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Abstract

Detecting anomalies in images is an important task, es-
pecially in real-time computer vision applications. In this
work, we focus on computational efficiency and propose
a lightweight feature extractor that processes an image in
less than a millisecond on a modern GPU. We then use a
student–teacher approach to detect anomalous features. We
train a student network to predict the extracted features of
normal, i.e., anomaly-free training images. The detection
of anomalies at test time is enabled by the student failing to
predict their features. We propose a training loss that hin-
ders the student from imitating the teacher feature extractor
beyond the normal images. It allows us to drastically reduce
the computational cost of the student–teacher model, while
improving the detection of anomalous features. We further-
more address the detection of challenging logical anomalies
that involve invalid combinations of normal local features,
for example, a wrong ordering of objects. We detect these
anomalies by efficiently incorporating an autoencoder that
analyzes images globally. We evaluate our method, called
EfficientAD, on 32 datasets from three industrial anomaly
detection dataset collections. EfficientAD sets new stan-
dards for both the detection and the localization of anoma-
lies. At a latency of two milliseconds and a throughput of
six hundred images per second, it enables a fast handling
of anomalies. Together with its low error rate, this makes
it an economical solution for real-world applications and a
fruitful basis for future research.

1. Introduction
In the past years, deep learning methods have continued

to improve the state of the art across a wide range of com-
puter vision applications. This progress has been accom-
panied by advances in making neural network architectures
faster and more efficient [43, 59, 61, 63]. Modern classifi-
cation architectures, for example, focus on characteristics
such as latency, throughput, memory consumption, and the
number of trainable parameters [32, 33, 54, 59, 60, 63]. This
ensures that as networks become more capable, their com-
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Figure 1. Anomaly detection performance vs. latency per image
on an NVIDIA RTX A6000 GPU. Each AU-ROC value is an av-
erage of the image-level detection AU-ROC values on the MVTec
AD [7, 9], VisA [69], and MVTec LOCO [8] dataset collections.

putational requirements remain suitable for real-world ap-
plications. The field of visual anomaly detection has also
seen rapid progress in the recent past, especially on indus-
trial anomaly detection benchmarks [7, 9, 47, 50]. State-of-
the-art anomaly detection methods, however, often sacrifice
computational efficiency for an increased anomaly detec-
tion performance. Common techniques are ensembling, the
use of large backbones, and increasing the input image res-
olution to up to 768×768 pixels.

Real-world anomaly detection applications frequently
put constraints on the computational requirements of a
method. There are cases where detecting an anomaly too
late can cause substantial economic damage, such as metal
objects in a crop field entering the interior of a combine
harvester. In other cases, even human health is at risk,
for example, if a limb of a machine operator approaches
a blade. Furthermore, industrial settings commonly involve
strict runtime limits caused by high production rates [4].
Not adhering to these limits would decrease the production
rate of the respective application and thus its economic via-
bility. It is therefore essential to pay attention to the compu-
tational and economic cost of anomaly detection methods
to keep them suitable for real-world applications.

In this work, we propose EfficientAD, a method that sets
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new standards for both the anomaly detection performance
and the inference runtime, as shown in Figure 1. We first
introduce an efficient network architecture for computing
expressive features in less than a millisecond on a mod-
ern GPU. To detect anomalous features, we use a student–
teacher approach [10,50,62]. We train a student network to
predict the features computed by a pretrained teacher net-
work on normal, i.e., anomaly-free training images. Be-
cause the student is not trained on anomalous images, it
generally fails to mimic the teacher on these. A large dis-
tance between the outputs of the teacher and the student thus
enables the detection of anomalies at test time. To further
increase this effect, Rudolph et al. [50] use architectural
asymmetry between the teacher and the student. We instead
propose loss-induced asymmetry in the form of a training
loss that hinders the student from imitating the teacher be-
yond the normal images. This loss does not affect the com-
putational cost at test time and does not restrict the architec-
ture design. It allows us to use our efficient network archi-
tecture for both the student and the teacher, while improving
the detection of anomalous features.

Identifying anomalous local features enables the detec-
tion of anomalies that are structurally different from the
normal images, for example, contaminations or stains on
manufactured products. A challenging problem, however,
are violations of logical constraints regarding the position,
size, arrangement, etc. of normal objects. To address this,
EfficientAD includes an autoencoder that learns the logical
constraints of training images and detects violations at test
time. We show how to integrate the autoencoder efficiently
with a student–teacher model. Furthermore, we present a
method to improve the anomaly detection performance by
calibrating the detection results of the autoencoder and the
student–teacher model before combining their results.

Our contributions are summarized as follows:

• We substantially improve the state of the art for both
the detection and the localization of anomalies on
industrial benchmarks, at a latency of 2 ms and a
throughput of more than 600 images per second.

• We propose an efficient network architecture to speed
up feature extraction by an order of magnitude in com-
parison to the feature extractors used by recent meth-
ods [47, 50, 64].

• We introduce a training loss that significantly improves
the anomaly detection performance of a student–
teacher model without affecting its inference runtime.

• We achieve an efficient autoencoder-based detection
of logical anomalies and propose a method for a cal-
ibrated combination of the detection results with those
of a student–teacher model.

2. Related Work

2.1. Anomaly Detection Tasks

Visual anomaly detection is a rapidly growing area of re-
search with a diverse range of applications, including med-
ical imaging [3, 18, 36], autonomous driving [13, 23, 30],
and industrial inspection [7, 17, 40]. Applications often
have specific characteristics, such as the availability of im-
age sequences in surveillance datasets [29, 35, 67] or the
different modalities of medical imaging datasets (MRI [5],
CT [3], X-ray [26], etc.). This work focuses on detecting
anomalies in RGB or gray-scale images without condition-
ing the prediction on a sequence of images. We use indus-
trial anomaly detection datasets to benchmark our proposed
method against existing ones.

The introduction of the MVTec AD dataset [7,9] has cat-
alyzed the development of methods for industrial applica-
tions. It comprises 15 separate inspection scenarios, each
consisting of a training set and a test set. Each training
set contains only normal images, for example, defect-free
screws, while the test sets also contain anomalous images.
This represents a frequent challenge in real-world applica-
tions where the types and possible locations of defects are
unknown during the development of the anomaly detection
system. Therefore, it is a challenging yet crucial require-
ment that methods perform well when trained only on nor-
mal images.

Recently, several new industrial anomaly detection
datasets have been introduced [8, 11, 25, 27, 37, 69]. The
Visual Anomaly (VisA) dataset [69] and the MVTec Logi-
cal Constraints (MVTec LOCO) dataset [8] follow the de-
sign of MVTec AD and comprise twelve and five anomaly
detection scenarios, respectively. They contain anomalies
that are empirically more challenging than those of MVTec
AD. Furthermore, MVTec LOCO contains not only struc-
tural anomalies, such as stains or scratches, but also logical
anomalies. These are violations of logical constraints, for
example, a wrong ordering or a wrong combination of nor-
mal objects. We refer to MVTec AD, VisA, and MVTec
LOCO as dataset collections, as each scenario is a separate
dataset consisting of a training and a test set. All three pro-
vide pixel-precise defect segmentation masks for evaluating
the anomaly localization performance of a method.

2.2. Anomaly Detection Methods

Traditional computer vision algorithms have been ap-
plied successfully to industrial anomaly detection tasks for
several decades [58]. These algorithms commonly fulfill
the requirement of processing an image within a few mil-
liseconds. Bergmann et al. [7] evaluate some of these meth-
ods and find that they fail when requirements such as well-
aligned objects are not met. Deep-learning-based methods
have been shown to handle such cases more robustly [7, 8].

129



A successful approach in the recent past has been to ap-
ply outlier detection and density estimation methods in the
feature space of a pretrained and frozen convolutional neu-
ral network (CNN). If feature vectors can be mapped to in-
put pixels, assigning their outlier scores to the respective
pixels yields a 2D anomaly map of pixel anomaly scores.
Common methods include multivariate Gaussian distribu-
tions [15, 28, 45], Gaussian Mixture Models [37, 68], Nor-
malizing Flows [21,44,48,49,64], and the k-Nearest Neigh-
bor (kNN) algorithm [14, 38, 39, 47]. A runtime bottleneck
for kNN-based methods is the search for nearest neighbors
during inference. With PatchCore [47], Roth et al. there-
fore perform kNN on a reduced database of clustered fea-
ture vectors. They achieve state-of-the-art anomaly detec-
tion results on MVTec AD. In our experiments, we include
PatchCore and FastFlow [64], a recent Normalizing-Flow-
based method with a comparatively low inference runtime.

Bergmann et al. [10] propose a student–teacher (S–T)
framework for anomaly detection, in which the teacher is
a pretrained frozen CNN. They train student networks to
mimic the output of the teacher on the training images. Be-
cause the students have not seen anomalous images during
training, they generally fail to predict the teacher’s output
on these images, which enables anomaly detection. Vari-
ous modifications of S–T have been proposed [50, 53, 62].
Rudolph et al. [50] reach a competitive anomaly detection
performance on MVTec AD by restricting the teacher to be
an invertible neural network. We compare our method to
their Asymmetric Student Teacher (AST) approach and to
the original S–T method [10].

Generative models such as autoencoders [6, 8, 12, 19, 31,
41, 52] and GANs [2, 20, 42, 55, 56] have been used exten-
sively for anomaly detection. Recent autoencoder-based
methods rely on accurate reconstructions of normal im-
ages and inaccurate reconstructions of anomalous images
[8, 12, 19, 41]. This enables detecting anomalies by com-
paring the reconstruction to the input image. A common
problem are false-positive detections caused by inaccurate
reconstructions of normal images, e.g., blurry reconstruc-
tions. To avoid this, GCAD [8] lets an autoencoder recon-
struct images in the feature space of a pretrained network.
Another recent reconstruction-based method is DSR [66],
which uses the latent space of a pretrained autoencoder and
generates synthetic anomalies in it. Similarly, the recently
proposed SimpleNet [34] generates synthetic anomalies in
a pretrained feature space to train a discriminator network
for detecting anomalous features. In our experiments, we
include GCAD, DSR, and SimpleNet.

3. Method
We describe the components of EfficientAD in the fol-

lowing subsections. It begins with the efficient extraction of
features from a pretrained neural network in Sec. 3.1. We
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Figure 2. Patch description network (PDN) architecture of
EfficientAD-S. Applying it to an image in a fully convolutional
manner yields all features in a single forward pass.

detect anomalous features at test time using a lightweight
student–teacher model, as described in Sec. 3.2. A key chal-
lenge is to achieve a competitive anomaly detection per-
formance while keeping the overall runtime low. To this
end, we introduce a novel loss function for the training of a
student–teacher model. In Sec. 3.3, we explain how to effi-
ciently detect logical anomalies with an autoencoder-based
approach. Finally, we provide a solution for calibrating
and combining the detection results of the autoencoder with
those of the student–teacher model in Sec. 3.4.

3.1. Efficient Patch Descriptors

Recent anomaly detection methods commonly use
the features of a deep pretrained network, such as a
WideResNet-101 [47, 65]. We use a network with a drasti-
cally reduced depth as a feature extractor. It consists of only
four convolutional layers and is visualized in Figure 2. Each
output neuron has a receptive field of 33×33 pixels and thus
each output feature vector describes a 33×33 patch. Due to
this clear correspondence, we refer to the network as a patch
description network (PDN). The PDN is fully convolutional
and can be applied to an image of variable size to generate
all feature vectors in a single forward pass.

The S–T method [10] also uses features from networks
with only few convolutional layers. The computational cost
of these networks is nevertheless high because of the lack
of downsampling in convolutional and pooling layers. The
number of parameters of the networks used by S–T is com-
parably low (between 1.6 and 2.7 million per network). Yet,
executing a single network takes longer and requires more
memory in our experiments than a U-Net [46] with 31 mil-
lion parameters, an architecture used by the GCAD method
[8]. This demonstrates how the number of parameters can
be a misleading proxy metric for the latency, throughput,
and memory footprint of a method. Modern classification
architectures typically perform downsampling early to re-
duce the size of feature maps and thus the runtime and mem-
ory requirements [22]. We implement this in our PDN via
strided average-pooling layers after the first and the second
convolutional layer. With the proposed PDN, we are able
to obtain the features for an image of size 256×256 in less
than 800 µs on an NVIDIA RTX A6000 GPU.
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Figure 3. Upper row: absolute gradient of a single feature vec-
tor, located in the center of the output, with respect to each input
pixel, averaged across input and output channels. Lower row: Av-
erage feature map of the first output channel across 1000 randomly
chosen images from ImageNet [51]. The mean of these images is
shown on the left. The feature maps of the DenseNet [24] and the
WideResNet exhibit strong artifacts.

To make the PDN generate expressive features, we distill
a deep pretrained classification network into it. For a con-
trolled comparison, we use the same pretrained features as
PatchCore [47] from a WideResNet-101. We train the PDN
on images from ImageNet [51] by minimizing the mean
squared difference between its output and the features ex-
tracted from the pretrained network. We provide the full
list of training hyperparameters in the supplementary mate-
rial. Besides higher efficiency, the PDN has another benefit
in comparison to the deep networks used by recent meth-
ods. By design, a feature vector generated by the PDN only
depends on the pixels in its respective 33×33 patch. The
feature vectors of pretrained classifiers, on the other hand,
exhibit long-range dependencies on other parts of the im-
age. This is shown in Figure 3, using PatchCore’s feature
extractors as an example. The well-defined receptive field
of the PDN ensures that an anomaly in one part of the image
cannot trigger anomalous feature vectors in other, distant
parts, which would impair the localization of anomalies.

3.2. Lightweight Student–Teacher

For detecting anomalous feature vectors, we use a
student–teacher (S–T) approach in which the teacher is
given by our distilled PDN. Since we can execute the PDN
in under a millisecond, we use its architecture for the
student as well, resulting in a low overall latency. This
lightweight student–teacher pair, however, lacks techniques
used by previous methods to increase the anomaly detec-
tion performance: ensembling multiple teachers and stu-
dents [10], using features from a pyramid of layers [62], and
using architectural asymmetry between the student and the
teacher network [50]. We therefore introduce a training loss
that substantially improves the detection of anomalies with-
out affecting the computational requirements at test time.
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Figure 4. Randomly picked loss masks generated by the hard fea-
ture loss during training. The brightness of a mask pixel indicates
how many of the dimensions of the respective feature vector were
selected for backpropagation. The student network already mimics
the teacher well on the background and thus focuses on learning
the features of differently rotated screws.

We observe that in the standard S–T framework, increas-
ing the number of training images can improve the student’s
ability to imitate the teacher on anomalies. This worsens the
anomaly detection performance. At the same time, deliber-
ately decreasing the number of training images can suppress
important information about normal images. Our goal is
to show the student enough data so that it can mimic the
teacher sufficiently on normal images while avoiding gen-
eralization to anomalous images. Similar to Online Hard
Example Mining [57], we therefore restrict the student’s
loss to the most relevant parts of an image. These are the
patches where the student currently mimics the teacher the
least. We propose a hard feature loss, which only uses the
output elements with the highest loss for backpropagation.

Formally, we apply a teacher T and a student S to a
training image I , which yields T (I) ∈ RC×W×H and
S(I) ∈ RC×W×H . We compute the squared difference for
each tuple (c, w, h) as Dc,w,h = (T (I)c,w,h − S(I)c,w,h)

2.
Based on a mining factor phard ∈ [0, 1], we then com-
pute the phard-quantile of the elements of D. Given the
phard-quantile dhard, we compute the training loss Lhard

as the mean of all Dc,w,h ≥ dhard. Setting phard to zero
would yield the original S–T loss. In our experiments, we
set phard to 0.999, which corresponds to using, on average,
ten percent of the values in each of the three dimensions
of D for backpropagation. Figure 4 visualizes the effect
of the hard feature loss for phard = 0.999. During infer-
ence, the 2D anomaly score map M ∈ RW×H is given by
Mw,h = C−1

∑
c Dc,w,h, i.e., by D averaged across chan-

nels. It assigns an anomaly score to each feature vector.
In addition to the hard feature loss, we use a loss penalty

during training that further hinders the student from imi-
tating the teacher on images that are not part of the nor-
mal training images. In the standard S–T framework, the
teacher is pretrained on an image classification dataset, or
it is a distilled version of such a pretrained network. The
student is not trained on that pretraining dataset but only on
the application’s normal images. We propose to also use
the images from the teacher’s pretraining during the train-
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Figure 5. EfficientAD applied to two test images from MVTec LOCO. Normal input images contain a horizontal cable connecting the two
splicing connectors at an arbitrary height. The anomaly on the left is a foreign object in the form of a small metal washer at the end of the
cable. It is visible in the local anomaly map because the outputs of the student and the teacher differ. The logical anomaly on the right is the
presence of a second cable. The autoencoder fails to reconstruct the two cables on the right in the feature space of the teacher. The student
also predicts the output of the autoencoder in addition to that of the teacher. Because its receptive field is restricted to small patches of the
image, it is not influenced by the presence of the additional red cable. This causes the outputs of the autoencoder and the student to differ.
“Diff” refers to computing the element-wise squared difference between two collections of output feature maps and computing its average
across feature maps. To obtain pixel anomaly scores, the anomaly maps are resized to match the input image using bilinear interpolation.

ing of the student. Specifically, we sample a random image
P from the pretraining dataset, in our case ImageNet, in
each training step. We compute the loss of the student as
LST = Lhard + (CWH)−1

∑
c ∥S(P )c∥2F . This penalty

hinders the student from generalizing its imitation of the
teacher to out-of-distribution images.

3.3. Logical Anomaly Detection

There are many types of logical anomalies, such as miss-
ing, misplaced, or surplus objects or the violation of ge-
ometrical constraints, for example, the length of a screw.
As recommended by the authors of the MVTec LOCO
dataset [8], we use an autoencoder for learning logical con-
straints of the training images and detecting violations of
these constraints. Figure 5 depicts the anomaly detection
methodology for EfficientAD. It consists of the aforemen-
tioned student–teacher pair and an autoencoder. The au-
toencoder is trained to predict the output of the teacher.
Formally, we apply an autoencoder A to a training image
I , yielding A(I) ∈ RC×W×H , and compute the loss as
LAE = (CWH)−1

∑
c ∥T (I)c −A(I)c∥2F . We use a stan-

dard convolutional autoencoder comprising strided convo-
lutions in the encoder and bilinear upsampling in the de-
coder. We provide the detailed hyperparameters of its layers
in the supplementary material.

In contrast to the patch-based student, the autoencoder
must encode and decode the complete image through a bot-
tleneck of 64 latent dimensions. On images with logical
anomalies, the autoencoder usually fails to generate the cor-
rect latent code for reconstructing the image in the teacher’s
feature space. However, its reconstructions are also flawed
on normal images, as autoencoders generally struggle with
reconstructing fine-grained patterns [12, 16]. This is the

case for the background grids in Figure 5. Using the differ-
ence between the teacher’s output and the autoencoder’s re-
construction as an anomaly map would cause false-positive
detections in these cases. Instead, we double the number of
output channels of our student network and train it to pre-
dict the output of the autoencoder in addition to the output
of the teacher. Let S′(I) ∈ RC×W×H denote the additional
output channels of the student. The student’s additional loss
is then LSTAE = (CWH)−1

∑
c ∥A(I)c − S′(I)c∥2F .

The student learns the systematic reconstruction errors
of the autoencoder on normal images, e.g., blurry recon-
structions. At the same time, it does not learn the recon-
struction errors for anomalies because these are not part of
the training set. This makes the difference between the au-
toencoder’s output and the student’s output well-suited for
computing the anomaly map. Analogous to the student–
teacher pair, the anomaly map is the squared difference be-
tween the two outputs, averaged across channels. We re-
fer to this anomaly map as the global anomaly map and
to the anomaly map generated by the student–teacher pair
as the local anomaly map. We average these two anomaly
maps to compute the combined anomaly map and use its
maximum value as the image-level anomaly score. The
combined anomaly map thus contains the detection results
of the student–teacher pair and the detection results of the
autoencoder–student pair. Sharing the student’s hidden lay-
ers in the computation of these detection results allows our
method to maintain low computational requirements, while
enabling the detection of structural and logical anomalies.

3.4. Anomaly Map Normalization

The local and the global anomaly map must be normal-
ized to similar scales before averaging them to obtain the
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combined anomaly map. This is important for cases where
the anomaly is only detected in one of the maps, such as
in Figure 5. Otherwise, noise in one map could make ac-
curate detections in the other map indiscernible in the com-
bined map. To estimate the scale of the noise in normal
images, we use validation images, i.e., unseen images from
the training set. For each of the two anomaly map types, we
compute the set of all pixel anomaly scores across the val-
idation images. We then compute two p-quantiles for each
set: qa and qb, for p = a and p = b, respectively. We de-
termine a linear transformation that maps qa to an anomaly
score of 0 and qb to a score of 0.1. At test time, the local
and global anomaly maps are normalized with the respec-
tive linear transformation.

By using quantiles, the normalization becomes robust to
the distribution of anomaly scores on normal images, which
can vary between scenarios. Whether the scores between qa
and qb are normally distributed or a mixture of Gaussians
or follow another distribution has no influence on the nor-
malization. Our experiments include an ablation study on
the values of a and b. The choice of the mapping destina-
tion values 0 and 0.1 has no effect on anomaly detection
metrics such as the area under the ROC curve (AU-ROC).
That is because the AU-ROC only depends on the ranking
of scores, not on their scale. We choose 0 and 0.1 because
they yield maps that are suitable for a standard zero-to-one
color scale.

4. Experiments
We compare EfficientAD to AST [50], DSR [66], Fast-

Flow [64], GCAD [8], PatchCore [47], SimpleNet [34], and
S–T [10], using official implementations where available.
We provide configuration details for all evaluated methods
in the supplementary material. GCAD consists of an en-
semble of two anomaly detection models that use differ-
ent feature extractors. We find that one of the two ensem-
ble members performs better on average than the combined
ensemble and therefore report the results for this member.
This reduces the latency reported for GCAD by a factor of
two. For SimpleNet, we are able to reproduce the official re-
sults but find that SimpleNet tunes the training duration on
the test images of a scenario. During training, the model
is repeatedly evaluated on all test images and the maxi-
mum of all obtained test scores is reported after training.
We disable this technique, since it overestimates the actual
performance of the model on unseen images. In practice,
it would furthermore require a validation set with anoma-
lous images. MVTec AD, VisA, and MVTec LOCO do not
include anomalous images in their training and validation
sets to avoid defect-type-specific tuning of hyperparame-
ters. For SimpleNet, we therefore evaluate the final trained
model, following common practice.

For PatchCore, we include two variants: the default sin-

gle model variant, for which the authors report the lowest
latency, and the ensemble variant, denoted by PatchCoreEns.
We are able to reproduce the official results but disable the
cropping of the center 76.6 % of input images for a fair com-
parison. In the case of MVTec AD, 99.9 % of the defects lie
fully or partially within this cropped area. In real-world ap-
plications, anomalies can occur outside of this area as well.
We disable custom cropping, as it implies knowledge about
the anomalies in the test set. For FastFlow, we use the ver-
sion based on the WideResNet-50-2 feature extractor, as it is
similar to the WideResNet used by PatchCore, SimpleNet,
and our method. We use the implementation provided by
the Intel anomalib [1] but disable early stopping, i.e., the
scenario-specific tuning of the training duration on test im-
ages, analogously to SimpleNet. With early stopping en-
abled, EfficientAD itself achieves an image-level detection
AU-ROC of 99.8 % on MVTec AD.

For our method, we evaluate two variants: EfficientAD-S
and EfficientAD-M. EfficientAD-S uses the architecture
displayed in Figure 2 for the teacher and the student. For
EfficientAD-M, we double the number of kernels in the
hidden convolutional layers of the teacher and the student.
Furthermore, we insert a 1×1 convolution after the second
pooling layer and after the last convolutional layer. We pro-
vide a list of implementation details, such as the learning
rate schedule, in the supplementary material.

We evaluate each method on the 32 anomaly detec-
tion scenarios of MVTec AD, VisA, and MVTec LOCO.
The anomaly detection performance of a method is mea-
sured with the AU-ROC based on its predicted image-level
anomaly scores. We measure the anomaly localization per-
formance using the AU-PRO segmentation metric up to a
false positive rate of 30 %, as recommended by [7]. For
MVTec LOCO, we use the AU-sPRO metric [8], a general-
ization of the AU-PRO metric for evaluating the localization
of logical anomalies. The supplementary material provides
the results for additional anomaly detection metrics, such as
the area under the precision-recall curve and the pixel-wise
AU-ROC.

When reporting the AU-ROC or AU-PRO for a dataset
collection, we follow the policy of the dataset authors. For
each collection, we evaluate the respective metric for each
scenario and then compute the mean across scenarios. For
MVTec LOCO, we use the official evaluation script, which
gives logical and structural anomalies an equal weight in the
computed metrics. When reporting the average AU-ROC or
AU-PRO on the three dataset collections, we compute the
average of the three dataset means. Thus, an overall average
score weights logical anomalies and structural anomalies by
roughly one-sixth and five-sixths, respectively. We provide
the evaluation results for each of the 32 anomaly detection
scenarios individually in the supplementary material to en-
able an evaluation with a custom weighting.
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Method
Detect.

AU-ROC
Segment.
AU-PRO

Latency
[ms]

Throughput
[img / s]

GCAD 85.4 88.0 11 121
SimpleNet 87.9 74.4 12 194

S–T 88.4 89.7 75 16
FastFlow 90.0 86.5 17 120

DSR 90.8 78.6 17 104
PatchCore 91.1 80.9 32 76

PatchCoreEns 92.1 80.7 148 13
AST 92.4 77.2 53 41

EfficientAD-S 95.4
(± 0.06)

92.5
(± 0.05)

2.2
(± 0.01)

614
(± 2)

EfficientAD-M 96.0
(± 0.09)

93.3
(± 0.04)

4.5
(± 0.01)

269
(± 1)

Table 1. Anomaly detection and anomaly localization perfor-
mance in comparison to the latency and throughput. Each AU-
ROC and AU-PRO percentage is an average of the mean AU-
ROCs and mean AU-PROs, respectively, on MVTec AD, VisA,
and MVTec LOCO. For EfficientAD, we report the mean and stan-
dard deviation of five runs.

Method MAD LOCO VisA Mean
LOCO
Logic.

LOCO
Struct.

GCAD 89.1 83.3 83.7 85.4 83.9 82.7
SimpleNet 98.2 77.6 87.9 87.9 71.5 83.7

S–T 93.2 77.4 94.6 88.4 66.5 88.3
FastFlow 96.9 79.2 93.9 90.0 75.5 82.9

DSR 98.1 82.6 91.8 90.8 75.0 90.2
PatchCore 98.7 80.3 94.3 91.1 75.8 84.8

PatchCoreEns 99.3 79.4 97.7 92.1 71.0 87.7
AST 98.9 83.4 94.9 92.4 79.7 87.1

EfficientAD-S 98.8 90.0 97.5 95.4 85.8 94.1
EfficientAD-M 99.1 90.7 98.1 96.0 86.8 94.7

Table 2. Mean anomaly detection AU-ROC percentages per
dataset collection (left) and on the logical and structural anomalies
of MVTec LOCO (right). For EfficientAD, we report the mean of
five runs. Performing method development solely on MVTec AD
(MAD) becomes prone to overfitting design choices to the few re-
maining misclassified test images.

a (for qa) 0.5 0.8 0.9 0.95 0.98 0.99

AU-ROC 95.9 95.9 96.0 95.9 95.9 95.8

b (for qb) 0.95 0.98 0.99 0.995 0.998 0.999

AU-ROC 95.8 95.9 96.0 96.0 95.9 95.9

phard 0 0.9 0.99 0.999 0.9999 0.99999

AU-ROC 94.9 94.9 95.7 96.0 95.8 95.7

Table 3. Mean anomaly detection AU-ROC of EfficientAD-M on
MVTec AD, VisA, and MVTec LOCO when varying the loca-
tions of quantiles. These are the two sampling points a and b of
the quantile-based map normalization and the mining factor phard.
Setting phard to zero disables the proposed hard feature loss. De-
fault values used in our experiments are highlighted in bold.
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Figure 6. Latency per GPU. The ranking of methods is the same
on each GPU, except for two cases in which DSR is slightly faster
than FastFlow.

Table 1 reports the overall anomaly detection perfor-
mance for each method. EfficientAD achieves a strong
image-level detection and pixel-level localization of anoma-
lies. Reliably localizing anomalies in an image provides
explainable detection results and allows the discovery of
spurious correlations in detections. It also enables a flexi-
ble postprocessing, such as excluding defect segmentations
based on their size.

Table 2 breaks down the overall anomaly detection per-
formance into the three dataset collections. It shows that
the lead of EfficientAD on MVTec LOCO is in equal parts
due to its performance on logical and on structural anoma-
lies. In Table 3, we assess the robustness of EfficientAD to
varying hyperparameters.

Furthermore, we measure the computational cost of each
method during inference. As explained above, the number
of parameters can be a misleading proxy metric for the la-
tency and throughput of convolutional architectures since
it does not consider the resolution of a convolution’s input
feature map, i.e., how often a parameter is used in a for-
ward pass. Similarly, the number of floating point opera-
tions (FLOPs) can be misleading since it does not take into
account how easily computations can be parallelized. For
transparency, we report the number of parameters, the num-
ber of FLOPs, and the memory footprint of each method in
the supplementary material. Here, we focus on the metrics
that are most relevant in anomaly detection applications: the
latency and the throughput. We measure the latency with a
batch size of 1 and the throughput with a batch size of 16.
Table 1 reports the measurements for each method on an
NVIDIA RTX A6000 GPU. Figure 6 shows the latency of
each method on each of the GPUs in our experimental setup.
The supplementary material contains a detailed description
of our timing methodology.
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Figure 7. Non-cherry-picked qualitative results of EfficientAD on
VisA. For each of its 12 scenarios, we show a randomly sam-
pled defect image, the ground truth segmentation mask, and the
anomaly map generated by EfficientAD-M.

In Figure 7, we show randomly sampled qualitative re-
sults of EfficientAD on the VisA dataset collection. The
supplementary material provides qualitative results for the
other evaluated methods and dataset collections as well.

We examine the effects of the components of
EfficientAD in the ablation study shown in Table 4 and Ta-
ble 5. For experiments without the proposed quantile-based
map normalization, we use a Gaussian-based map normal-
ization as a baseline instead. There, we compute the linear
transformation parameters such that pixel anomaly scores
on the validation set have a mean of zero and a variance of
one. This baseline normalization is sensitive to the distribu-
tion of validation anomaly scores, which can vary between
scenarios. The quantile-based normalization is independent
of how the scores between qa and qb are distributed and per-
forms substantially better than the baseline.

We also evaluate the effect of the two proposed loss
terms for training the student–teacher pair. The hard feature
loss increases the anomaly detection AU-ROC by 1.0 % in
Table 4. This improvement alone is greater than or equal
to each of the improvement margins between the consecu-
tive rows of FastFlow, DSR, PatchCore, PatchCoreEns, and
AST in Table 1. The student’s penalty on pretraining im-
ages further improves the anomaly detection performance.
Notably, the proposed map normalization, the hard feature
loss, and the pretraining penalty keep the computational re-
quirements of EfficientAD low, while creating a substantial
margin w.r.t. the anomaly detection performance.

Detection
AU-ROC

Diff.
Latency

[ms]

PDN 93.2 2.2
↪→ with map normalization 94.0 + 0.8 2.2
↪→ with hard feature loss 95.0 + 1.0 2.2
↪→ with pretraining penalty 95.4 + 0.4 2.2

EfficientAD-S 95.4 2.2
EfficientAD-M 96.0 + 0.6 4.5

Table 4. Cumulative ablation study in which techniques are grad-
ually combined to form EfficientAD. Each AU-ROC percentage
is an average of the mean AU-ROCs on MVTec AD, VisA, and
MVTec LOCO.

Detection
AU-ROC

Diff.
Latency

[ms]

EfficientAD-S 95.4 2.2
Without map normalization 94.7 - 0.7 2.2
Without hard feature loss 94.7 - 0.7 2.2
Without pretraining penalty 95.0 - 0.4 2.2

Table 5. Isolated ablation study in which techniques are separately
removed from EfficientAD-S.

5. Conclusion
In this paper, we introduce EfficientAD, a method with

a strong anomaly detection performance and a high com-
putational efficiency. It sets new standards for the de-
tection of structural as well as logical anomalies. Both
EfficientAD-S and EfficientAD-M outperform other meth-
ods on the detection and the localization of anomalies by a
large margin. Compared to AST, the second-best method,
EfficientAD-S reduces the latency by a factor of 24 and in-
creases the throughput by a factor of 15. Its low latency,
high throughput, and high detection rate make it suitable
for real-world applications. For future anomaly detection
research, EfficientAD is an important baseline and a fruitful
foundation. Its efficient patch description network, for in-
stance, can be used as a feature extractor in other anomaly
detection methods as well to reduce their latency.

Limitations. The student–teacher model and the au-
toencoder are designed to detect anomalies of different
types. The autoencoder detects logical anomalies, while
the student–teacher model detects coarse and fine-grained
structural anomalies. Fine-grained logical anomalies, how-
ever, remain a challenge – for example a screw that is two
millimeters too long. To detect these, practitioners would
have to use traditional metrology methods [58]. As for the
limitations in comparison to other recent anomaly detec-
tion methods: In contrast to kNN-based methods, our ap-
proach requires training, especially for the autoencoder to
learn the logical constraints of normal images. This takes
twenty minutes in our experimental setup.
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