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Abstract

Recently, advances in differential volumetric rendering
enabled significant breakthroughs in the photo-realistic and
fine-detailed reconstruction of complex 3D scenes, which is
key for many virtual reality applications. However, in the
context of augmented reality, one may also wish to effect
semantic manipulations or augmentations of objects within
a scene. To this end, we propose a volumetric framework
for (i) disentangling or separating, the volumetric repre-
sentation of a given foreground object from the background,
and (ii) semantically manipulating the foreground object, as
well as the background. Our framework takes as input a set
of 2D masks specifying the desired foreground object for
training views, together with the associated 2D views and
poses, and produces a foreground-background disentangle-
ment that respects the surrounding illumination, reflections,
and partial occlusions, which can be applied to both train-
ing and novel views. Our method enables the separate con-
trol of pixel color and depth as well as 3D similarity trans-
Sformations of both the foreground and background objects.
We subsequently demonstrate our framework’s applicability
on several downstream manipulation tasks, going beyond
the placement and movement of foreground objects. These
tasks include object camouflage, non-negative 3D object in-
painting, 3D object translation, 3D object inpainting, and
3D text-based object manipulation. The project webpage
is provided in https://sagiebenaim.github.io/
volumetric—disentanglement/.

1. Introduction

The ability to interact with a 3D environment is of fun-
damental importance for many augmented reality (AR) ap-
plication domains such as interactive visualization, enter-
tainment, games, and robotics [28]. Such interactions are
often semantic in nature, capturing specified entities in a
3D scene and manipulating them accordingly. To this end,
we propose a novel framework for the disentanglement and
manipulation of objects in a 3D scene. Given a small set
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of 2D masks delineating the desired foreground object to-
gether with the associated 2D views and poses, and no other
3D information, our method produces a volumetric repre-
sentation of both the foreground object and the background.
Our volumetric representation enables separate control of
pixel color and depth, as well as scale, rotation, and trans-
lation of the foreground object and the background. Us-
ing this disentangled representation, we demonstrate a suite
of downstream manipulation tasks involving both the fore-
ground and background volumes, going beyond previous
work, and including 3D camouflage and 3D semantic text-
based manipulation. Fig. | illustrates our proposed volu-
metric disentanglement and a sampling of the downstream
volumetric manipulations that this disentanglement enables.
We note that while the foreground/background terminology
is useful for painting a mental picture, we wish to empha-
size that the disentanglement is not limited to foreground
objects, and works equally well for objects positioned fur-
ther back (and partially occluded).

Neural Radiance Fields (NeRF) [30] delivered a signif-
icant breakthrough in reconstructing complex 3D scenes
with high fidelity and detail. However, NeRF has no control
over individual semantic objects within a scene. To this end,
ObjectNeRF [56] proposed to represent foreground objects
by rendering rays with masked regions. While ObjectNeRF
learns foreground object representation independently from
the background, our method instead disentangles the fore-
ground from the background using a volumetric composi-
tion. In particular, the foreground object is extracted us-
ing a volumetric “subtraction” of the background from the
full scene. In doing so, our method correctly captures ob-
jects occluded by the background, as well as objects with
noisy and inaccurate masks which may include occluding
objects, which ObjectNeRF does not handle well. Further,
our method is able to reduce the level of required super-
vision. While we require a set of 2D mask annotation for
training views, ObjectNeRF also requires additional 3D in-
formation in the form of 3D bounding boxes to render the
background and edit objects at test time and relies on an
accurate estimation of depth for training.

Given a set of 2D training views and poses of a scene, as
well as masks, specifying the foreground object, our method
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Figure 1. Volumetric disentanglement framework. Our framework disentangles the foreground objects and the background from a full
scene which can then be rendered from novel views (1). Our volumetric disentanglement can then be used for many downstream tasks of
interest to designers and artists in AR applications (2), including 3D object camouflage, non-negative 3D inpainting, 3D object inpainting,

3D object transformation, and 3D text-based semantic manipulation.

first trains a neural radiance field to reconstruct the back-
ground and its associated effects, following a similar pro-
cedure to NeRF [30]. Due to the prior induced through
volumetric rendering, the resulting neural field captures the
background volume that also includes objects appearing be-
hind or occluding the foreground object. By training a neu-
ral radiance field to reconstruct the volume of the entire 3D
scene and the volume of the background separately, the rep-
resentation of the foreground can be computed in a compo-
sitional manner from the two volumes [9] as illustrated in
Fig. 1, without using any other 3D information. We note
that the background and foreground can be rendered from
both training and novel views.

Having disentangled the foreground object from the rest
of the 3D scene, we can now perform a range of downstream
tasks, going beyond the placement and movement of ob-
jects, as shown in [56]. For example, optical-see-through
devices can only add light to the scene, meaning that the
generation must be non-negative with respect to the input
scene [27]. In other cases, one may wish to keep the depth
of the original scene intact [16,41], and only modify the
textures or colors. Our framework enables properties such
as color, depth, and affine transformations of both the fore-
ground object and background to be manipulated separately,
and therefore can handle such manipulation tasks.

Lastly, we consider the ability to semantic manipulate
the foreground. To this end, we consider the recently pro-
posed multi-modal embedding of CLIP [43]. Using CLIP,
we manipulate the foreground object semantically using
text. Recent work such as [29, 46, 49] considered the abil-
ity to manipulate 3D scenes semantically using text. We
demonstrate a similar capability, but one which transcends
to individual objects in our 3D scene, while adhering to the
semantics of the background. We also note that while 2D
counterparts may exist for each of the proposed manipula-
tions, our disentangled volumetric manipulation offers 3D-

consistent semantic manipulation of foreground objects.

2. Related Work

3D Disentanglement We focus on the disentanglement of
semantic and geometric properties in 3D scenes. For a more
comprehensive overview, see [2]. CLIP-NeRF [49] disen-
tangle the shape and appearance of NeRF [30] and, sub-
sequently, uses CLIP [43] to manipulate these properties.
Other works disentangle pose [51, 58], illumination [4,48],
texture and shape [8,20,26,39]. These works are limited to
an entire volumetric scene or object but not to objects within
a scene. Further, they are limited to specific categories on
constrained domains (e.g human parts).

Another line of work considers the disentanglement of
objects in a full 3D scene. [36, 38] consider the generation
of scenes in a compositional manner. In contrast, we disen-
tangle an existing scene into the foreground and background
volumes, while they generate such volumes from scratch. A
subsequent line of works considers the disentanglement of
objects in an existing scene. Several representations can be
used to learn 3D scenes such as point clouds [ 1, 18,47,57],
meshes [13, 17,42, 50], or voxels [0, 44, 53, 55]. How-
ever, work using these representations for disentanglement
[5,23] are typically restricted in topology or resolution or
make strong assumptions about scenes.

Recently, a number of methods proposed to use neural
fields (NeRFs) to represent individual objects in the scene.
[15] use an object library and learn a per object scattering
field which can then be composed together to represent a
scene where the object’s movement, lighting, and reflection
can be controlled. Our method instead decomposes an ex-
isting scene into foreground and background objects, cap-
turing their relations, and subsequently allowing for object-
specific edits. [40] use a scene graph representation to de-
compose dynamic objects, but rely on a dynamic scene as
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input, and are restricted to one class of objects with similar
shapes. [12, 22] consider specific types of semantic cate-
gories, for instance specialized domains s.a traffic scenes.
Unlike these works, our work is not limited to the type of
editable objects in the scene and enables a wider variety of
manipulations including 3D object camouflage and 3D se-
mantic manipulation of individual objects in a scene.

ObjectNeRF [56] is a recently proposed method that uses
an object branch to render rays with masked regions for
foreground objects. Our method differs from ObjectNeRF
in multiple ways: (i). Our method requires input 2D seg-
mentation masks for input training views. ObjectNeRF also
requires 3D bounding boxes for editing foreground objects
in addition to the 2D annotation. Similarly, our method does
not require 3D structure in the form of a voxel grid during
training. (ii). Unlike ObjectNeRF, our method correctly
captures objects with noisy and inaccurate masks and ob-
jects occluded by the background. (iii). Our method relies
on ground truth RGB images for existing views for our loss
objectives, and does not require an occlusion loss which re-
quires an accurate estimate of the scene’s depth of existing
and novel views. (iv). Lastly, our method goes beyond the
editing of objects’ movement and placement and enables
zero-shot manipulations (does not require any 3D or 2D
training data) such as 3D object camouflage, and 3D text-
based semantic manipulation of individual objects.

Recently, [21] proposed a disentanglement framework
for neural fields using text or image patches. While it en-
ables the disentanglement of coarse concepts based on text
or image patch, it does not allow for the fine-grained con-
trol which a mask can provide in selecting the object to be
disentangled. Further, our approach offers a lighter indi-
rect object representation in the form of masks whereas [21]
uses CNN-based features per pixel instead.

Recent work has also considered the disentanglement of
3D objects from a neural radiance field using 2D masks [25,

,33,52,54]. Our method enables a richer set of appli-
cations including 3D object camouflage, 3D non-negative
inpainting, and 3D semantic manipulation.
3D Manipulation Our framework enables the manipula-
tion of localized regions in a scene. While 2D counterparts,
such as 2D inpainting approaches exist [10, 1 1, 14,59], they
cannot generate 3D consistent manipulations. One set of
approaches consider editing the entire scene. [7] consid-
ers texture and shape manipulation of 3D meshes. CLIP-
Forge [45] generates objects matching a text prompt using
CLIP embeddings. Text2Mesh [29] manipulate the texture
or style of an object. DreamFields [19] learn a neural ra-
diance field representing 3D objects. Unlike these works,
our work is concerned with manipulating a local region in
an existing scene. [20] and [26] modify the shape and color
code of objects using coarse 2D user scribbles, but require a
curated dataset of objects under different colors and views,
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Figure 2. Overview of our disentanglement framework. First,
we learn a volumetric representation of the background and full
scene (Sec. 3.1). Second, by subtracting the full and the back-
ground volumes, we obtain a disentangled foreground volume.
Third, we perform a wide range of manipulations on this volume,
which adhere to the background volume. This is illustrated here
by changing the color of the cube from blue to red. Finally, we can
place the foreground object back into the original scene by adding
it volumetrically to the background scene.

and are limited to synthetic objects.

3. Method

Given a 3D scene, we wish to disentangle semantic ob-
jects from the rest of the scene. First, we describe the 3D
volumetric representation used to disentangle objects and
control objects separately (Sec. 3.1). The disentanglement
of foreground and background volumes opens a wide range
of downstream applications. We provide a framework that
explores some of these applications by manipulating ob-
jects in a semantic manner (Sec. 3.2). An illustration of our
framework is provided in Fig. 2. Additional training and
implementation details are provided in the supplementary.

3.1. Disentangled Object Representation

The ability to disentangle the foreground object volu-
metrically from the background requires a volumetric rep-
resentation that correctly handles multiple challenges: (i).
Foreground occluding objects, which may be covered by a
foreground mask, should not be included in the foreground
volume, (ii). Regions occluded by the foreground object
should be visible in the background volume, (iii). [llumina-
tion and reflectance effects, affecting the foreground object
in the full scene volume, should affect the now unoccluded
regions of the background in a natural way. To this end, we
build upon the representation of neural radiance fields [30].
Neural Radiance Fields. A neural radiance field [30]
is a continuous function f whose input is a 3D position
p = (z,y,2) € R3 along with a viewing direction d =
(0,¢6) € S?, indicating a position along a camera ray.
The output of f is an RGB color ¢ € R? and volume
density « € RT. We first apply a frequency-based en-
coding ~y to correctly capture high-frequency details using
7 (p) = [cos (2rBp) ,sin (27Bp)]", where B € R"*3 is a
randomly drawn Gaussian matrix whose entries are drawn
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from A (0, 0%), where o is a hyperparameter. f is then pa-
rameterized as an MLP fy whose input is (y(p),y(d)) and
output is c and o.

Object Representation. Given camera extrinsics £, we as-
sume a set {(ck, o)} ¥ | of color and volume density values
predicted by fy for N randomly chosen points along cam-
era ray r. A rendering operator then maps these values to
an RGB color ¢, as Y, wi - ¢i. where:

)

wi=T[0 -7

j=1

T} = 1—exp(o)-d7) (1)

where o and T? are the alpha and transmittance values for
point i along ray r and §7 = 1 — % is the distance be-
tween adjacent samples. For training, we assume a set of
posed views {x'}M together with their associated fore-
ground object masks {m;}*,. We set {z'}M, to be the
corresponding colors to {z*} | as predicted by Egq. (1). To
train the background (resp. full) volume, we minimize the
masked (resp. unmasked) reconstruction loss between real
and estimated views:

M
Log =Y _[l(1=m;) o (=" —&")|]3 )
=1
M . .
Lyar =Y |la" = 2'I3 3)

i=1
We note that Ly, is sufficient to obtain a background repre-
sentation. However, inspired by SPIn-NeRF [33], one can
obtain a higher-quality background representation. In par-
ticular, we first inpaint each of the training views and their
associated depths (obtained by training NeRF) in the region
provided by the input masks, using an off-the-shelf 2D in-
painting method, which may generate inconsistencies. We
then train our background NeRF representation using (1).
Ly, which is modified to use a perceptual loss (LPIPS) in-
stead of MSE loss. (2). A standard reconstruction loss (fol-
lowing volumetric rendering) using both the inpainted RGB
and depth views.

Let w;; and ¢ be the value of w! and ¢/ in Eq. (1)
predicted for the background volume and similarly let wj{ul .

and ¢, be the value of w}. and ¢k in Eq. (1) predicted for
the full volume. A natural representation of the foreground
can then be found using the volume mixing principle [9]:

N

Crg = Z w}rg . cj{g, where 4)
i=1

w;g = w?ﬁll - wlzzg C?:q = C}’w - CZ}';

€'y, 1s the foreground volume color at the pixel correspond-

ing to ray r. This can be used to render the color of the
foreground object for all pixels across different views.

Object Controls.  We note that camera parameters, as
well as chosen poses, rays, and sampled points along the
rays, are chosen to be identical for both the full volume
and the background volume, and hence also identical to the
foreground volume. Given this canonical setting, the corre-
sponding points along the rays for both the foreground and
background can be easily found.

Due to the above-mentioned correspondence, one can in-
dependently modify w,’ and cs,% to get wh " and g
for the foreground volume as well as wy,*" and cpq"" to get
wy, gir and ¢} gir for the background volume. In order to re-
combine the modified background with the modified fore-
ground, we note that every 3D point along the ray should
only be colored, either according to the background volume
or according to the foreground volumes, but not by both, as
they are disentangled. We can then recombine the modified
foreground and background:

N .

r /i /i A S

¢ :Zwbg "Gy T Wrg o - Cpg o)
=1

" is the recombined color of the pixel corresponding to ray
r. In our experiments, we only modify the foreground and

!/ lr

— % /e %
SO wbg = Wpg ", Cbg = Cpg "

3.2. Object Manipulation

Given the ability to control the foreground and back-
ground volumes separately, we now propose a set of down-
stream manipulation tasks that emerge from our disentan-
gled representation. As noted in Sec. 3.1, we can now con-
trol the weights, colors as well as translation parameters
separately for the foreground and background volumes and
so introduce a set of manipulation tasks that use the con-
trols. We note that the task of Object Removal is equivalent
to displaying the background.

Object Transformation. Due to the alignment of cam-
era parameters and chosen poses, rays, and sampled points
along the rays, one can apply a transformation on the back-
ground and foreground volumes separately, before recom-
bining the volumes together. For either the foreground or
the background, and for a transformation 7', we evaluate
the color and weight of point p using fp at position 7~ (p)
and then recombine the volumes together using Eq. (5).

Object Camouflage. Here we wish to change the texture
of the foreground 3D object such that it is difficult to de-
tect from its background [16,41]. Such an ability can be
useful in the context of diminished reality [34]. To do so,
we fix the depth of the foreground object while manipu-
lating its texture. As the depth of the foreground is de-
rived from wy,'r, we fix w’,"" = w," and only opti-
mize ¢ '". We follow Eq. (5), in compositing the fore-
ground and background volumes. Let the resulting output
for each view i be #7, and let #}, be the corresponding
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output for the background volume. We optimize a neu-
ral radiance field for foreground colors c’f g“ to minimize

Leamoufiage = Soimy |34 — @},]3. As depth is fixed, only
the foreground object colors are changed to match the back-
ground volume as closely.

Non-negative 3D Inpainting. Next, we consider the setting
of non-negative image generation [27]. We are interested in
performing non-negative changes to views of the full scene
so as to most closely resemble the background. This con-
straint is imposed in optical-see-through devices that can
only add light onto an image. In this case, we learn a resid-

. Ai . . .
ual volume to render views 27, 7...; s in Eq. (1) to mini-

mize »an?nfnegative = Zi:l ||‘%}ull + ‘%:'esidual - ‘%ng%
where &%, are rendered views of the full scene as in
Eq. (3). That is, we learn a residual volume whose views are
2 i duar» Such that when added to the full volume views,
most closely resemble the background.

Semantic Manipulation. Next, we consider a mechanism
for the semantic manipulation of the foreground. We con-
sider the recently proposed model of CLIP [43], which can
be used to embed an image I and text prompt ¢ (or im-
age I), and to subsequently compare the cosine similarity
of the embeddings. Let this operation be sim([,t) (resp.
sim(1, I)), where a value of 1 indicates perceptually sim-
ilar text (resp. image) and image. Let &% be the result of
applying Eq. (5), while fixing the background colors and
weights as well as the foreground weights. That is, we only
optimize the foreground colors c’f gz". For a user-specified
target text ¢, we consider the objective:

M

> 1= sim (&L O m; + &h, © (1 —m,),t) (6)

=1

+1— sim (&L © m; —|—:%§,g o1 - mi)jig © (1 —my))
(7

+Ee © (1 —mi) = &h, © (1 —my)|l3 ®)

While only the colors of the foreground volume can be ma-
nipulated, we enforce that such changes only occur within
the localized masked region of the foreground, and so take
the background from the fixed background volume. To do
so, instead of applying clip similarity directly with 2%, we
apply it with #%, © m; + 2}, © (1 — m;). Therefore, CLIP’s
similarity can only be improved by making local changes
that occur within the masked region of the foreground ob-
ject, but can ’see’ the background and foreground for con-
text. We enforce the generated volume views are similar to
both the target text (Eq. (6)) and the background (Eq. (7)).
To further enforce that no changes are made to the back-
ground, we constrain the background of the combined vol-
ume views to match those of the background using Eq. (8).

4. Experiments

We divide the experiments into two parts. First, we con-
sider the ability to disentangle the foreground and back-
ground volumes from the rest of the scene. Second, we
demonstrate some of the many manipulation tasks this dis-
entanglement enables, as described in Sec. 3.2. Corre-
sponding and additional 3D scenes from novel views are
provided on the project webpage. All comparisons to base-
lines are made with the same set of input views and masks.

4.1. Object Disentanglement

Fig. 3 shows novel views from different scenes of the
LLFF dataset [3 1], where we separate the full scene, back-
ground, and foreground in a volumetrically and semanti-
cally consistent manner. As these are novel views, no fore-
ground object mask is used. In the supplementary, we pro-
vide examples of training views and associated masks for
the provided scenes. We compare our method to Object-
NeRF [56]. Note that ObjectNeRF requires 3D bounding
boxes to extract the background volume which we do not
use. Hence, we consider only the extracted foreground by
ObjectNeRF. As can be seen, ObjectNeRF’s extracted fore-
ground object captures much of the background. This is vis-
ible for the tree trunk example. We note that extracted ob-
ject representation captures the pixels commonly masked by
all training masks, and hence for the orchids (second row),
only some of the petals are shown. As a further comparison
we consider a neural field trained to reconstruct only the
masked region. Due to noisy masks, shown in the supple-
mentary, this results in a noisy result which captures much
of the background.

Fig. 4 depicts the consistency of the removal of a leaf,
a T-rex, and a whiteboard for two different novel views.
The background neural radiance field makes plausible pre-
dictions of the background scene via multi-view geometry
and the inductive bias introduced by the positional encoding
and the neural radiance field. E.g. the background behind
the leaf or the legs of the T-rex might be occluded by the 2D
mask from one view, but visible from another. However, the
background behind the whiteboard is occluded from every
angle. Nevertheless, the background neural radiance field
makes a plausible prediction of the background. Further,
our model can handle the disentanglement of non-planar ob-
jects, such as the T-rex, well.

In the 2D domain, as far as we can ascertain, the clos-
est 2D task to object disentanglement is that of object in-
painting. We consider two prominent baselines of DeepFill-
v2 [59] and EdgeConnect [35] for this task and compare our
method on the scenes of leaves and whiteboard removal as
in Fig. 4. We train the baseline on the same training images
and their associated masks. In order to compare our method
on the same novel views, we train a NeRF [30] on the result-
ing outputs, resulting in a scene with the same novel views
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Object Removal Object Extraction Semantic Object Manipulation

Ours DeepFill-v2 [59] EdgeConnect [35] Ours ObjectNeRF [56] Ours GLIDE [37] Blended [3]
Q1 3.86 2.44 2.37 3.87 2.85 3.85 1.10 1.26
Q2 3.84 1.52 1.86 391 2.62 3.78 1.20 1.26

Table 1. User study. We consider Object Removal, Extraction, and 3D Semantic Manipulation and use a MOS score (1-5).

Full Background Foreground [56] Foreground Training

Figure 3. Two rendered novel views of the full scene, background, and foreground. Note that as the TV screen is black, the foreground
object appears black as well. We also show the result of directly training a neural field on the masked foreground object itself (foreground
training). As some masks are noisy and may include much of the background, this results in a very noisy result which also include much
of the background. While no 2D mask annotation is given for novel views, corresponding masks for training views are provided in the

supplementary.

Figure 4. Two uniformly sampled novel views of the full and the background volumes. The removed object is visually enhanced by a
2D mask for illustration purposes (2D mask annotation is not given for novel views).

; .- 

Full Background Foreground New Scene

Figure 5. Foreground object transformation. Our method
makes plausible predictions in occluded regions (behind the TV).
Scaling the foreground and placing it back into the scene results in
photo-realistic and view consistent scene.

as ours. Unlike our method, the results have 3D inconsis-
tencies, artifacts, and flickering between views. The visual
comparison is provided on the project webpage.

To assess our method numerically, we first conduct a user
study and ask users to rate from a scale of 1 — 5: (Q1)
“How well was the object removed/extracted?” and (Q2)
“How realistic is the resulting object/scene?” We consider

Figure 6. Foreground rotation and translation. 30° rotations
(top) or translations of 0.4 (bottom) along the x (left), y (middle),
and z (right) axes.

25 users and mean opinion scores are shown in Tab. 1. For
object extraction we consider ObjectNeRF [56] and con-
sider the scenes in Fig. 3, For object removal, we consider
2D baselines of DeepFill-v2 [59], EdgeConnect [35], as de-
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Figure 7. Object camouflage for two different novel views of a fortress scene. (a) original scene, (b) background scene, (c) disparity
map of the background scene, (d) camouflaged scene, (e) disparity map of the camouflaged scene.

(a) (b) () (d)

Figure 8. Non-negative object inpainting for two novel views
for a scene of leaves. Given the full scene (a), a residual scene is
added (b) resulting in scene (c), with the aim of being close to the
background without the leaf (d).

tailed above, and consider the leaves and whiteboard scenes
as in Fig. 4. As no 3D bounding box is provided, we did not
consider ObjectNeRF [56] for object removal. Second, we
consider the dataset introduced by [33] which uses human-
annotated object masks. Our method is comparable to SPIn-
NeRF and superior to other 3D-based inpainting methods of
NeRF-In [25] and Object-NeRF: We get an LPIPS/FID of
0.4623/158.24 vs SPIn-NeRF’s 0.4654/156.64, NeRF-In’s
0.4884/183.23 and Object-NeRF’s 0.6829/271.80.

4.2. Object Manipulation

Foreground Transformation. We consider the ability to
scale the foreground object and place the rescaled object
back into the scene by changing the focal length used to
generate the rays of the foreground object, and then vol-
umetrically adding it back into our background volume.
Fig. 5 shows an example novel view where the disentan-
gled TV is twice as large. Fig. 5 highlights that the network
is able to “hallucinate” how a plausible background looks in
regions occluded across all views (e.g. behind the TV). In
Fig. 6, we consider various rotations and translations for the
flower object. While our method can handle some transfor-
mations, very large transformations are not handled well.
Object Camouflage. Another manipulation is of camou-
flaging an object [16,41], i.e. only changing the texture of
the object and not its shape. Fig. 7 illustrates an example
novel view of camouflaging with fixed depth, but free tex-
ture changes. While the depth of the camouflaged object
and that of the foreground object match, the appearance is
that of the background.

Non-Negative Inpainting. In optical see-through AR, one
might also wish to camouflage objects [27] or inpaint them.
However, in see-through AR one can only add light. Fig. 8
shows how adding light can make the appearance of cam-

ouflage in a 3D consistent manner for novel views.

3D Object Manipulation. Fig. 9 shows an example of
a manipulated fern scene. We disentangled both the win-
dow mullion in the upper left corner and the tree trunk from
the rest of the scene. Although the window mullion is oc-
cluded in the first view, and thus our 2D mask is masking
the occluding leaf in front of the window mullion, this oc-
cluding object is not part of the disentangled window mul-
lion object, demonstrating the advantage of our volumetric
“subtraction” approach. This is because the extracted ob-
ject representation captures the pixels commonly masked
by all training masks. The 3D manipulations are shown
in (c)-(e) in Fig. 9 for a novel view. See the project web-
page for additional views. For the strawberry manipulation
in (e), note how part of the tree trunk was camouflaged to
more closely resemble the shape of a strawberry. We com-
pare to 2D text-based inpainting methods of GLIDE [37]
and Blended Diffusion [3], where we follow the same pro-
cedure as in Sec. 4.1. We consider a similar user study as
detailed in Sec. 4.1, where Q1 is modified to: “How well
was the object semantically manipulated according to the
target text prompt?” and consider the fern scene of Fig. 9,
for the text prompts of “strawberry” and “old tree”. We
compare to CLIP-NeRF and [2 1] on the scenes depicted in
Fig. 9 (and project webpage). We measure CLIP similarity
of test views to the input text: Our method achieved a clip-
similarity of 0.126 vs CLIP-NeRF’s 0.34 and [21]’s 0.31.

4.3. Mask Supervision and Limitations

Noisy masks. Our work can handle noisy masks, which
may also include occluding objects and may cover regions
outside of the foreground object, as shown in the supple-
mentary. For instance, for the leaves scene, masks were
extracted using an off-the-shelf segmentation algorithm and
contain significant noise from the background. The number
of noisy masks used in training (see supplementary for ex-
amples) is: leaf: 11 of 26 (42%), orchids: 20 of 25 (42%),
TV: 10 of 41 (24%), T-rex: 35 of 55 (64%).

Automatic Annotation. While masks allow for fine-
grained control, training masks can be generated automati-
cally using either (1). off-the-shelf background-foreground
separation tools, as is done for the leaf, orchids, TV, and
T-rex scenes (Fig. 3, row 2 and 4, Fig. 4 LHS, Figs. 5-
8 and project webpage), or (2). text-based segmentation

8673



() (d) (e

Figure 9. 3D semantic object manipulation. Insets of the disentangled (a) window mullion and manipulated (c)-(e) tree trunk in the
original scene (b). The window mullion is removed without removing the leaf that occludes it. Masks for training views also mask the
occluding tree leaf. The text to manipulate the trunks is (c) Old tree, (d) Aspen tree, and (e) Strawberry.

tools, such as CLIP-LSeg [24]. To illustrate this, for the
TV and leaf scenes, we run CLIP-LSeg using the text “tv”
and “red flower” respectively, producing training masks on
which our method is applied. Fig. 10 depicts an example
novel view of the background, in comparison to standard
mask annotation, and an example training mask generated.

Full Bg-Standard  Bg-Text

Example Mask

Figure 10. Text-based object removal. Removal of the flower
and TV screen using masks generated automatically using CLIP-
Lseg (Bg-Text) in comparison to standard masks (Bg-Standard).
On the RHS, an example training mask is shown.

Limitations. When light from the background affects the
foreground object, we correctly disentangle the illumina-
tions on the object. However, when the object is a light
source, we cannot completely disentangle the object as seen

n=5 n=10 +Vol Constraint
Figure 11. Ablation. Varying the number of masks (n) used (1, 5,
10, or all) for the removal of the leaf. Bottom RHS: Adding the

volumetric constraint as described in the Sec. 4.3.

in the supplementary. Another limitation is with respect
to semantic manipulation. We found that manipulating too
large objects results in an under-constrained optimization
because the signal provided by CLIP is not sufficient.

5. Ablation Study

In the supplementary, we consider, for the task of fore-

ground object translation (Fig. 5), alternatives to the recom-
bining method of Eq. (5). As a further ablation, we consider
whether direct volume constraints improve our background
scene reconstruction. More specifically, we reconstructed
the full leaf scene and marked visible but empty regions of
space, according to the predicted density of sampled points.
For the background, we then added an additional constraint
penalizing adding density to these regions. We find that
such a constraint does not improve the result (Fig. 11). We
hypothesize that our 2D background reconstruction loss al-
ready penalizes these regions.
Number of masks. Manual annotation can be used when
exact and fine-grained control is desired. Here, the number
of views to be manually annotated is minimal. To illustrate
this, for the leaf scene, we varied the number of masks (n)
used (1, 5, 10, or all). We randomly selected n training
masks on which we trained a NeRF to provide masks for
other training views, which were then used in our method.
As seen in Fig. 11, only little or no noise is introduced.

6. Conclusion

We presented a framework for the volumetric disentan-
glement of foreground objects from a background scene.
The disentangled foreground object is obtained by volu-
metrically subtracting a learned volume representation of
the background with one from the entire scene. We estab-
lished that our disentanglement facilitates separate control
of color, depth, and transformations for both the foreground
and background objects. This enables a wide range of ap-
plications going beyond object movement and placement,
of which we have demonstrated those of object camouflage,
non-negative generation, and object manipulation.
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