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Abstract

Thermal multispectral imagery is imperative for a
plethora of environmental applications. Unfortunately,
there are no publicly-available datasets of thermal multi-
spectral images with a high spatial resolution that would
enable the development of algorithms and systems in this
field. However, image-to-image (I2I) translation could be
used to artificially synthesize such data by transforming
largely-available datasets of other visual modalities. In
most cases, pairs of content-wise-aligned input-target im-
ages are not available, making it harder to train and con-
verge to a satisfying solution. Nevertheless, some data do-
mains, and particularly the thermal domain, have unique
properties that tie the input to the output that could help mit-
igate those weaknesses. We propose PETIT-GAN, a phys-
ically enhanced thermal image-translating generative ad-
versarial network to transform between different thermal
modalities - a step toward synthesizing a complete thermal
multispectral dataset. Our novel approach embeds physi-
cally modeled prior information in an UI2I translation to
produce outputs with greater fidelity to the target modality.
We further show that our solution outperforms the current
state-of-the-art architectures at thermal UI2I translation by
approximately 50% with respect to the standard perceptual
metrics, and enjoys a more robust training procedure. The
code and data used for the development and analysis of our
method are publicly available and can be accessed through
our project’s website: https://bermanz.github.io/PETIT

1. Introduction

The emergence of nanosatellites has revolutionized the
field of remote sensing, allowing to acquire ground images
with higher spatial resolution and at lower costs. Many
sensing systems involving nanosatellites are focused at the
visible and near infrared spectrum (between 380-1400 nm)

- MISC [11] (between 380-700), Charybdis [18] (between
412-870 nm) and SuperDOVE [30] (between 431-885 nm)
to name a few. However, very little to no attention was given
to the longwave-infrared (LWIR) spectrum (7000 - 14000
nm), a.k.a., the thermal spectrum, which plays a crucial role
in various environmental aspects, such as climate and water
monitoring, fires prediction, etc. Identifying such phenom-
ena requires thermal multispectral imaging, i.e., a collec-
tion of several image layers of the same scene where each
layer is acquired at a particular wavelength band belong-
ing to the thermal spectrum. Unfortunately, while panchro-
matic (wide-band) thermal images were relatively easy to
obtain, no off-the-shelf high-resolution thermal multispec-
tral images were available to develop proofs of concepts
for those applications. To tackle this deficiency, we used a
light-plane, a thermal camera and a set of infrared bandpass
filters to collect and assemble an aerial thermal multispec-
tral images dataset. Due to inherent setup limitations, the
amount of collected images per spectral channel was lim-
ited. Moreover, images of different wavelengths were not
spatially registered, which is essential for a complete multi-
spectral dataset. To overcome both the sample size and reg-
istration issues, we developed an unpaired image to image
translation algorithm to transform the relatively abundant
panchromatic images into pixel-wise-aligned multispectral
images.

Image to image (I2I) translation is the task of transform-
ing the style of an image to that of a different domain while
preserving its content. Many methods have been developed
to tackle this task, utilizing various deep neural architec-
tures such as auto-encoders [36], generative adversarial net-
works (GANs) [23, 37, 39], diffusion models [25, 26] and
more. Those methods have countless applications and are
being used for numerous purposes, such as synthetic dataset
generation for learning tasks in fields such as autonomous
cars [1,3], medical imaging [2,29], etc. In most cases, as in
our problem, there are no pairs of content-equivalent images
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in the input and output domains. The I2I transformation
in those cases is termed unpaired. As the unpaired image-
to-image (UI2I) translation task is unsupervised and highly
ill-posed, those models are usually very hard to train.

In contrast to other visual domains, thermal imaging has
unique underlying physical properties that are shared across
all thermal modalities. These properties enable the design
of closed-form transformations between panchromatic and
multispectral images. In turn, those transformations can be
embedded in deep UI2I architectures to improve their sta-
tistical performance and robustness.

To test this novel hypothesis, we first train two differ-
ent state-of-the-art (SOTA) GANs to perform thermal UI2I
translation to establish a baseline. We then provide the
generators with an additional physical property of the ac-
quired images, allowing the GANs generator’s output to be
conditioned on that property. Finally, we design a phys-
ical estimator and fuse it with the generator, resulting in
our proposed method, named a physically enhanced ther-
mal image-translating (PETIT) GAN.

Statistical analysis showed that our solution achieves an
improvement of approximately 50% compared to the SOTA
GANs w.r.t. the conventional evaluation metrics. Further-
more, our method exhibits a more robust training proce-
dure, possibly indicating convergence to flatter minima.
These improvements are further demonstrated qualitatively
through our method’s greater visual fidelity to the desired
target domain.

Our paper’s contribution is three-fold: (1) Application
of UI2I between different thermal image modalities; (2)
Development and utilization of an analytic-physical-UI2I
translation model; (3) Introduction of a novel thermal aerial
images dataset with unpaired images of different spectral
bands.

2. Related work
GAN is a class of deep generative models, first intro-

duced by Goodfellow et al. [6]. Many improvements and
extensions have been made in the field of GANs in the last
few years, and many of these form the underlying princi-
ples and architecture of numerous SOTA models in several
generative tasks. GANs are typically made up of two com-
ponents: (1) a generator, which samples random vectors
from some predefined probability density function as inputs
and transforms them into meaningful outputs of some target
modality; (2) a discriminator, which has access to both real
images from the target modality and the generator’s out-
puts, and needs to tell them apart. The generator and dis-
criminator are trained in an adversarial fashion where one’s
improvement comes at the expense of the other’s. If suc-
cessful, the training procedure converges when the genera-
tor and discriminator reach a Nash equilibrium [6].

Among the various tasks performed by GANs is I2I

translation, where the output is conditioned on an input im-
age. I2I translation has a plethora of applications, such as
image segmentation [17, 31], pose estimation [4, 16], col-
orization [10, 27, 34], super resolution [33, 35] and many
more. The I2I translation task can be roughly classified
into supervised I2I (paired I2I), where each image in the
input domain has a content-aligned equivalent in the output
domain, and unsupervised I2I (UI2I), where there are no
content-equivalent pairs in the input and output domains.
Most practical I2I tasks are performed in an unsupervised
fashion, as fully registered pairs of images in two different
modalities are extremely difficult to obtain.

The great challenge in UI2I translation is that no ground
truth is available as a reference for the transformed output.
Thus, in contrast to paired I2I, pixel-level loss cannot be
used to steer the training toward a better content-preserving
solution. Therefore, content preservation of the transforma-
tion must be enforced by an alternative mechanism. The
most popular strategy to ensure content preservation is to
use cycle consistency [15]. This approach relies on two
translators: one from domain A to domain B (GA→B), and
one in the opposite direction (GB→A). In addition to the
standard adversarial loss, a cycle-consistency loss is used to
penalize for discrepancies between input xA and its recon-
struction by the roundtrip transformation from A to B and
then back to A:

Lcyc = L (xA, GB→A (GA→B(xA))) (1)

CycleGAN [39], along with DiscoGAN [13] and Dual-
GAN [32], additionally impose cycle consistency over im-
ages originating in domain B, resulting in two simultaneous
cyclic losses.

While successfully eliminating the need for ground truth,
cycle consistency inherently encourages the transformation
to encode information about the input that serves solely for
the purpose of cyclic reconstruction. This encoded infor-
mation comes at the expense of fidelity to the target modal-
ity, which is clearly undesirable. In an attempt to eliminate
the need for cycle consistency, several approaches have im-
plemented a one-sided translation that manages to preserve
content in a different fashion. Typically, this is done by em-
bedding both input and target in some shared style-agnostic
space. The geometric distance between the embeddings
is treated as a measure of content discrepancy, and then
minimized to improve content preservation. Fu et al. [5]
encouraged preservation of the geometric relationship be-
tween an input and its geometrically transformed versions
and their outputs. Both F-LSeSim [38] and contrastive un-
paired translation (CUT) [23] used contrastive representa-
tion learning by maximizing the similarity between pairs of
corresponding patches in the input and output, and mini-
mizing it for non-matching patches.
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3. Proposed method
Toward synthesizing a multispectral dataset, we show-

case the UI2I transformation between a panchromatic
modality, i.e., a wide-band thermal image, and a single
monochromatic modality, i.e., a narrow-band thermal im-
age. More concretely, we transform images with a band-
width of 7 − 14µm to images with a central wavelength of
9µm and a full width at half maximum (FWHM) of 0.5µm.
For ease of notation, we will use the subscripts pan to de-
scribe panchromatic data, and mono for monochromatic.
This concept could be easily extended to synthesize a com-
plete multispectral dataset by applying it repeatedly for dis-
joint sub-bands of the thermal spectrum to full coverage.

3.1. Physical estimator

3.1.1 Background

Black-body radiation is the thermal electro-magnetic signal
that is emitted by an ideal opaque object due to its tempera-
ture. Planck’s law of black-body radiation states that:

Bλ(T ) =
2πhc2

λ5

1

e
hc

λkT − 1

[
Wsr−1m−2µm−1

]
(2)

where Bλ(T ) is the ideal object’s spectral radiance density,
h is Planck’s constant, c is the speed of light in a vacuum,
k is the Boltzmann constant, λ is the electromagnetic wave-
length and T is the object’s absolute temperature [14]. The
Stefan-Boltzmann law [28] ties the power radiated from an
object (which is the result of integrating Bλ(T ) over the en-
tire spectrum of wavelengths from zero to infinity) to the
object’s temperature:

P (T ) =

∫ ∞

0

Bλ(T )dλ =
σ

π
T 4

[
Wsr−1m−2

]
(3)

where P is the radiated power and σ is the Stephan-
Boltzmann constant.

A real-world opaque object emits less power than an
ideal black body at the same temperature. The ratio be-
tween the radiation emission of an object and that of an
ideal blackbody at the same temperature is called emissiv-
ity. The emissivity is a function of various a-priori unpre-
dictable characteristics of the object, such as material type,
surface structure, viewing angle, etc. Thus, the Stephan-
Boltzmann law for practical objects is given by:

P (T ) =
σ

π
ϵT 4

[
Wsr−1m−2

]
(4)

where ϵ is the object’s emissivity. In general, the emissivity
is a function of the wavelength [12], but it is used here as
a constant that reflects its expected value over the thermal
bandwidth for simplification.

According to [14], when acquired by a thermal mi-
crobolometric camera with a finite bandwidth, the incident

power on the microbolometer (the thermal camera’s sensor)
can be described by:

ϕ(T ) = γFpanϵT
4

[
Wsr−1m−2

]
(5)

where ϕ is the incident power on the microbolometer, γ is
a constant governed by the camera’s geometrical properties
and Fpan represents the fraction of power that is within the
camera’s bandwidth. When applying an IR bandpass filter
over the camera lens, equation 5 still holds except that Fpan

is replaced by Fmono , reflecting the fraction of power that is
strictly within the bandpass region of the applied filter [14].

Since γ, Fpan , ϵ are all constants, they can be reduced
into a single coefficient:

ϕ(T ) = aT 4
[
Wsr−1m−2

]
(6)

suggesting that the incident power is proportional to T 4.
Consequently, a thermally stabilized camera operating in
radiometric mode, i.e., when the image intensity levels are
linear in the incident power, the intensity of a pixel is ob-
tained by an affine transformation of T 4:

I(T ) = b+ aT 4 (7)

where I is the intensity level of the pixel and b is the digital
bias level.

Based solely on equation 7, we can seemingly infer an
object’s temperature directly from the thermal image inten-
sity and vice versa. However, when dealing with an un-
cooled (non-thermally stabilized) microbolometric camera,
the coefficients in the equation are highly sensitive to the
camera’s intrinsic temperature. According to [21], the de-
pendency of those coefficients on the intrinsic temperature
can be faithfully approximated by a third-order polynomial,
concluding that a more accurate description of a pixel’s in-
tensity level is

I(Tobj , Tint) = p(0)c (Tint) + p(1)c (Tint)T
4
obj (8)

where Tobj is the object’s absolute temperature, Tint is the
camera’s intrinsic temperature at the time of acquisition,
and:

p(i)c (Tint) =

3∑

k=0

ci,kT
k
int (9)

where the superscript (i) indicates that the two polynomials
in equation 8 have different coefficients. Plugging equation
9 into 8 and simplifying all of the terms gives:

I(Tobj , Tint) = c0,0 + c0,1 · Tint + c0,2 · T 2
int

+ c0,3 · T 3
int + (c1,0 + c1,1 · Tint

+ c1,2 · T 2
int + c1,3 · T 3

int) · T 4
obj

=< F,C >

(10)
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where in the last transition, we factorize the relationship as
an inner product by stacking all monomials in a single fea-
ture vector F and all coefficients in a vector C. Overall, the
estimator in equation 10 is made up of eight different mono-
mials and parametrized by eight corresponding coefficients.

3.1.2 Estimator modeling

Traditionally, the coefficients from equation 8 are calibrated
to estimate an object’s temperature given a measured inten-
sity. However, we noticed that it could also be used in the
opposite direction, i.e., to produce a thermal image inten-
sity given a known object temperature. Our innovation is
in combining the two directions of applying equation 8 in
a cascade to assemble an analytic UI2I translation model in
the following way:

Given a set of calibrated panchromatic coefficients, we
can estimate the object’s temperature using the panchro-
matic intensity and the intrinsic temperature at acquisition:

T̂obj =
4

√√√√Ipan − p
(0)
cpan (Tpan)

p
(1)
cpan (Tpan)

(11)

With the estimated object temperature at hand, we can
invoke equation 8 once again, this time using calibrated
monochromatic coefficients, to estimate the monochromatic
intensity:

Îmono = p(0)cmono
(Tmono) + p(1)cmono

(Tmono)T̂
4
obj (12)

We treat the cascaded utilization of equations 11 and 12 as
the physical estimator, and denote it by Gphys . Formally:

Îmono = Gphys(Ipan , Tpan , Tmono) (13)

3.1.3 Estimator coefficient calibration

Our in-house-designed calibration setup consists of a ther-
mal camera, blackbody target (to control the scene’s tem-
perature) and an environmental chamber (to control the
camera’s ambient temperature). The setup was used to cap-
ture images of varying scenes and ambient temperatures, to
cover the three-dimensional Tint -Tobj -intensity space. We
then used the measurements to solve for the physical esti-
mator’s coefficients using a least-squares minimization cri-
terion. The calibration results of an exemplary pixel can be
visualized as a surface in the three-dimensional Tint -Tobj -
intensity space, as shown in Figure 1. Since the physical es-
timator requires both panchromatic and monochromatic cal-
ibrated coefficients, the calibration process was conducted
twice, with and without applying an IR bandpass filter over
the camera lens. For a more elaborate description of the
calibration process, please refer to section 6 in the supple-
mentary material.

Tobj[C]20
40

60Tint [C] 20
30

40
50

Radiom
etric Intensity 2000

3000
4000
5000
6000
7000

samples
fitted surface

Figure 1. An example surface fit visualizing the calibrated poly-
nomial coefficients of a single pixel.

As it turns out, the calibrated physical estimator was not
very accurate, and in particular suffered from a significant
first-order error. Those inaccuracies might have had to do
with issues related to the calibration setup, which would
normally require an exhaustive investigation to find its root
cause. To circumvent this cumbersome effort, we applied a
pixel-wise affine transformation to the estimator, i.e.:

G̃phys = A ◦Gphys +B (14)

where A,B are matrices and ◦ is the Hadamard product op-
erator. By constructing the elements of the matrices A,B
as learnable parameters, back-propagation can be utilized
to implicitly correct the physical estimator’s prediction of
the monochromatic output.

3.2. Deep estimator

Given the calibrated physical estimator, one might won-
der why this is not enough to solve the UI2I task alto-
gether. Unfortunately, as evident from equation 4, the emis-
sivity can utterly change the incident thermal radiation on
the camera’s sensor. Therefore, two objects sharing the ex-
act same temperature might result in significantly different
bolometric readouts, and thus different intensity levels [9].
In addition, the application of an IR filter over the lens re-
sults in a scene-dependent spatial distortion known as the
narcissus effect [14]. This effect is easily observable in real
monochromatic images, such as those in Figure 2 in the
monochromatic image. Hence, the physical estimator alone
cannot accurately predict the intensity levels of a real-world
scene, because it has no capacity to handle scene conditions
that are different from its calibration setup. A demonstra-
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(a) Panchromatic (b) Physical (c) Monochromatic

Figure 2. Demonstration of the Narcissus effect and the differ-
ence between the physical estimator’s output and real monochro-
matic images. (a) Panchromatic (Pan) input. (b) Physical esti-
mator (Phys) output. (c) Real unpaired monochromatic image for
reference.

tion of the gap between the estimated output of the physical
estimator and a real monochromatic image appears in figure
2.

This is where the family of deep generative I2I transla-
tion models, which have significantly greater capacity than
the polynomial physical estimator, is brought into play. As
baselines, we examined the architectures of CycleGAN [39]
and CUT [23], which are considered to achieve SOTA re-
sults for the task of UI2I translation. Both CycleGAN’s
and CUT’s generators consist of a convolutional encoder-
decoder scheme with a bottleneck of residual blocks [7] in
between, as schematized in Figure 3a.

As previously stated in equation 8, the intensity levels
of both our input and target modalities are affected by the
camera’s intrinsic temperature. Fortunately, each image ac-
quired by the FLIR Tau2 is saved along with the intrin-
sic thermal sensor readouts. Specifically for our activity,
we chose to use the focal plane array temperature as our
intrinsic temperature (Tint ). Hence, it made sense to de-
sign an architecture that could accept this temperature as
additional input. More concretely, we provide the panchro-
matic (input) intrinsic temperature to the encoder, and the
monochromatic (output) intrinsic temperature to the de-
coder1. In doing so, we attempt to disentangle the intrinsic-
temperature-dependent transformations (handled by the en-
coder and decoder) and the more general inter-modal trans-
formation (handled by the bottleneck).

Our use of the intrinsic temperatures as inputs can be
thought of as an extension of the concept of conditional
GAN (CGAN) [19]. In our case, the output is conditioned
on two continuous variables (panchromatic and monochro-
matic intrinsic temperatures) as opposed to the original pa-
per where a single discrete conditional variable was used.
Since both the encoder and decoder are convolutional net-
works, the intrinsic temperatures (scalars) were reshaped as

1In CycleGAN, the generator translating back from the monochromatic
to the panchromatic domain receives the inputs in the reverse order, i.e.,
monochromatic temperature to the encoder and panchromatic temperature
to the decoder

constant matrices before being concatenated to the corre-
sponding tensors.

3.3. Fusion of estimators

Although somewhat mitigated by the learnable affine
transformation, the calibrated physical estimator still suf-
fers from inaccuracies. Nevertheless, its prediction is much
closer to the expected monochromatic output than a sheer
random guess, which is the initial state of all ordinary GAN
generators. Hence, we can use the physical estimator to
produce a prior approximation of the desired output, and
let the deep estimator learn the residual w.r.t. the desired
result. This approach is expected to facilitate the deep es-
timator’s pursuit of the optimal solution and make it more
robust w.r.t. random weight initialization. Therefore, our
proposed method fuses the physical estimator (augmented
with the affine transformation) with the deep estimator:

GPETIT (x) = G̃phys(x) +Gdeep(x) (15)

where Gdeep is used to describe the generator of the deep es-
timator. Schematics comparing the generator architecture of
the deep baseline models (CycleGAN, CUT) and our model
(PETIT) are shown in Figure 3.

4. Experiments
4.1. Dataset preparation

As mentioned in the introduction, there were no off-the-
shelf thermal multispectral datasets available for training
and testing our proposed method. The only remotely re-
lated available datasets were of satellite missions, but those
are not open-sourced and only provide post-processed data
(e.g., estimated humidity) maps rather than raw thermal
images. Therefore, we assembled a dedicated dataset in-
house using a light airplane equipped with the same camera
that was used to calibrate the physical model (FLIR Tau2).
The pilot performed several flights, with a 9µm IR band-
pass filter applied to the camera lens (which we refer to as
monochromatic images), or without this filter (which we re-
fer to as panchromatic images).

Ensuring that the plane trajectory and camera position
are the same for two different flights is physically infeasi-
ble. Therefore, the monochromatic and panchromatic sets
are necessarily unpaired. This guided us toward basing our
method on an UI2I translation model as described in section
3.

4.2. Metrics

Since our dataset is unpaired, pixel-based metrics are not
fit for performance evaluation. This implies that only sta-
tistically based metrics are viable. One such metric is the
Fréchet Inception Distance (FID) [8], which is widely used
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Figure 3. Comparison between the baseline (CycleGAN, CUT) and PETIT (our method) generators. The architectures of the encoder,
bottleneck and decoder blocks are identical in all models.

for evaluating the quality of generated images and specifi-
cally GANs. Typically, a lower FID score indicates greater
fidelity of the generated images to the real target modality.
We note here that while the density and coverage (DC) [20]
metric is the most recent and popular approach for evaluat-
ing GANs, its coverage component is irrelevant for I2I tasks
because the output’s content is necessarily conditioned on
the input.

One could argue that FID isn’t an optimal metric of
choice in our case, as the underlying network providing its
score was pre-trained on RGB images rather than thermal

ones. However, as shown Oz et al. [22] for super-resolution,
neural networks trained with RGB data generalize very well
for thermal images as well. Following this argument, it
made sense to rely on FID as a proper measure of fidelity
between thermal image modalities. Therefore, and in the
absence of compellingly better alternatives, we use FID as
our sole numerical evaluation metric.

4.3. Experimental setup

As a rule of thumb, the FID metric requires test sets of
about 10, 000 images from each modality to be indicative
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of their true statistical distribution. This clearly limits the
amount of data left for training and validation. Thus, only
1000 images were used for training and 100 for validation
per modality, resulting in a total of 2200 images.

To fairly assess the method’s contribution, we first
trained our baseline models (CycleGAN, CUT) and fine-
tuned their hyper-parameters and design choices. Conse-
quently, the following changes were made (w.r.t. the orig-
inal implementation) to achieve optimal FID score on our
dataset: the generator’s bottleneck was implemented using
6 residual blocks (instead of 9), the learning rate was set to
5×10−4 (instead of 2×10−4) and a batch size of 2 was used
(instead of 1). In addition, we applied a statistically based
input-normalization technique, i.e., the mean and standard
deviation of each modality were calculated based on the en-
tire training set, and then used to normalize all training, val-
idation and test images.

The same set of hyper-parameters and design choices
were applied as is for training all our proposed methods and
their ablative configurations. For each model configuration,
FID was calculated at the end of every epoch. The min-
imum (best) FID score over all epochs was treated as the
score of that configuration. We note that since the FID is an
evaluation metric, it should in essence be calculated only at
test time, after training has already ended. Nevertheless, as
the hyper-parameters were prefixed for all configurations,
calculating the FID score had no impact over the optimiza-
tion procedure. Therefore, there was no flaw in calculating
it at the end of every epoch.

4.4. Results

4.4.1 Quantitative

Typically, numerical scores are obtained by training a net-
work and evaluating it once. However, due to the highly
non-convex nature of the deep networks loss functions, the
local minimum to which a network converges is highly de-
pendent on its weight initialization. The findings of [24]
further illustrate that a network trained once (i.e., with a
single weight initialization) can have an outlier score that is
much better or much worse than the average.

Therefore, we chose a statistical approach to evaluate
and compare the different configurations. For each con-
figuration, we trained and evaluated the FID score 10 con-
secutive times, where we randomly initialized the weights
in every training-evaluation cycle. We then calculated the
mean and standard deviation of the 10 FID scores and used
them as criteria for comparison with the other configura-
tions. This approach reduces the sensitivity to the random-
ness of the weight initialization, and provides a measure for
the model’s robustness w.r.t. random initialization, which
can be inferred from the standard deviation.

The numerical comparison between the different config-
urations can be found in Table 1. We tested every possible

Configuration FID
Backbone Int Phys Caption Mean Std

CycleGan

✗ ✗ Baseline 51.05 9.82
✗ ✓ 35.54 3.72
✓ ✗ 50.17 8.89
✓ ✓ PETIT 33.8 1.23

CUT

✗ ✗ Baseline 38.43 1.52
✗ ✓ 29.85 0.99
✓ ✗ 48.88 1.46
✓ ✓ PETIT 27.35 1.01

Table 1. Comparison of FID score statistics between the different
configurations (the lower the better). Int stands for intrinsic tem-
perature and Phys for physical estimator.

configuration of our propositions, i.e., with and without pro-
viding the intrinsic temperatures to the deep generator, and
with and without fusing the deep generator with the physi-
cal estimator. All configurations were tested on top of both
baseline models (CycleGAN and CUT).

PETIT was found to dominate all other configurations
with both backbones. Specifically, compared to the base-
line configurations, PETIT achieved an approximately 50%
mean FID improvement and a significantly improved stan-
dard deviation, indicating a more robust solution. Another
interesting observation was that all configurations involv-
ing the physical estimator outperformed their counterparts
by a large margin, in terms of both mean and standard de-
viation. On the other hand, the intrinsic temperature infor-
mation alone did not seem to have a significant impact on
the results, and was only helpful when combined with the
physical estimator. This suggests that the physically esti-
mated prior information steers the optimization procedure
toward points on the manifold where the intrinsic tempera-
ture information is locally beneficial.

4.4.2 Qualitative

In accordance with the quantitative results, the monochro-
matic outputs produced by PETIT seem to be of superior
quality compared to all other configurations. Generally
speaking, PETIT’s outputs incur less spurious artifacts and
exhibit stronger fidelity to real monochromatic modality.
An impression of the discussed superiority can be obtained
from the examples in Figure 4. Due to space limitations, we
only display the outputs of CycleGAN and CUT baselines
vs. the CUT-backbone-based PETIT configuration. Real un-
paired monochromatic images are also displayed in juxta-
position to the generated outputs for an impression of the
modality’s true nature. For additional examples, please re-
fer to section 8 in the supplementary material.
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(a) Pan (input) (b) CycleGAN (baseline) (c) CUT (baseline) (d) PETIT (ours) (e) Mono (ref)

Figure 4. Qualitative comparison. (a) Panchromatic (Pan) input. (b) CycleGAN output. (c) CUT output. (d) PETIT output. (e) Real
unpaired monochromatic image (Mono) for reference.

5. Summary and conclusions

In this paper, we propose a novel method that takes ad-
vantage of the unique physical properties of our data do-
main to improve the performance of a generative model in
an unpaired inter-modal translation task. Statistical analy-
sis revealed a significant improvement in both performance
and robustness with our approach. In particular, the signif-
icant contribution to both performance and robustness ap-
pears to be due to the fusion of a calibrated physical esti-
mator with a deep generative architecture. This observa-
tion supports our hypothesis regarding the added value of a
physically estimated prior information to a deep-generative
model in generating more realistic outputs. The improved
robustness might also indicate that the physical prior guides
the deep model’s convergence toward flatter minima. While
the physical model enhancement was demonstrated for the
backbones of CycleGAN and CUT, there is no limitation ty-
ing it to those specific models. Therefore, out method could
in principle be harnessed to any type of generative architec-
ture to improve its performance and robustness.

As in every work, our study leaves room for improve-
ment and further investigation. While sufficiently helpful
for improving the deep estimator results, any improvement

in the calibration process or in the physical modeling could
potentially improve our physical estimator’s prediction and
provide the deep estimator with a better initial approxima-
tion of the desired output. Another issue that requires in-
vestigation is the redundancy of the intrinsic temperature in
the absence of the physical estimator.

Lastly, as mentioned in the methods section, our method
is designed to transform an image from the panchromatic
modality to a single monochromatic modality. By repeating
the process for other monochromatic channels, a complete
thermal multispectral dataset can be synthesized. Further-
more, instead of a single monochromatic target modality,
our approach could be extended to apply multi-modal trans-
lation, i.e., from panchromatic to several monochromatic
modalities simultaneously, resulting in a complete multi-
spectral transformation.
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