
IKEA Ego 3D Dataset: Understanding furniture assembly actions from
ego-view 3D Point Clouds

Yizhak Ben-Shabat1,2 Jonathan Paul2 Eviatar Segev2 Oren Shrout2 Stephen Gould1

1Australian National University 2Technion, Israel Institute of Technology
sitzikbs@gmail.com, Stephen.Gould@anu.edu.au

https://sitzikbs.github.io/IKEAEgo3D.github.io/

Abstract

We propose a novel dataset for ego-view 3D point cloud
action recognition. While there has been extensive research
on understanding human actions in RGB videos in recent
years, the exploration of its 3D point cloud counterpart
has been relatively limited. Furthermore, RGB ego-view
datasets are rapidly growing, however, 3D point cloud ego-
view datasets are scarce at best. Existing 3D datasets are
limited in several ways, some include actions that are dis-
tinguishable by full-body motion while others use a distant
static sensor that hinders the recognition of small objects.
We introduce a new point cloud action recognition dataset—
the IKEA Ego 3D dataset. It includes sequences of point
clouds captured from an ego-view using a HoloLens 2 de-
vice. The dataset consists of approximately 493k frames and
56 classes of intricate furniture assembly actions of four dif-
ferent furniture types. We evaluate the performance of var-
ious state-of-the-art 3D action recognition methods on the
proposed dataset and show that it is very challenging.

1. Introduction

In this paper, we address the task of action recognition
from ego-view 3D point cloud sequences. We introduce a
novel 3D point cloud dataset of humans performing furni-
ture assembly actions, captured from an ego-view using a
HoloLens 2 device. Our research is driven by the remark-
able proliferation of online media, mobile devices, surveil-
lance cameras, and the emergence of accessible commod-
ity 3D sensors. These technological advancements have
opened up new avenues for the computer vision commu-
nity to explore and develop data-driven action recognition
methods [6, 16]. However, despite these advancements, the
potential of the 3D point cloud modality for action recog-
nition has remained largely untapped. This is primarily due
to the limited availability of annotated 3D action data.

Figure 1. Overview of the IKEA Ego 3D dataset. The dataset
includes 174 assembly sequences captured using a Microsoft
HoloLens 2. The captured RGB and Depth streams are labelled
with 56 action labels per frame. The data is then aligned and
synced to form 3D point cloud sequences that are the input to 3D
action recognition algorithms.

In recent years we have witnessed a surge in head-
mounted virtual, augmented, and mixed reality devices such
as the Apple Vision Pro, Microsoft HoloLens 2 and Meta
Occulus Quest 3. These devices are often equipped with a
suite of sensors that can produce data streams that include
ego-view RGB videos and point cloud sequences (depth).
Most often, the RGB video is processed to provide the user
with an immersive experience. However, in many cases, a
pure RGB video-based inference may not be enough and in-
corporating other modalities like point clouds are required.
This is especially necessary for scenarios where the video is
heavily degraded (e.g., due to poor lighting) or in a safety-
critical application where redundancy is needed.

3D sensors offer an alternative modality through the ac-
quisition of point clouds that sample the environment. De-
spite the extensive body of research on 3D vision and learn-
ing, the size of static 3D point cloud datasets remains signif-
icantly smaller compared to their RGB counterparts. This
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discrepancy arises from the difficulties encountered in col-
lecting and labelling such data. Moreover, the challenges
are compounded when dealing with 3D point cloud se-
quence datasets, further restricting the capacity to derive
meaningful representations for 3D actions. Furthermore,
current 3D point cloud action recognition datasets are cap-
tured from a static camera, circumventing challenges asso-
ciated with camera motion. Consequently, the exploration
of effective methods for learning temporal point cloud rep-
resentations remains an active and ongoing research en-
deavour. This pursuit is motivated by the inherent char-
acteristics of point clouds, which lack structure and order,
and present difficulties such as varying numbers of points.
Particularly challenging is incorporating the temporal infor-
mation into the point cloud representations, as they lack a
one-to-one correspondence of points across time, unlike the
well-defined pixel relationships.

We address these challenges and propose the IKEA Ego
3D dataset for action recognition (see Figure 1). The dataset
includes 3D point cloud sequences captured from a Mi-
crosoft HoloLens 2 and consists of approximately 493k
frames labelled using 56 atomic action classes composed
of (verb, action)-pairs. The proposed dataset provides a
unique addition to the few existing datasets that are avail-
able for this and related tasks. We introduce a benchmark
and conduct extensive experiments to evaluate the perfor-
mance of prominent 3D action recognition state-of-the-art
methods and show that the proposed dataset is a challeng-
ing testbed for future research in the field.

The key contributions of our work are as follows:

• The collection and annotation of the IKEA Ego 3D
dataset which introduces a compelling and intricate
testbed for ego-view point cloud action recognition.

• A hierarchical verb-noun subdivision of actions, al-
lowing to decouple spatio-temporal performance.

• A benchmark for ego-view 3D point cloud action
recognition and evaluation of existing 3D point cloud
action recognition approaches on the proposed dataset.

2. Related Work
Hereafter, we present an overview of existing research in

three relevant fields: 3D action recognition datasets, learn-
ing 3D point cloud representations, and learning temporal
3D point cloud representations.

2.1. 3D action understanding datasets

A comparison between the different datasets discussed
hereafter is presented in Table 1.

The availability of annotated data stands as a signifi-
cant catalyst for the accomplishments observed in learning-
based approaches. In the domain of 3D point cloud action
recognition, standardized datasets tailored explicitly for this

task are scarce and some of the existing datasets are limited
in scale. This poses a constraint on the potential range of
actions that can be effectively learned and recognized. Fur-
thermore, a dataset for ego-view point cloud sequences is
entirely absent in this landscape.
Small scale 3D datasets: Existing datasets include the
CAD 60 and CAD 90 [21,37] datasets which contain 60 and
120 long-term activity videos of 12 and 10 classes respec-
tively (e.g., making cereal, microwave food). This dataset
provides raw RGB, skeletons, and depth data however its
small scale and long-term focus limit its effectiveness.

The MSR-Action3D dataset [24] includes 10 subjects
performing 20 action classes and includes a total of 567
depth map sequences composed of 23K frames, collected
using a Kinect v1 device. The brevity of sequences within
this dataset imposes limitations on evaluating the gener-
alization capability of learning-based approaches. Conse-
quently, utilizing this dataset for evaluation purposes offers
only a restricted indication of overall generalizability.

The DFAUST dataset [4] offers high-resolution 4D scans
capturing human subjects in motion. With 14 action cat-
egories and over 100 dynamic scans of 10 subjects, rep-
resenting a balanced male-to-female ratio, and provides
aligned mesh registrations. It was recently extended to the
task of 3D action recognition [2] however its somewhat syn-
thetic nature and small scale hinder the ability to evaluate
methods’ generalization capability.
Large scale 3D datasets: The NTU RGB+D 120 [25] and
its predecessor the NTU RGB+D 60 [34] provide ∼114K
and ∼56K clips containing 120 and 60 actions classes re-
spectively (e.g., taking a selfie, take off a jacket). They pro-
vide 3D skeletons as well as three different simultaneous
RGB views, depth and IR streams. Although these datasets
can be regarded as large-scale, their focus on human-centric
data introduces a challenge for prior-free approaches, as re-
cent skeleton-based methods [11] have demonstrated excep-
tional performance. Consequently, justifying the adoption
of a prior-free approach becomes increasingly arduous.

The Drive & Act dataset [27] focuses specifically on the
domain of in-car driver activity and encompasses a rich va-
riety of multi-view, multi-modal data, including IR streams,
pose information, depth, and RGB data. While the actors
in the dataset adhere to certain instructions, their actions
do not follow a task-oriented paradigm in the conventional
sense. It is important to note that due to the extensive effort
involved in data collection, the dataset consists of a rela-
tively low number of videos, totalling 30 in count with 9.6M
frames and 83 action classes.

Most closely related to the proposed dataset is the IKEA
ASM dataset [3] that provides 371 videos containing 33 ac-
tion classes and clipped into ∼31K clips. This dataset of-
fers a rich set of modalities, including three simultaneous
RGB views, depth information, 2D and 3D skeletons, as
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Dataset Year #Videos #Frames #cls Activity type Source 3D Ego view
MPII Cooking [32] 2012 44 0.88M 65 cooking collected ✗ ✗
YouCook [10] 2013 88 - - cooking YouTube ✗ ✗
MPII Cooking 2 [33] 2016 273 2.88M 88 cooking collected ✗ ✗
IKEA-FA [39] 2017 101 0.41M 7 assembly collected ✗ ✗
YouCook2 [47] 2018 2000 - 89 cooking YoutTube ✗ ✗
EPIC-Kitchens [9] 2018 432 11.5M 149 cooking collected ✗ ✓
EPIC-Kitchens 100 [8] 2022 700 20M 90K cooking collected ✗ ✓
COIN [38] 2019 ∼ 12K - 180 12 domains YouTube ✗ ✗
IKEA in the Wild (IAW) [43] 2023 1005 - - assembly YouTube ✗ ✗

Drive&Act [27] 2019 30 9.6M 83 driving collected ✓ ✗
NTU RGB+D 60 [34] 2016 ∼ 57.6K 4M 60 Daily actions collected ✓ ✗
NTU RGB+D 120 [25] 2019 ∼ 114K 8M 120 Daily actions collected ✓ ✗
MSR-Action 3D [24] 2010 567 23K 20 gaming collected ✓ ✗
IKEA-ASM [3] 2020 371 3M 33 assembly collected ✓ ✗

Our IKEA Ego 3D 2023 174 493K 56 assembly collected ✓ ✓

Table 1. Dataset comparison. The proposed dataset is the first to have ego-view 3D point cloud data in an assembly context.

well as object segmentation. The dataset poses significant
challenges due to frequent occlusion and the presence of
highly unique assembly poses. Furthermore, the dataset ex-
hibits an inherent class imbalance due to variations in as-
sembly action duration and the potential for multiple rep-
etitions within a single assembly instance. Note that, they
used a static Kinect V2 sensor that is positioned at a dis-
tance from the assembler and therefore small components
(indistinguishable due to resolution) were pre-installed and
do not appear as action classes. This dataset was recently
extended to point cloud action recognition [2].

In this work, we introduce the IKEA Ego 3D, a large-
scale 3D point cloud action recognition dataset that includes
fine-grained furniture assembly actions. Unlike all of the
above 3D datasets, the proposed dataset is captured from an
ego-view which introduces new challenges for this task.
The gap in 3D action recognition datasets. While exist-
ing 3D action recognition datasets differ in size, number
of classes, and activity types, there remain several mutual
gaps. (1) Static vs. dynamic camera — in current datasets,
the camera is static and positioned at one or more fixed
locations. In many real-world scenarios (e.g., AR, smart-
phones), cameras are dynamic and the extension of meth-
ods trained on static data to dynamic data is non-trivial. (2)
Coarse vs. fine actions — in existing datasets, the cam-
era is positioned at a distance from the action. This limits
the focus to coarse actions. For example, NTU RGB+D
[25, 34] focuses on daily actions that include a full body
human, similarly, the IKEA ASM dataset [3] focuses on
assembly actions but had to revert to pre-installing fasten-
ers since they were indistinguishable by the camera (only
1–2 pixels). (3) Wearable device scenario — due to the
fixed set up of the cameras, the collected data is not suitable
for augmented/mixed-reality application use cases. There-

fore, extending existing methods, developed on the existing
datasets, to such scenarios requires further data collection
and model development.

The proposed IKEA Ego 3D dataset uses ego-view that
bridges these gaps. The head-mounted device provides dy-
namic point clouds that are able to capture fine actions due
to the proximity to the sensor. The collected data contains
very little of the surrounding environment which makes it
closer to a wearable-device scenario.
2D action recognition datasets. For the past decade, mul-
tiple 2D action recognition datasets have been either man-
ually collected or scraped from YouTube and annotated.
These datasets have laid the groundwork for significant ad-
vances in the development of action recognition algorithms
from RGB videos. Several datasets focus on cooking-
related actions. These include the MPII Cooking [32] and
MPII Cooking 2 [33] datasets that consist of 44 and 273
videos respectively with a frame count of 0.88M and 2.88M
and include 65 and 88 action classes respectively. Also in
this category are YouCook2 [47] and YouCook [10].

Other datasets focus on furniture assembly-related ac-
tions. These include the IKEA-FA [39] that includes 101
videos consisting of 0.41M frames and 7 action classes.
Also in this category is the recent IKEA in the wild (IAW)
dataset that proposes a new task of image-to-video align-
ment between assembly videos and manual images [43].
Ego-view datasets. In recent years, a tremendous effort has
been made in order to collect ego-view RGB videos for ac-
tion understanding. Notable are the Epic Kitchens [9] and
the Epic Kitchens 100 [8] datasets that include 432 and 700
videos consisting of 11.5M and 20M frames with 149 and
90K action classes respectively. Also notable is the mas-
sive Ego4D [18] dataset that contains 3,670 hours of every-
day activities in hundreds of scenarios. Although previous
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datasets have made attempts to incorporate various modali-
ties, none of them match the nature of the proposed dataset,
which specifically focuses on 3D point cloud sequences.

2.2. Learning 3D point cloud representations

Point clouds pose a challenge for neural networks due to
their unstructured and point-wise unordered nature. To ad-
dress these challenges, several approaches have been pro-
posed. PointNet++ and its predecessor PointNet [29, 30]
uses permutation-invariant operators, such as pointwise
MLPs and pooling layers, to aggregate features across a
point set. Some approaches construct graphs or trees from
the point set to impose structure [20, 35, 40]. Alternatively,
the structure can be imposed using a grid of Gaussians [1]
or voxels [28, 42]. Another alternative avoids the structure
by using Transformers [22,23,45] and their attention mech-
anism. For a comprehensive survey of point cloud architec-
tures please refer to Guo et al. [19].

Recently, various factors that can impact the training of
different architectures have been investigated [17, 31]. This
includes exploring data augmentation strategies and loss
functions that are not specific to a particular architecture.
The results of this study showed that older PointNet-based
architectures [29,30] can perform comparably to newer ar-
chitectures with minor changes.

All of the above methods deal with static, single-frame,
or single-shape point clouds. In this work, the input is
a temporal point cloud where a representation for a short
sequence is required and point correspondence between
frames is unknown. We propose a benchmark for 3D ac-
tion recognition and report the results of PoineNet [29],
PointNet++ [30] and Set Transformer [22] as baselines for
per-frame inference in addition to a temporally smoothed
version of these methods.

2.3. Learning temporal point cloud representations

Temporal point clouds, particularly in the context of ac-
tion recognition, have not received the same level of exten-
sive investigation as their static counterparts. In Meteor-
net [26], a PointNet++ architecture is utilized by incorpo-
rating a temporal dimension appended to the spatial coor-
dinates, enabling the processing of point cloud sequences.
A spatio temporal convolution was proposed in PSTNet
[14, 15] that leverages temporal consistency for action
recognition. Similarly, P4Transformer [12] uses a trans-
former architecture and adopts 4D convolutions to capture
appearance and motion using self-attention. In a subsequent
work, PST-Transformer [13] explore similarities across en-
tire videos, by introducing video-level self-attention that en-
codes spatio-temporal structures. MinkowskiNet [7] first
converts the point cloud into an occupancy grid and then ap-
plies a 4D spatio-temporal CNN. 3DV [41] encodes 3D mo-
tion information from depth videos into a condensed voxel

set. Kinet [46] implicitly encodes feature-level dynamics in
feature space by unrolling the normal solver of ST-surfaces.
Most recently, 3DinAction [2] proposed to extract temporal
patches (t-patches) from the temporal point cloud and em-
ploy a hierarchical architecture based on MLPs to obtain a
spatiotemporal representation. In this paper, we propose a
benchmark for 3D action recognition and report the results
for PSTNet [14], P4Transformer [12] and 3DinAction [2].

3. The IKEA Ego3D dataset
The IKEA Ego 3D dataset and code are publicly avail-

able on the project website for research purposes under
the Creative Commons Attribution-NonCommercial 4.0 In-
ternational License. It includes 174 sequences (∼493K
frames) with 56 ground truth action annotations (per frame
labels). It provides point clouds with RGB color and nor-
mal vectors per point from an ego view. Additionally, we
provide code for loading, processing, training, testing, eval-
uating, and visualizing the data.

3.1. Data collection

Our data collection hardware is a Microsoft HoloLens 2,
a head-mounted mixed-reality device equipped with an ar-
ray of sensors. We used the depth long-throw sensor for
acquiring the depth sequences that will be later processed
into 3D point cloud sequences. It provides a smoothed
point cloud and a wide receptive field at a frame rate of
∼5 frames per second. The sensor itself is positioned a
few centimetres above the eyes next to an RGB camera.
This relative eye-sensor location is not fixed since the de-
vice head-mount is flexible for ergonomic reasons. This
configuration poses a challenge for capturing since the as-
semblers have no indication of the difference between what
they see and what the device is capturing. To mitigate this
we projected a hologram of a thin opaque rectangular out-
line, guiding the person to keep the assembly within the
sensors frustum. We also capture the RGB in a frame rate
of ∼ 30 frames per second. In a post-processing stage we
first sync the RGB frames to the depth frames by match-
ing the nearest time stamps. Then, we project the RGB
onto the depth map to get an RGB-D frame. Finally, in a
post-processing stage we extract orineted 3D point clouds
(x, y, z, R,G,B,Nx, Ny, Nz) using the camera parame-
ters. Note that the RGB receptive field is smaller, therefore
not all points have a corresponding color value.

The IKEA Ego 3D dataset consists of 174 unique as-
semblies of four furniture types (LACK side table, LACK
TV bench, KALLAX drawer, and BEKVAM stool step)
see Figure 2. These furniture types were selected to partly
overlap with the existing IKEA ASM dataset [3] but also
to introduce a new type with a higher level of assembly
complexity and more actions from the IKEA Object State
dataset [36]. Note that in the IKEA ASM dataset, most fas-
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(a) (b) (c) (d)
Figure 2. IKEA Ego3D Furniture. The assemblies in the IKEA
Ego3D dataset include the (a) LACK Side table, (b) LACK TV
bench, (c) KALLAX Drawer, and BEKVAM (d) Stepping stool.

teners were pre-installed, rendering the assembly process
limited to coarser motions. In this dataset, however, fasten-
ers installation is captured.

To collect the dataset we had two experts wear the
HoloLens 2 on their heads while they assemble furniture
in an office environment. The assembly was done on two
different surfaces, a desk, and the floor. The tools and parts
were scattered randomly for each assembly. The assem-
bly was not done in a definitive sequential order, however,
the assembly process is simple and therefore there is some
repetitiveness in the assembly order. In Figure 3 we provide
visualizations of the RGB frame, its corresponding point
cloud, and the performed action. It shows the difference in
lighting, assembly surfaces, tools, and action diversity.

3.2. Data annotations

We manually annotate our dataset using an open-source
video annotation tool (Vidat) [44]. Annotators were asked
to specify the temporal boundaries, i.e., start and end frame,
of all actions in the video from a pre-defined list of atomic
actions. Each atomic action in the action list is composed
of (verb, noun)-pair, where the noun is either an assembly
component or a tool and the verb specifies the manner of
using it. For visualization simplicity, the labelling is per-
formed on the RGB video and then synchronized with the
corresponding point clouds frame.

3.3. Data statistics

Overall, the dataset contains 493568 frames of footage
with an average of 2836.6 frames per video (frames cap-
tured at ∼ 30 FPS for RGB and ∼ 5 for depth) and an
average action duration of 46.2 (with a standard deviation
of 64.4 frames). We captured 52 sequences for the Drawer
assembly, 50 for the Side Table , 43 for the Stool, and 29
for the Coffee Table. The assemblies were done on two
different surfaces - floor and table that include 52 and 122
sequences respectively. Figure 5 shows the distribution of
sequence lengths (a) and action lengths (b) in terms of the
number of frames. The statistics in the context of learning
are presented in Figure 4 which shows the action distribu-
tion in the train and test sets. Each action class contains at
least 100 frames. Due to the nature of the assemblies, there
is a high action imbalance since some actions are longer

and are repeated multiple times in an assembly and others
are short and occur once e.g., spin leg (class 53) repeats
four times when assembling a table and takes much longer
than lay down screwdriver (class 26). Additionally, there
are many unlabeled frames (labelled NA, class 0) since in an
assembly task there are multiple transitions between differ-
ent actions. For a full list of actions see the supplementary.

In addition to the atomic actions, we introduce another
level of hierarchy that subdivides the actions into nouns and
verbs. The verb set captures temporal semantics since dif-
ferent objects are used in a similar manner. These classes
are characterized by geometric differences but temporal
similarities. The verb label set includes 12 classes: align,
attach, flip, insert, lay down, spin, move, pick up, slide,
move, interface, NA. On the other hand, the noun set cap-
tures objects (assembly components or tools). These classes
are characterized by geometric similarities but temporal dif-
ferences. Here, we group similar components under the
same class, e.g., different screw objects are now a single
screw class. The noun set includes 22 classes: coffee ta-
ble shelf, screw, connector, leg, beam, step, back panel, side
panel, stool side, coffee table top, coffee table, stool, ta-
ble top, drawer, cam lock, dowel, drill, screwdriver, bottom
panel, knob, front panel, NA.

3.4. Data split

We aim to enable model training that will generalize to
previously unseen environments (tools and part locations).
We split the data into 121 and 53 sequences in the train
and test sets respectively. We then further subdivide the se-
quences into 32 frame clips yielding 10689 and 4566 clips
in the train and test sets respectively (∼ 340K and ∼144K
frames respectively). The subdivision was made in a way
that maintains diversity so that all action classes are avail-
able in both train and test splits.

3.5. Dataset unique challanges

The proposed dataset provides unique challenges com-
pared to existing counterparts at the data level and on the
class level. First, the ego-view includes camera motion
that, for point clouds, is very challenging since points are
appearing and disappearing within each frame. Addition-
ally, this setup introduces several types of point motion:
(a) action-related motion, (b) noise-related motion, and (c)
camera-related motion. All are difficult to distinguish be-
tween one another. In existing datasets (e.g., IKEA ASM,
NTU), only (a) and (b) point motions are available. Sec-
ond, some classes are very similar to each other. Since our
actions are composed of a verb + noun pair, some nouns
are contextually different but visually similar e.g., screws
of different lengths for different furniture types. The ego-
view plays a key role in enabling the discrimination of such
small components. Conversely, in the IKEA ASM dataset,
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spin screwdriver
(a)

attach side panel
(b)

slide bottom panel
(c)

spin drawer knob
(d)

use drill
(e)

attach stool side
(f)

flip stool
(g)

align top stool step
(h)

Figure 3. IKEA Ego 3D Dataset actions. Visualizing the RGB image (top), 3D point cloud (middle), and action label (bottom) for the
Drawer (a-d) and Stool (e-h) assemblies.

these fasteners were pre-installed since the static camera
was too distant to distinguish such small components. Fi-
nally, the dataset provides many class-level challenges that
include ambiguity in the start and end time of an action
(when does align leg to the table end and spin leg starts?),
and class imbalance due to multi-occurrence actions and ac-
tion duration e.g., spin leg action is very long and repeats
four times in each table assembly while spin drawer knob
is very short and occurs once. All of the aforementioned
challenges make this dataset important for the development
of future 3D point cloud-based action recognition methods.

4. Benchmark and Experiments

We report the performance of prominent 3D action
understanding methods on the proposed IKEA Ego 3D
datasets. The results show that IKEA Ego 3D is a chal-
lenging dataset that sheds new light on the strengths and
weaknesses of existing 3D action recognition methods.

Evaluation metrics. For evaluation, we report several stan-
dard [5] metrics: the top1 and top3 frame-wise accuracy
that are the de facto standard for action classification. We
compute it by summing the number of correctly classified
frames and dividing by the total number of frames in each
video and then averaging over all videos in the test set.
Additionally, since the dataset is imbalanced, we also re-
port the macro-recall by separately computing recall for
each category and then performing averaging (macro). Fi-
nally, we report the mean average precision (mAP) since all
untrimmed videos contain multiple action labels.

Baselines. As a first sanity check baseline we re-
port PointNet [29], PointNet++ [30], and Set Transformer
[22] on each point cloud frame. These methods were
not designed for temporal understanding but provided a
per-point cloud frame global representation. To incor-
porate the temporal information in the most naive way,
we implemented a temporal smoothing version of each
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Figure 4. IKEA Ego 3D dataset action occurrence. A highly imbalanced dataset provides a challenge for learning-based algorithms.
Note the y-axis is log scaled, therefore a small gap in this axis reflects a significant gap in proportions.
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Figure 5. Duration statistics. Sequence (a) and action (b) dura-
tion distributions in the IKEA Ego 3D dataset.

(PoinNet+TS, Pointnet+++TS, and Set Transformer+TS re-
spectively) by learning the weights of a convolutional layer
over the temporal dimension. Temporal smoothing aims
to provide a simple baseline for utilizing temporal infor-
mation in addition to spatial information. As the second
and important baselines, we report current SoTA methods
for 3D action recognition that fuse between the geomet-
ric and temporal information. These include PSTNet [14],
P4Transformer [12], and 3DinAction [2].

4.1. Experiment setup

We specify a unified protocol for all baselines.
Preprocessing. Every point cloud frame contains a vary-
ing number of points. Additionally, the number of points
in each frame can be very large, ranging from tens to hun-
dreds of thousands of points (scene dependent). Therefore,
loading such large sequences is very computationally de-
manding. To alleviate these issues, we first sample 4096
points using farthest point sampling (FPS) for each frame.
We then subdivide the dataset into short clips of 32 frames
and save the data in a compact format (pickle) that can load
a full clip instead of individual point clouds.
Training. We train each baseline for 100 epochs. To miti-
gate the class imbalance, we follow [3] and use a weighted
random sampler where each class is weighted inversely pro-
portional to its abundance in the dataset. We use an effective
batch size of 160 (accumulating 20 batches of size 8) We

utilize an Adam optimizer with an initial learning rate of
10−3 and a learning rate scheduler that reduces the learning
rate by 50% every 25 epochs.

4.2. Benchmark results discussion

The benchmark’s results are reported in Table 2. The
results clearly show that there is a significant boost in per-
formance when incorporating the naive temporal smooth-
ing baselines into all of the reported per-frame approaches.
This strengthens the notion that temporal information is cru-
cial for inferring actions. Furthermore, among the des-
ignated action recognition methods, PSTNet [14] perfor-
mance stands out despite 3DinAction [2] reporting outper-
forming it on other datasets (IKEA ASM and DFAUST).
We attribute this to the limitations of the t-patch construc-
tion method. In our dataset, there are large motions that
do not originate from the action but rather from the head
(sensor) motion. This will cause many t-patches to collapse
despite the bi-directional solution proposed in [2]. Surpris-
ingly, the best-performing method is PointNet++ with tem-
poral smoothing. This result suggests that the global repre-
sentation in the designated 3D action recognition methods
could be improved further.

4.3. Noun and Verb clustering experiment

The goal of this experiment is to decouple the temporal
and spatial representation power of each method. In this ex-
periment, we extend and decompose the above benchmark
by clustering the atomic actions into 12 verb classes and 22
noun classes. We report the top1 accuracy, macro and mAP
metrics. Note that the top3 metric is not valid here because
all of three top predictions may belong to the same clus-
ter. We emphasize that the baselines are not retrained (since
this will likely result in an improvement independent of the
desired decomposition) but rather their results are clustered
according to the hierarchical noun and verb classes to pro-
vide a lower bound.

The results for the noun classes are reported in Ta-
ble 3 and show that, as expected, all methods benefit from
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Method Frame acc.
top 1 top 3 macro mAP

PN [29] 42.97 71.86 21.63 0.2988
PN++ [30] 52.08 78.65 22.83 0.3795
Set Trans. [22] 42.04 70.57 16.13 0.2141
PN [29]+ TS 50.31 76.97 21.17 0.2932
PN++ [30] + TS 52.98 81.22 26.72 0.3984
Set Trans. [22] + TS 44.80 73.30 21.39 0.2944
PSTNet [14] 50.91 76.54 22.87 0.4024
P4Transformer [12] 42.21 66.71 12.33 0.2025
3DinAction [2] 48.71 75.98 19.89 0.3591

Table 2. Action recognition results on IKEA Ego 3D. Compar-
ing between recent state-of-the-art approaches using frame accu-
racy (top1 and top3), macro recall and mAP metrics.

Method Acc. macro mAP
PN [29] 49.08 35.39 0.3343
PN++ [30] 57.33 38.21 0.4811
Set Transformer [22] 45.17 28.12 0.2681
PN [29]+TS 55.34 35.88 0.3510
PN++ [30]+TS 59.08 44.58 0.4707
Set Transformer [22]+ TS 50.06 35.48 0.3442
PSTNet [14] 56.00 37.47 0.4725
P4Transformer [12] 44.34 22.95 0.3333
3DinAction [2] 54.21 35.15 0.4375

Table 3. Noun recognition results. We cluster the action
classes by nouns and report the performance of state-of-the-art ap-
proaches. This experiment demonstrates the spatial quality of the
methods (how well they capture objects).

noun clustering. Additionally, the per-frame methods have
demonstrated a larger boost in performance. This can be
attributed to their ability to obtain a better global geomet-
ric representation since there are no temporal parameters to
optimize. This supports the notion that arose in the bench-
mark that the global geometric representation of designated
3D action recognition methods could be improved further.

The results for the verb classes are reported in Table 4.
The results show that all methods benefit from verb clus-
tering in most metrics. Despite the clustering, these re-
sults are consistent with the atomic action (non-clustered)
benchmark and demonstrate that, as expected, the temporal
information is beneficial for recognizing the verbs. Note
that verbs are inherently more difficult to recognize than
nouns because verbs must accumulate sequence informa-
tion, whereas nouns can be recognized by static frame. The
key takeaway from this experiment is that the temporal
representation power across all method can be further im-
proved compared to its spatial counterpart.

Method Acc. macro mAP
PN [29] 44.67 28.30 0.2874
PN++ [30] 52.71 29.44 0.3777
Set Transformer [22] 42.92 22.43 0.2245
PN [29]+TS 51.64 27.44 0.3106
PN++ [30]+TS 53.66 33.04 0.3683
Set Transformer [22]+ TS 46.81 28.27 0.3263
PSTNet [14] 51.77 29.27 0.4212
P4Transformer [12] 43.08 17.85 0.2414
3DinAction [2] 50.49 26.41 0.3671

Table 4. Verb recognition results. We cluster the action classes
by verbs and report the performance of state-of-the-art approaches.
This experiment demonstrates the temporal quality of the methods
(how well they distinguish motions).

5. Future work and applications
In this paper, we focused on using the IKEA Ego 3D

dataset for the task of 3D action recognition. This dataset,
however, enables many future research directions and real-
world applications. Future research may focus on compar-
ing and fusing between modalities provided in the dataset
(point clouds and RGB). Other directions include, for ex-
ample, focusing on action anticipation and forecasting. For
real-world applications, our dataset can be used in devel-
oping AR human assistive systems for assembly, and in-
structional tasks more generally, that provides online visual
feedback on different assembly tasks in a factory or home
environment, aiding in safe execution of the task and the
prevention of errors.

6. Conclusions
We have introduced a large-scale annotated dataset for

understanding fine-grained human actions from 3D point
clouds captured from an ego viewpoint. Our dataset pro-
vides a challenging testbed for 3D computer vision algo-
rithms, focusing on action recognition when there is sensor
motion in addition to the action movements. Furthermore,
we have reported benchmark results of prominent baseline
methods on the task of 3D action recognition with an in-
sightful verb and noun action decomposition. Through rec-
ognizing human actions, we believe that our dataset will
facilitate an understanding of action temporal and geomet-
rical consistency of human-object interactions and lay the
groundwork for the perceptual understanding required for
lengthy activities in real-world environments.
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