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Abstract

Generative Adversarial Networks (GANs) can produce
high-quality samples, but do not provide an estimate of
the probability density around the samples. However, it
has been noted that maximizing the log-likelihood within
an energy-based setting can lead to an adversarial frame-
work where the discriminator provides unnormalized den-
sity (often called energy). We further develop this perspec-
tive, incorporate importance sampling, and show that 1)
Wasserstein GAN performs a biased estimate of the parti-
tion function, and we propose instead to use an unbiased
estimator; and 2) when optimizing for likelihood, one must
maximize generator entropy. This is hypothesized to pro-
vide a better mode coverage. Different from previous works,
we explicitly compute the density of the generated samples.
This is the key enabler to designing an unbiased estimator
of the partition function and computation of the generator
entropy term. The generator density is obtained via a new
type of flow network, called one-way flow network, that is
less constrained in terms of architecture, as it does not re-
quire a tractable inverse function. Our experimental results
show that our method converges faster, produces compara-
ble sample quality to GANs with similar architecture, suc-
cessfully avoids over-fitting to commonly used datasets and
produces smooth low-dimensional latent representations of
the training data.

1. Introduction

The goal of a generative model is to extract some no-
tion of the data distribution given a training set, either ex-
plicitly by computing the probability density function [44],
indirectly through distilling a stochastic sampling mecha-
nism [12], or a combination of both [9]. While indirect gen-
erative models can achieve state-of-the-art performance in
sample quality [12, 17], having explicit densities has several
advantages. For example, an explicit density function can
be used to quantitatively compare models, or to train mod-
els by maximum likelihood estimation (MLE), which has
been proven to be statistically asymptotically efficient [15].

Autoregressive models [43, 44] and normalizing
flows [8] are the most prominent examples of deep gener-
ative models that compute exact probability and directly
maximize the log-likelihood of their training dataset.
However, it is inefficient to sample from autoregressive
models and they do not provide a low-dimensional latent
representation of the data. Normalizing flows allow
both efficient sampling and density estimation, but make
restrictive assumptions on the architecture, requiring the
latent space to be of the same dimensionality as that of
the input, making it computationally expensive to use in a
high-dimensional data regime.

Energy-based models (EBMs) [41], variational autoen-
coders (VAEs) [22] and diffusion models [32,38] are further
examples of deep generative models trained with likelihood
maximization. However, VAEs and diffusion models can
only compute a lower bound of the likelihood. EBMs, on
the other hand, represent an unnormalized density, allowing
for greater flexibility in the choice of functional form, at
the cost of inefficient sampling and approximate likelihood
estimation.

Indirect models such as Generative Adversarial Net-
works (GANs) [12, 17] have achieved state-of-the-art per-
formance in terms of the quality of the generated data,
but do not provide any estimate of the probability density
around a sample. However, a connection has been noted be-
tween the loss function of these networks, in particular the
Wasserstein GAN (WGAN) loss [2] and EBMs [5, 19], in
which the discriminator can be regarded as an energy func-
tion. With the goal of introducing density estimation within
an adversarial training framework, we follow here a simi-
lar path, but develop further these observations to arrive at
an unbiased estimator of the partition function through the
explicit computation of the generator density.

Specifically, we begin by exploring the connection be-
tween EBMs and GANs which leads to a training objective
that closely resembles the WGAN loss, with minor but key
differences. We notice that maximizing the log-likelihood
of an EBM arrives at the WGAN loss if we take a biased es-
timation of the normalization constant of the energy func-
tion; or alternatively, WGANs perform a one-sample ap-
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proximation of the partition function. Based on this obser-
vation, and in departure from previous work, we propose to
use an unbiased estimator by explicitly computing the gen-
erator density Pg. v

To calculate Pg,,, we propose a new type of normaliz-
ing flow network that bypasses several architectural con-
straints found in standard flow models. In particular, we
construct a flow that can perform upsampling and down-
sampling operations, starting from a lower-dimensional la-
tent variable, at the cost of approximate probability compu-
tation. This is possible and sufficient since we only need
to compute Pg,, for generated samples, while density esti-
mation of real, non-generated points is relegated to the dis-
criminator.

Our experimental results show that our model is able to
capture more modes, trains faster on images, produces com-
parable sample quality to GANs with similar architecture,
and can be used to compute the partition function with a
practical number of samples.

In summary, we propose a framework for adversarial
generative modeling that simultaneously computes an es-
timate of the density, with the following key contributions:
i) by developing the connection between EBMs and GANS,
we show that the WGAN discriminator objective is a biased
estimator of the partition function; ii) we propose an unbi-
ased estimate of the partition function of an EBM by explic-
itly computing the density of the generator; iii) we propose
a new flow-based network for the computation of the gen-
erator density that enables a more flexible architecture, in
contrast to traditional flow models.

2. Related work

Two main categories of generative models are prescribed
and implicit models [7]. Prescribed models recover an ex-
plicit parametric specification of the density function and
are trained and evaluated by MLE; our work belongs to this
family. Implicit models, on the other hand, represent the
data distribution indirectly through a stochastic mechanism
that generates random samples. In general, this offers more
flexibility in terms of learning objective and model archi-
tecture, which is hypothesized to be responsible for the high
visual quality of the generated samples.

Normalizing flows [9, 21, 24] and autoregressive mod-
els [35,42,44] are examples of deep prescribed generative
models. Since these compute the density function explic-
itly, they can be optimized and evaluated using the train-
and test-set log-likelihood. Although autoregressive mod-
els can efficiently work with high-dimensional data during
training, due to ancestral sampling they are extremely slow
at generating new samples. Normalizing flows require an
invertible architecture to compute the likelihood, and con-
sequently can only support latent spaces of the same dimen-
sionality as the input data. In addition, they tend to produce

large and memory-hungry models, and are therefore not so
suitable for high-dimensional data. In this work, we relax
the invertibility constraint by computing the flow in only
one direction, enabling the use of lower-dimensional latent
vectors, and more resource-efficient architectures.

An intermediate category of generative models consid-
ers only an approximation to the density function. Exam-
ples include a lower bound on the likelihood for VAEs and
diffusion models [14], or the unnormalized density in the
case of EBMs [39]. VAEs are known to suffer from low
generation quality, i.e. they tend to produce blurry samples.
Diffusion models can generate images of very high sample-
quality [6, 32]; however, the latent representation needs to
be of the same dimension as the input data. EBMs [41] de-
ploy several techniques to obtain the derivative of the nor-
malizing factor with respect to the model parameters. We
maximize the same cost function as EBMs (see Eq. (3)),
but explicitly model the normalization constant (.

GANSs [12] are the most prominent example of implicit
models, and produce state-of-the-art generated sample qual-
ity [18]. However, it has been observed that GANs may
trade diversity for precision [3, 34,40]. This results in gen-
erators that produce samples from only a few modes of the
data distribution, a phenomenon known as “mode collapse”.
GAN:Ss are also well known for having unstable training dy-
namics [2, 13,28].

The connection between GANs and EBMs on which we
base our analysis has been previously observed in [4,5, 19].
A common assumption by these works is that the generator
density is inaccessible, which forces them to work with a
biased partition function. Furthermore, while designing the
objective for the generator network, it is observed (as in this
work) that the entropy of the generator distribution needs
to be maximized. However, entropy estimation is closely
related to density estimation, and therefore as hard as the
original problem. To address this, [19] assumes that the
batch normalization layer maps every intermediate activa-
tion to approximately normal distributions, and that the sum
of the analytical entropy of these distributions approximate
the true generator entropy. In [5] two different approaches
are proposed for the generator distribution: 1) assume that
the distribution is a mixture of isotropic Gaussians centered
around the generator response G (z), and compute the gra-
dient of such a mixture; and 2) compute its variational lower
bound, which requires training yet another network that out-
puts a parametric form of the approximate posterior and
an MCMC integration over the noise variable. A similar
approach using variational lower bound has also been ex-
plored in [1]. Contrary to these, we explicitly compute the
generator density and with it the entropy term, resulting in
an unbiased estimate of the partition function.
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3. Method
3.1. Density estimation by MLE

Given a dataset of independent and identically dis-
tributed samples X:={z; € R}, drawn from an un-
known probability distribution Py,,, our goal is to learn a
parametric model Pp, that matches the distribution of Fyyta.
Following EBMs [39,41], we define Pp, as

eDG(‘T)

¢

Here, Dy is a neural network with parameters 6. The
exponentiation ensures a non-negative probability, and
¢= [zn Do(®)dy is a normalizing factor such that Pp, inte-
grates to umty Note that traditionally the energy of an EBM
is represented as e~ Pe(@) but here we consume the negative
sign inside the Dy(z) function for notational simplicity.

Since the partition function ( is generally intractable and
hard to compute, we approximate this integral with impor-
tance sampling [23], and rewrite it as

Do) oDo(@)
——dx =FE, _—
¢= / PGw( ) ey |:PG¢ (x)]

Dy (x) 2

PDe (CB) =

6]

with S representing the number of samples used in the sum-
mation, and where P, is an arbitrary distribution that is
non-zero in the integration domain, often called the biased
density. Here, we choose Pg,, to be the push-forward den-
sity through a neural network G, : R? — R™ with param-
eters 9, such that y = G, (z) is a sample from the biased
density Pg,,, and z € R, 2 ~ P(Z) is the latent random
variable, with d < n. We further choose P(Z) to be the
standard normal density A(0, 7). We will elaborate more
on Pg,, in Sec. 3.3, and on Gy in Sec. 3.4.

We train Dy by maximizing the log-likelihood
log Pp (z) of the dataset X'

0* = arg max { Z log Pp, (x)}

TeEX

= arg max { Z (Do (z) — logC)}

A arg max Z Dy () — log Z )

reEX yNPGw ¥
3)

The summation over y ~ Pg,, is the ¢ integral approxi-
mation from Eq. (2), summed over .S samples. A full deriva-
tion can be found in Appendix A.1. Interestingly, if we take

a one-sample approximation we get the objective

* D
0" = arg max { Z [Dg (z) — logeP*™ 4 1og Pg, (y)} }

reX

= arg max { > [Do (x) = Dy (G (Z))}} :

reX

“)

Here the term log Pg,, () can be discarded because it does
not depend on 6. Eq. (4) is exactly the objective for the
WGAN discriminator [2]. Hence, we note a connection
between the unnormalized log-density estimator Dy and
the WGAN objective function, which can be re-interpreted
as performing a one-sample approximation of ¢ within an
energy-based framework.

There is an alternative view to Eq. (4). If we simply
drop the importance sampling scheme and embrace a bi-
ased estimate of the partition function, we again recover the
WGAN objective as was shown in [5]. The introduction of
the importance weights as in Eq. (3) is known to produce
an unbiased estimator [33] of the normalizing constant (,
although it does so at the cost of added variance. Since it
is intractable to theoretically compute the variance of this
estimator, even when we have access to the variance of the
importance weight, we will show the empirical relevance of
the unbiased estimator in Sec. 4.

3.2. Learning P, for importance sampling

The construction of Pg,, in Egs. (2) and (3) is impor-
tant, since an appropriate choice can dramatically reduce
the number of samples required to achieve an accurate ap-
proximation of (.

To reduce the number of samples needed we minimize
the variance of the approximation error, which is propor-

P
tional to Dg

[33]. This occurs when Pg » matches Pp,

up to a mu1t1phcatlve factor. Therefore, we train Gy by
minimizing the KL-divergence [26] between the two distri-
butions, leading to the objective function:

v = argma {H (Go (2) + =3 Do (G <z>>} ,

z~Z
&)
where Z is a random variable that is used as input to G, and
H (Pg,(Z)) is the entropy of the generator distribution.
The full derivation is in Appendix A.2. '
Notably, we obtain in Eq. (5) the WGAN generator ob-
jective, with an additional entropy term H (Pg,(Z)) that

UIn practice, the entropy H (Gw (z )) is not the same order of magni-
tude as the discriminator response, hence we add a weight w to the entropy
term. We mathematically justify this and correct the objective and proba-
bility using this weight in Appendix C.1.
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requires maximization. We hypothesize that this term is re-
sponsible for ensuring diversity in the generated samples,
and that its introduction can reduce the well-known prob-
lem of mode collapse in GANs. This has also been observed
in [5, 19], where the authors proposed ad-hoc solutions to
the computation of H (P, (Z)) since the distribution of
Pg,, was unknown.

Note that any other choice of divergence is in principle
valid as objective function. We take here the KL-divergence
because it leads to an objective for G, that is independent
of the normalizing constant ¢ of the distribution given by
Dy, and because it leads to a natural connection with the
WGAN loss. We leave the exploration of other divergences
for future work.

3.3. Estimating probabilities for the generator

We require a tractable Pg,, (y) for the approximation of
the integral in Eq. (3). One design option that fits this re-
quirement is a normalizing flow network [9], where the den-
sity at a point y sampled using the generator network G (2)
is computed using the change of variables formula:

o (252)

-1

P(Gy (2)) = Pz (2) ,(©

with Py the latent density from which z is sampled, and
M#T(Z) the Jacobian of G (2).

Normalizing flows require the mapping G to be bijec-
tive for the change of variable formula given by Eq. (6) to
hold. Additionally, for any z € X', normalizing flows must
find a z such that Gy (2) = x. This requires G, to be
designed in such a way that it can be efficiently inverted,
which greatly restricts the choice of architecture of G, and
prevents from adopting the recent progress made by empir-
ical research on GAN architectures [18,31].

In our setting, however, we need to evaluate the gen-
erator density only at points sampled from the generator
y = Gy(z). Therefore, we do not need to compute the
inverse function G;l (x) explicitly, only the forward G, (2)
and its Jacobian determinant. This allows to use any ar-
chitecture for G, whose Jacobian determinant can be com-
puted efficiently. In Section 3.4 we show how to build such
architecture, which we call one-way flow.

3.4. One-way flow generator network

Motivated by the generation quality of GANs we de-
sign a generator that maps a latent space (R?) to the data
space (R™) with d < n, gradually increasing dimensional-
ity while retaining computational efficiency in the estima-
tion of the density.

First, we define a function g, : R? — R™ that increases
dimensionality by concatenating a random vector € R" ¢

as gy (2) = . Since r and z are independent by design

and since P (r) and P (z) are known, the probability of the
output is
P(gu(z)) = P(2) P(r). )

We can compose any number of functions that are either
bijective or concatenate random noise as in g, although in
practice we did not find a need to use more than one such
layer. We encapsulate the subsequent layers into a function
of the form g,, : R® — R". For the encapsulated layers,
we allow any architecture design, with the constraint that
nowhere inside this part of the network the dimension of
the activation be smaller than n.

Finally, we  construct the  generator  as
Gy (2) =(gn © gu) (2). The form Gy : R?—R"™ makes
it possible to compute the probability Pg,, (Gy (2)) of
an n-dimensional sample Gy (z) on its corresponding
d-dimensional point z on the manifold. It is unnecessary
to compute Pg,, () on any arbitrary n-dimensional point
x, since our model requires only probabilities of generated
samples.

However, computing the Jacobian of g,, and its determi-
nant in high dimensions is a computationally heavy task. To
efficiently approximate the determinant of the Jacobian we
use the equality

17 = B [170]77] ®)

from [37], where J € R™*"™ is a matrix, i.e. the Jacobian,
and v is a random unit vector. To further increase efficiency,
we use a one-sample approximation, which allows us to
rewrite it in log form as

log |J| = nlog ||Jv|| . )

We show in Appendix B that using this form is sufficient for
our purposes.

For our definition of G, with Egs. (6) and (7), we get
the computationally efficient form of the generator density
evaluated at a generated point as follows:

Pg, (Gy(2)) =P (2) P (r) ‘det (3%252))

—1
(10)

Using the approximation of Eq. (9) we obtain a computa-
tionally efficient unbiased estimator of the entropy using an
m-sample empirical mean as

H(Gy (2)) = —% Y log(P(2) P(r)) = nlogl|Jo]].

z~ Py
(1)
This in turn lets us write the generator objective as

P = argmgX{ > (nlog||Jv]| + Dy (Gy (Z)))} :
z~Py

12)
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The objective for the generator includes a maximization
of the log determinant of the generator Jacobian. This en-
sures that the Jacobian stays full rank during training. Fur-
thermore, due to optimization dynamics, if it so happens
that the Jacobian ceases to be full rank or approaches singu-
larity, the cost function approaches negative infinity making
the training dynamics shift and “focus” on restoring Jaco-
bian rank. In practice, we do not see the Jacobian approach
singularity, and it stays well-behaved.

4. Experiments

In this section we provide experimental results for the
generated data and the density estimation using both syn-
thetic (Sec. 4.1) and real (Sec. 4.2) datasets. We show
qualitative examples in Sec. 4.3. Implementation details
and architectures can be found in Appendix C.2 and Ap-
pendix C.3.

4.1. Synthetic data
Table 1. The high quality (HQ) samples percentages and modes

of various generators for 2D GMMs. The numbers for all models,
except our model, are taken from [40].

2D RING 2D GRID

MODES MODES

(MAX 8) % HQ (MAX 25) % HQ
GAN [12] 1 99.3 3.3 0.5
ALI[11] 2.8 0.13 15.8 1.6
UGAN [29] 7.6 35.6 23.6 16
VEEGAN [40] 8 52.9 24.6 40
OURS 8 71.2 25 52.5

We begin by comparing the density estimation and sam-
pling capabilities of our model. To this end, we perform
an experiment on a synthetic 2D dataset, the same as the
one presented in VEEGAN [40]. We train our model on
two sets of Gaussian Mixture Models (GMM), with one set
comprising 8 modes forming a ring (Fig. 1a) and another
set comprising 25 modes in a grid (Fig. 1c). In order to test
the theoretical analysis (Sec. 3) without the consequences
of approximating the determinant of the Jacobian (Eq. (9)),
we performed the 2D experiments while computing the ex-
act determinant of the 2 x 2 Jacobians.

To quantify the quality of the density captured by the
generator we use the “high-quality samples and modes”
metric from [40], where a generated point is considered
high quality if it is within a 30 distance from the nearest
mode, and a mode is counted if it is the nearest mode to

at least one high-quality sample. We generate 2,500 points
and report the percentage of points that are high quality and
the number of modes over five runs. We can see in Tab. 1
that our generator is able to capture all the modes, while
also producing higher quality samples than other models.

Since GAN models do not return a direct estimate of the
probability of the data we cannot compare density estima-
tion. Therefore, instead of a quantitative comparison, we
qualitatively evaluate the density estimation of our discrim-
inator by plotting in Fig. 1 its density map next to the ground
truth density. Fig. 1 shows that our discriminator captures
all the modes by giving them high values.

To show the effectiveness of the samples created by the
generator, in Fig. 2(a) we show the log { approximated by a
different number of samples using three different bias distri-
butions: 1) a standard normal distribution, 2) our generator
distribution and 3) the ground-truth distribution. For each
distribution and each number of samples, we run the com-
putation 10 times, and use an error bar to represent the stan-
dard deviation of the results. Fig. 2(a) shows that using our
generator is more accurate than using a normal distribution,
and requires fewer samples to converge.

4.2. Real data

To evaluate our loss objectives (Egs. (3) and (5)) on real
datasets, we use the DCGAN [30] architecture and train the
model with various numbers of samples to approximate the
integral (Eq. (2)). Appendix C.2 details our training param-
eters, Appendix C.3.2 explains our DCGAN-based archi-
tecture and Appendix C.4 compares the runtime difference
between WGAN and our method. As seen in Tab. 2, using
our formulation we achieve better Fréchet Inception Dis-
tance (FID) values. The table also shows results from the
traditional normalizing flow-based GLOW [21].

Following [10], we provide histograms of unnormalized
log-likelihoods for train and test data in Fig. 3. We remark
that there is a large overlap between the test and train distri-
bution. This indicates that the discriminator generalizes to
the test set and gives evidence against over-fitting.

Fig. 2(b-c) shows the value of ( according to different
numbers of samples. Here we see that the computed values
converge under a practical number of samples. Note that
since ( is a constant of Dy, its computation is required only
once and saved for further density estimations.

4.3. Qualitative results

In Figs. 4 and 5 we visually assess the probabilities as-
signed by the discriminator by providing random samples
sorted by density. We can see here that high-quality images
score higher probabilities than low-quality images, suggest-
ing that our trained discriminator has captured the distribu-
tion of the given dataset.

In Fig. 7 we show qualitative results for the generator on
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Figure 1. True distribution v.s. discriminator distribution in log space.

Brighter colors represent higher values. (a) Ground truth distribution

of the 8-modes ring. (b) Discriminator density estimation of the 8-modes ring. (c) Ground truth distribution of the 25-modes grid. (d)

Discriminator density estimation of the 25-modes grid.

(a) (b)

log integral approximation
Approximated log integral

-15 ~}- Standard normal
=+ Our generator —04
--}- True distribution

== 1 samples
== 2 samples

== 1 samples
== 2 samples

Approximated log integral

10° 10! 10% 10° 0.0 0.2
# samples

# samples le8

0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
# samples 1e8

Figure 2. Approximated integral by number of samples used (as in Eq. (2)) for the grid distribution. The vertical error bars represent the
standard deviation over 10 computations. (a) Synthetic 2D grid. (b) CelebA. (c) CIFAR-10.

an interpolation experiment, which shows that our frame-
work retains smoothness in the latent space.

Finally, because our generator introduces noise when in-
creasing dimensionality (Eq. (7)), we wanted to see what
characteristics are controlled by the initial latent space. For
that we used the same latent vector as an input to the gen-
erator multiple times and show the results in Fig. 8. We
observe that the structure stays the same among the images,
with slight variations, e.g. hair color. From here we hypoth-
esize that changing the variance of groups of latent variables
can be used as a mechanism to capture qualitative modes of
the data. This corresponds to similar observations in Style-
GAN [17] where the authors found interesting roles of inter-
mediate auxiliary noise as they were introduced at different
resolutions. However, in contrast here different noise vari-
ance plays a crucial role and highlights qualitatively high
level of disentanglement in our generator.

5. Discussion

As described in Sec. 3.2, considering a likelihood-based
approach for GAN training leads to maximization of the

Table 2. Comparison of FID values between our model and (1)
WGAN with DCGAN architecture, (2) GLOW

CELEBA FID CIFAR-10 FID
GLOW 24 95
WGAN-GP 24 61
OURS - 1 SAMPLE 22.5 42.4
OURS - 2 SAMPLES 22.9 51.2

generator entropy in addition to the WGAN objective.
Moreover, the new discriminator objective formulation, as
described in Sec. 3.1, assists in removing the bias from
the WGAN objective. Both of these differences from the
WGAN objectives are made possible by having the genera-
tor provide the density of the generated samples. Whereas
normalizing flows require computing the density of arbi-
trary points in order to train with log-likelihood maximiza-
tion, a crucial difference with our model is that the com-
putation of the density of real data points is not required.
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Figure 3. Overfit test. Histograms of the values returned by the
discriminator for the train and test sets. Top row (a-b) for CelebA
and bottom row (c-d) for CIFAR-10. The left column (a,c) uses
a 1-sample approximation and ¢ and the right column uses a 2-
samples approximations.
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Figure 4. Random samples of generated CelebA images sorted
by their discriminator-assigned unnormalized log probability. The
value above each image is the discriminator score.

Only the density of the generated data points needs to be
computed. This leads to a considerable relaxation in the
generator architecture, where the model is allowed to in-
crease dimensionality throughout the generator. The ability
to increase dimensions appears to contribute to getting bet-
ter quality images, as seen in Tab. 2, where GLOW, which
has constant dimensionality, generates lower quality images
than DCGAN or more modern GANs. To keep this opera-
tion tractable we adopted the approximate Jacobian deter-
minant computation in Sec. 3.4. This arguably introduces
noise in the gradient. We leave to future work the task

Figure 5. Random samples of generated CIFAR-10 images sorted
by their discriminator-assigned unnormalized log-probability. The
value above each image is the discriminator score.
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Figure 6. Evolution of FID during training using WGAN loss
and our loss. Top row (a-b) for CelebA and bottom row (c-d) for
CIFAR-10. The left column (a,c) uses a 1-sample approximation
of ¢ and the right column uses a 2-sample approximation.

SEANAOR

Figure 7. Generated images from linear interpolations of the latent
space using the CelebA dataset. Each row is independent of the
other.

of building a generator architecture with layers that have a
closed-form Jacobian. For instance, the computation of the
Jacobian determinant for a convolution operation can be ob-
tained from [16,36], and the Jacobian for element-wise lay-
ers is a diagonal matrix. We expect this will further speed up
and stabilize GAN training. Furthermore, to track the prob-
ability of the output of a dimension-reducing layer, as in the
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Figure 8. Generator outputs given the same latent vector.

final convolution layer of DC-GAN, the removed dimen-
sions have to be marginalized, which is a difficult and ex-
pensive computation. When tractable down-sampling oper-
ation is discovered, it could be applied in our model as well.
While experimenting with different number of samples for
¢, we observed that increasing the number of samples did
not necessarily improve the image quality. We suspect that
this is because, given more samples, the training focuses
more on increasing the variance of the generated images.
We also suspect that the architecture we used for testing did
not have the capacity to accommodate these variances. We
leave it to future work to unlock the full potential of using
multiple samples for approximating the normalizing factor.

Finally, we leave to future work the application of the
proposed work to more modern GAN generator and dis-
criminator architectures (e.g. [18]).

6. Conclusion

We presented a framework for density estimation within
GANSs, and explored the connection between EBMs and
GANSs to develop an unbiased estimator of the partition
function of an EBM. This led to an objective function that
is closely related to Wasserstein GAN with an additional
entropy maximization criterion for the generator training
that enables greater diversity of the generated samples. Fur-
thermore, we proposed a modified flow network as genera-
tor, called one-way flow, which provides both samples and
density estimates to compute empirical expectations while
maintaining architectural flexibility. This allows for an effi-
cient way of evaluating the generator density and generator
entropy, which has historically proven hard. Our experi-
mental results show that our model produces samples that
are on par with other GAN generators, along with accu-
rate density estimations and faster convergence. Our model
provides new understandings of the properties of the dis-
criminator and insights into GANs from a maximum like-
lihood perspective, while connecting these to EBMs. To
accommodate maximum flexibility we have used a stochas-
tic Jacobian-determinant approximator; we leave as future
work its exact computation, which we hypothesize can re-
duce variance and speed up training.

Acknowledgments

The authors thank the International Max Planck Re-
search School for Intelligent Systems for supporting OB.
MIJB has received research gift funds from Adobe, Intel,
Nvidia, Meta/Facebook, and Amazon. MJB has financial
interests in Amazon, Datagen Technologies, and Meshca-
pade GmbH. While MJB is a consultant for Meshcapade,
his research in this project was performed solely at, and
funded solely by, the Max Planck Society.

References

[1] M Ehsan Abbasnejad, Qinfeng Shi, Anton van den Hengel,
and Linggiao Liu. A generative adversarial density estimator.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10782-10791, 2019.
2
[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein Generative Adversarial Networks. In Interna-
tional inproceedings on Machine Learning (ICML), 2017. 1,
2,3
[3] Tong Che, Yanran Li, Athul Paul Jacob, Yoshua Bengio,
and Wenjie Li. Mode regularized generative adversarial net-
works. arXiv preprint arXiv:1612.02136, 2016. 2
Tong Che, Ruixiang Zhang, Jascha Sohl-Dickstein, Hugo
Larochelle, Liam Paull, Yuan Cao, and Yoshua Bengio. Your
GAN is secretly an energy-based model and you should use
discriminator driven latent sampling. Advances in Neural In-
formation Processing Systems, 33:12275-12287, 2020. 2
[5] Zihang Dai, Amjad Almahairi, Philip Bachman, Eduard
Hovy, and Aaron Courville. Calibrating energy-based gen-
erative adversarial networks. In International inproceedings
on Learning Representations (ICLR), 2017. 1,2, 3,4
Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat GANs on image synthesis. Advances in Neural Infor-
mation Processing Systems, 34, 2021. 2
Peter J Diggle and Richard J Gratton. Monte Carlo Methods
of Inference for Implicit Statistical Models. Journal of the
Royal Statistical Society: Series B (Methodological), 1984.
2
Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:
Non-linear Independent Components Estimation.  arXiv
preprint arXiv:1410.8516,2014. 1
Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
Density Estimation Using Real NVP. In International in-
proceedings on Learning Representations (ICLR), 2017. 1,
2,4
[10] Yilun Du and Igor Mordatch. Implicit generation and mod-
eling with energy based models. Advances in Neural Infor-
mation Processing Systems, 32, 2019. 5

[4

—

[6

—_

[7

—

[8

—

[9

—

[11] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex
Lamb, Martin Arjovsky, Olivier Mastropietro, and Aaron C.
Courville. Adversarially learned inference. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net, 2017. 5

3786



[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

[24]

[25]

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative Adversarial Nets. In Advances
in Neural Information Processing Systems (NeurlPS), 2014.
1,2,5

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. GANs Trained by
a Two Time-scale Update Rule Converge to a Local Nash
Equilibrium. Advances in Neural Information Processing
Systems (NeurlPS), 2017. 2

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffu-
sion Probabilistic Models. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2020. 2

Peter Huber. The behavior of maximum likelihood estimates
under nonstandard conditions. In Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Proba-
bility. University of California Press, 1967. 1

Mahdi Karami, Dale Schuurmans, Jascha Sohl-Dickstein,
Laurent Dinh, and Daniel Duckworth. Invertible convolu-
tional flow. Advances in Neural Information Processing Sys-
tems, 32, 2019. 7

Tero Karras, Samuli Laine, and Timo Aila. A style-
based Generator Architecture for Generative Adversarial
Networks. In Proceedings of the IEEE inproceedings on
Computer Vision and Pattern Recognition (CVPR), 2019. 1,
6

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and Improving
the Image Quality of StyleGAN. In Proceedings of the IEEE
inproceedings on Computer Vision and Pattern Recognition
(CVPR), 2020. 2,4, 8

Taesup Kim and Yoshua Bengio. Deep directed genera-
tive models with energy-based probability estimation. arXiv
preprint arXiv:1606.03439, 2016. 1,2, 4

Diederik P. Kingma and Jimmy Ba. Adam: A Method for
Stochastic Optimization. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. 13
Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. In S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. 2, 5
Diederik P Kingma and Max Welling. Auto-Encoding Vari-
ational Bayes. In International inproceedings on Learning
Representations (ICLR), 2014. 1

Tuen Kloek and Herman K Van Dijk. Bayesian estimates
of equation system parameters: an application of integration
by monte carlo. Econometrica: Journal of the Econometric
Society, pages 1-19, 1978. 3

Ivan Kobyzev, Simon Prince, and Marcus Brubaker. Normal-
izing Flows: An Introduction and Review of Current Meth-
ods. In IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 2020. 2

Alex Krizhevsky, Geoftrey Hinton, et al. Learning multiple
layers of features from tiny images.(2009), 2009. 13

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

3787

Solomon Kullback and Richard A Leibler. On Information
and Sufficiency. The annals of mathematical statistics, 1951.
3

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In Proceedings of
the IEEE international conference on computer vision, 2015.
13

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for GANs do actually converge? In
International inproceedings on Machine Learning (ICML),
2018. 2

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-
Dickstein. Unrolled generative adversarial networks. In
Sth International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings. OpenReview.net, 2017. 5

Alec Radford, Luke Metz, and Soumith Chintala. Un-
supervised Representation Learning with Deep Convolu-
tional Generative Adversarial Networks. arXiv preprint
arXiv:1511.06434,2015. 5, 14

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-
geswaran, Bernt Schiele, and Honglak Lee. Generative Ad-
versarial Text to Image Synthesis. In International inpro-
ceedings on Machine Learning (ICML), 2016. 4

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684-10695, 2022. 1,2

Reuven Y Rubinstein and Dirk P Kroese. Simulation and the
Monte Carlo Method. John Wiley & Sons, 2016. 3

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved techniques
for training gans. Advances in neural information processing
systems, 29, 2016. 2

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P
Kingma. PixelCNN++: Improving the PixelCNN with Dis-
cretized Logistic Mixture Likelihood and other Modifica-
tions. In International inproceedings on Learning Represen-
tations (ICLR), 2017. 2

Hanie Sedghi, Vineet Gupta, and Philip M. Long. The Sin-
gular Values of Convolutional Layers. In International in-
proceedings on Learning Representations (ICLR), 2019. 7
Jascha Sohl-Dickstein. Two equalities expressing the de-
terminant of a matrix in terms of expectations over matrix-
vector products. arXiv preprint arXiv:2005.06553, 2020. 4
Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International Confer-
ence on Machine Learning, pages 2256-2265. PMLR, 2015.
1

Yang Song and Diederik P Kingma. How to train your
energy-based models. arXiv preprint arXiv:2101.03288,
2021. 2,3

Akash Srivastava, Lazar Valkov, Chris Russell, Michael U
Gutmann, and Charles Sutton. VEEGAN: Reducing Mode



[41]

[42]

[43]

[44]

Collapse in GANs Using Implicit Variational Learning. Ad-
vances in Neural Information Processing Systems (NeurlPS),
2017. 2,5

Yee Whye Teh, Max Welling, Simon Osindero, and Geof-
frey E Hinton. Energy-based models for sparse overcomplete
representations. Journal of Machine Learning Research,
4(Dec):1235-1260, 2003. 1,2, 3

Lucas Theis and Matthias Bethge. Generative Image Model-
ing Using Spatial LSTMs. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2015. 2

Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt,
Oriol Vinyals, Alex Graves, et al. Conditional Image Gener-
ation with PixelCNN Decoders. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2016. 1

Aaron Van den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. Pixel Recurrent Neural Networks. In Inter-
national inproceedings on Machine Learning (ICML), 2016.
1,2

3788



