ on the weight matrix
is determinant in selecting masks with the NCut algorithm,
and it is strongly correlated with the structure of the feature

space of the visual backbone. Indeed, when considering
DINO [3] as backbone, negative or close to 1 values of τ
tend to produce masks on background regions rather than
foreground objects. In our proposed OpenCut, we leverage
this behavior to extract a set of masks so that the majority
of pixels in the image are covered. To accomplish this, we
iteratively apply the MaskCut algorithm for a set of values
of τ , and for each τ we extract a maximum of t masks. The
set of chosen τ serves to first identify masks corresponding
to foreground objects, refine these masks during iterations,
and finally identify the background masks.
Mask refinement. Since each resulting mask is associated
with a bipartition of the graph, it is not guaranteed that the
mask corresponds to a single region of the image. Hence, we
split each binary mask into a mask for each of its connected
components. Components that are composed of a number
of pixels under a threshold η are discarded to remove noisy
regions. During iterations, for each new mask, we check
whether it does not present an overlap, measured as Inter-
section over Union, that is larger than a hyper-parameter µ
with a previous mask. If so, it is likely that the two masks
correspond to the same object but focus on different parts,
and hence we merge them. Moreover, for each new mask,
we check whether its surface is not covered for more than a
value ρ by the union of the previously extracted masks. If so,
we discard the new mask. Then, for each accepted new mask
we remove the pixels that are already covered by previously
extracted masks. These mechanisms allow us to keep only
significant masks and that each pixel is covered by at most
a unique mask (i.e., masks are mutually exclusive). There
might be uncovered pixels that require to be handled by the
segmentation model.

3.5. Inference protocol

Given an image I and a set of arbitrary concepts C de-
scribed by texts, we extract the dense features Φv(I) of the
image through the visual backbone, and a set of L mutually
exclusive binary masks Ml ∈ RH×W , l = 1 . . . L using
the proposed OpenCut approach. Further, we leverage the
procedure described in Section 3.3 to obtain a set of K visual
prototypes for each input text. For a binary mask Ml, we
upsample it at the resolution H ′ ×W ′ of the dense features
through bilinear interpolation, and perform a mean-region
pooling to construct the region embedding vRl ∈ RD:

vRl =

∑H′

i=1

∑W ′

j=1 MlijΦ(I)ij∑H′

i=1

∑W ′

j=1 Mlij

. (4)

For a given pixel that is not covered by masks from Open-
Cut, we consider the patch that covers it as its corresponding
mask, with the dense feature vector associated with that
patch as its region embedding. For each region embedding
vRl, we compute the cosine similarity against the K proto-
types vP k, k = 1 . . .K of each concept ca in C, followed
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Training Support Similarity
Method Dataset Dataset Textual Visual Context COCOStuff ADE Cityscapes

GroupViT [30] 1 CC12M [5] + RedCaps [9] - ✓ ✗ 23.4 15.3 9.2 11.1
MaskCLIP [37] 1 - - ✓ ✗ 26.4 16.4 9.8 12.6

ReCo [25] 1 - ImageNet1K [22] ✗ ✓ 22.3 14.8 11.2 21.1
TCL [4] 1 CC3M [23] + CC12M [5] - ✓ ✗ 30.3 19.6 14.9 23.1

OVDiff [14] 2 - - ✗ ✓ 33.7 - 14.9 -

FOSSIL - COCO Captions [6] ✗ ✓ 35.8 24.8 18.8 23.2

Table 1. Comparison with other state-of-the-art unsupervised open-vocabulary semantic segmentation models under the mIoU metric. In
”Support Dataset” we report datasets used to create a collection of references. In ”Similarity” we report whether the model exploits similarity
in a multi-modal embedding space or the unimodal visual space.

by a sigmoid. Finally, we consider the resulting similarity
between a region and a concept as the ensembling between
the mean of the K similarities against the prototypes and the
maximum of them, as follows

s̄(vRl, ca) = (1−γ)

∑K
k=1 s(vRl, vP k)

K
+γ

K
max
k=1

s(vRl, vP k),

(5)
where γ is a weighting hyper-parameter.

4. Experiments
4.1. Implementation Details

For the generation of the Reference Collection, we use
all 5 captions per image from COCO Captions [6], Sta-
ble Diffusion [21] 2.1 base with 50 diffusion steps and a
threshold equal to 0.45 to binarize the heatmaps extracted
through DAAM [26]. As visual encoder we use DINOv2
ViT-L/14 [19] on images resized to 512 × 512, producing
dense features Φv(I) ∈ R37×37×1024. As text encoder we
use CLIP [20] ViT-L/14 [10] and the set of 7 prompt tem-
plates proposed in [20] for zero-shot classification. For
building the Textual Retrieval Embedding we adopt a weight
equal to 0.9 for the word in the templates and 0.1 for the
caption. For MaskCut we use the hyper-parameters proposed
in [27]: three stages t on images resized to 480 × 480 pixels,
keys from the last attention layer of a DINO [3] ViT-B/8
backbone as dense self-supervised features, and Conditional
Random Field [15] to post-process masks. For mask refine-
ment during the iterations of OpenCut, we use η equal to
16, µ equal to 0.8, and ρ equal to 0.7. We use the faiss
library [13] for both efficient retrieval and clustering.

4.2. Results

Datasets. We evaluate the following four benchmarks:

• Pascal Context [18] is an extension of the PASCAL-
VOC 2010 dataset. It contains 4,996 training images

1Results from Cha et al. [4].
2Results from Karazija et al. [14].

and 5,104 validation images with annotations for 59
classes.

• COCO Stuff [2] is an extension of the MS COCO
dataset [17] for semantic segmentation. It contains
annotations for 171 classes on 118,287 training images
and 5,000 validation images.

• ADE [35,36] is a challenging segmentation dataset con-
taining indoor and outdoor scenes. It is partitioned into
20,000 training images, 3,000 test images, and 2,000
validation images with annotations for 150 classes.

• Cityscapes [8] is a dataset of urban street scenes. It
contains 500 validation images with annotations for 19
classes.

Evaluation Protocol. We follow the unsupervised open-
vocabulary semantic segmentation evaluation protocol pro-
posed by Cha et al. [4]. We use the class names from the
default version of MMSegmentation [7] without other modi-
fications. We resize the input image to have a short side of
448 and employ a sliding window approach with a stride of
224 pixels. We use mean Intersection-over-Union (mIoU) to
assess the segmentation performance.

Comparison to existing methods. In Table 1 we compare
FOSSIL with prior works under the same evaluation proto-
col: GroupViT [30], MaskCLIP [37], ReCo [25], TCL [4]
and OVDiff [14]. As can be seen, our proposal largely out-
performs the other methods in all settings, thus confirming
the appropriateness of the proposed strategies. Noticeably,
our training-free approach overcomes the performances of
approaches that employ larger support datasets, and which
employ extensive training data.

When comparing across different datasets, we observe
a larger margin of improvement on COCOStuff and ADE,
respectively of 5.2 and 3.9 mIoU points. Noticeably, these
two datasets are the ones with the largest number of classes,
respectively 171 and 150, thus underlying the ability of
FOSSIL when dealing with a higher number of semantic
classes. Further, this also shows that our method is able to
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Figure 2. Ablation study on the three inference hyper-parameters N , K and γ on ADE. We test each parameter starting from our best
configuration, with N = 150, K = 10 and γ = 0.5.

Table 2. Ablation on different visual backbones considering our
best configuration on ADE, in terms of mIoU score.

Visual Backbone Architecture ADE

MAE [12] ViT-L/14 2.0
DINO [3] ViT-B/8 12.0

DINOv2 [19] ViT-L/14 18.8

maintain excellent recognition abilities when the number of
prototypes in the visual backbone space grows.

Overall, our results show that the contribution provided
by the ability to localize concepts generated with Stable
Diffusion through DAAM to extract representative dense
features largely compensates for the domain shift introduced
between synthetic and real images, also due to the high
quality reached by diffusion models. Hence, this research
direction is proving to be more promising than learning a
pixel-level alignment from real images which do not provide
locality information for a large vocabulary.

4.3. Ablation Studies

After comparing with other state-of-the-art approaches,
we also provide two ablation studies, so as to assess the role
of different components of our approach. In particular, we
investigate the role of the visual backbone selection and the
sensitivity to hyperparameters.

Visual Backbone choice. As the proposed approach is
backbone-agnostic, any self-supervised backbone can be em-
ployed to build visual prototypes and extract dense features
at inference time. To showcase this, and prove the effec-
tiveness of different self-supervised backbones, in Table 2
we report an ablation study on performance obtained on the
ADE benchmark with three different backbones: MAE ViT-
L/14 [12], DINO ViT-B/8 [3] and DINOv2 ViT-L/14 [19].

As it can be observed, MAE presents a considerably lower
performance with respect to the other two backbones, con-
firming the appropriateness of employing DINO-based back-
bones. We hypothesize that this is due to the fact that features
learned with MAEs have limited semantic coherence when
encoding the same concept across different images. When
comparing the two considered DINO-based backbones, in-

Table 3. Our best configurations of the hyper-parameters when
evaluating each of the 5 benchmarks.

Benchmark # classes N K γ

Context 59 70 10 0.7
COCOStuff 171 95 25 0.5

ADE 150 150 10 0.5
Cityscapes 19 95 30 0.55

stead, we notice that DINOv2 largely outperforms DINO,
due to a larger architecture (ViT-L/14 instead of ViT-B/8)
and to its improved training strategy (as reported in [19]).
In the following, we will consider DINOv2 for all the other
experiments.

Hyperparameter choice. While being training-free, our
approach relies on three main hyper-parameters. Depend-
ing on the visual context and the distribution of classes to
be detected, these can significantly influence the inference
performance and therefore require to be accurately tuned. In
particular, these are as follows:

• the number of Textual Retrieval Embedding and Visual
Reference Embedding pairs that are retrieved for each
arbitrary concept (N );

• the number of visual prototypes obtained as centroids of
the K-Means algorithm, applied on the retrieved Visual
Reference Embeddings (K);

• the weight attributed to the maximum of the similarities
against the set of prototypes of an arbitrary concept,
with respect to the mean on that similarities, when com-
puting the concept assigned to a region (γ).

To show that different hyperparameter values can be chosen
to obtain a better performance, in Table 3 we report the best
configurations obtained on each benchmark. While we did
not observe a clear relation between these hyper-parameters
and the raw number of classes in a dataset, we hypothesize
that their optimal values depend also on other factors, such as
the semantic relation in the set of classes and their semantic
variance. For instance, in Cityscapes, where classes belong
to the urban street domain, a large value of γ may lead
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Original Image Ground Truth FOSSIL w/o OpenCut FOSSIL with OpenCut

Figure 3. Qualitative results, comparing FOSSIL with and without the OpenCut component.

to assigning outliers introduced during the creation of the
Reference Collection, thus resulting in better performance.

Moreover, in Figure 2 we report an ablation study about
hyper-parameters N , K, and γ on the ADE benchmark. We
vary each parameter one at a time starting from the best
configuration. We observe that the parameter that influences
performance the most is N , in particular for low values that
represent an insufficient amount of references to capture the
variance in visual appearances for that class.

4.4. Qualitative results

To complement our evaluation, in Figure 3 we provide a
qualitative visualization of the segmentation maps obtained
by FOSSIL, on images from the ADE dataset. Here, we
also ablate our approach by removing the OpenCut mask
proposals and comparing them with our full pipeline, to
showcase the role of OpenCut in the final segmentation qual-
ity. We firstly observe that FOSSIL is capable of properly
segmenting all objects on the scene, assigning them to the
correct semantic class, and providing curated segmentation
masks that properly align with ground-truth borders. Further,
comparing the last two columns of the Figure, the role of
the OpenCut component can be clearly observed. As it can
be seen, indeed, the mask proposals provided by OpenCut
have a high degree of quality, and their adoption results in a
cleaner and significantly less noisy result.

5. Conclusion
Open-Vocabulary Segmentation requires an algorithm to

segment an input image into regions corresponding to ar-
bitrary textual queries. While previous approaches rely on
fine-tuned image-text similarities, in this paper we proposed
FOSSIL, an unsupervised open-vocabulary segmentation ap-
proach that is training-free and employs collections of visual
embeddings to account for visual variety. Our approach
leverages text-conditioned diffusion models to generate em-
beddings that can be efficiently retrieved at prediction time,
as a support set to represent textual concepts. Additionally,
it employs a self-supervised backbone to partition the im-
age into semantically coherent regions, achieved through
an extension of the NCut algorithm that can generate class-
agnostic mask proposals. In our experiments, we evaluated
our approach on four distinct benchmarks and consistently
achieved state-of-the-art results across all of them. Further,
we have investigated the sensitivity of hyper-parameters and
provided guidelines to choose them. Overall, we demon-
strate that open-vocabulary segmentation can be tackled in a
training-free manner, by exploiting automatically-generated
prototypes which can be retrieved at inference time.
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