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Abstract
With the increasing reliance on small Unmanned Aerial

Systems (sUAS) for Emergency Response Scenarios, such as
Search and Rescue, the integration of computer vision ca-
pabilities has become a key factor in mission success. Nev-
ertheless, computer vision performance for detecting hu-
mans severely degrades when shifting from ground to aerial
views. Several aerial datasets have been created to miti-
gate this problem, however, none of them has specifically
addressed the issue of occlusion, a critical component in
Emergency Response Scenarios. Natural Occluded Multi-
scale Aerial Dataset (NOMAD) presents a benchmark for
human detection under occluded aerial views, with five dif-
ferent aerial distances and rich imagery variance. NO-
MAD is composed of 100 different Actors, all performing
sequences of walking, laying and hiding. It includes 42,825
frames, extracted from 5.4k resolution videos, and manu-
ally annotated with a bounding box and a label describing
10 different visibility levels, categorized according to the
percentage of the human body visible inside the bounding
box. This allows computer vision models to be evaluated on
their detection performance across different ranges of oc-
clusion. NOMAD is designed to improve the effectiveness
of aerial search and rescue and to enhance collaboration
between sUAS and humans, by providing a new benchmark
dataset for human detection under occluded aerial views.

1. Introduction

Advances in technology, including improvements in
edge computing and Artificial Intelligence (AI), have led to
increased use of small Unmanned Aerial Systems (sUAS)
across a broad range of applications [53, 54, 71], such as
emergency response [6,26,54,71]. sUAS are empowered to
perform Computer Vision (CV) tasks, such as aerial surveil-
lance and autonomous person detection and tracking, where
timely and efficient performance potentially can make the
difference between life or death [21, 27, 32]. Higher levels
of sUAS autonomy, supported by CV, increase collabora-
tion between humans and sUAS, allowing emergency re-

sponders to focus attention on mission level goals [1, 20]
while sUAS perform lower-level person detection tasks.

However, there are many open challenges in deploying
CV on sUAS for emergency response [19, 52]. These chal-
lenges include the non-trivial, highly prevalent problem of
occlusion, which occurs when targets of aerial search are
partially hidden from view. For example, a drowning victim
who is partially submerged in water, people buried in debris
following an earthquake, hidden by smoke in a fire, or lay-
ing behind trees and rocks in search and rescue missions.
Occlusion could also be intentional when a suspect is hiding
from law-enforcement, caused by pose and image perspec-
tive, or introduced in far-distance aerial views due to glare,
shades, blur, and low resolution. Prior CV research on oc-
clusion has focused on generic object detection [48, 67], as
well as on pedestrian detection [60], demonstrating how oc-
clusion drastically affects model performance [60, 82, 85].
However, the occlusion problem is exacerbated even fur-
ther when shifting from ground to aerial views [59], where
additional challenges surrounding the incorporation of CV
capable sUAS into emergency response scenarios include
biased training datasets, coupled with real-life challenges
such as vibration, wind and atmospheric turbulence, harsh
weather and low visibility conditions, diverse scenery, and
the need for generalization at different distances and resolu-
tions. CV systems deployed for emergency response must
be able to reliably handle person detection under all of these
variable conditions.

We therefore address these challenges through pre-
senting NOMAD (Natural Occluded Multi-scale Aerial
Dataset), a benchmark dataset aimed at human detection
under occluded aerial views, as summarized in Fig. 1. NO-
MAD is composed of 100 different actors, each perform-
ing sequences of walking, laying and hiding. It includes
42,825 frames, extracted from 5.4k resolution videos. Ac-
tors are manually annotated with a bounding box and a la-
bel describing 10 different visibility levels, categorized ac-
cording to the percentage of the human body visible inside
the bounding box, allowing the detection performance of
CV models to be evaluated across 10 different ranges of
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Figure 1. Development and characteristics of NOMAD. Integration of sUAS into emergency response scenarios have aided first respon-
ders and rescued victims [12, 15, 21, 27, 31, 32, 36, 42, 46] (first column). Nevertheless, multiple challenges inherent to these situations
degrade CV performance and halt sUAS full integration, including the highly prevalent problem of occlusion (second column). We present
NOMAD, Natural Occluded Multi-scale Aerial Dataset, providing the research community with emergency response related videos and
selected frames, as well as rich metadata and annotations, including a visibility label (third column). Facing emergency response scenarios,
key characteristics of our dataset are: Natural: diversity of filming locations, cross-seasonal imagery, including winter scenarios, and a
demographic diversity on gender, age and race, ranging from 18 to 78 years old, and including White Caucasians, Latinos, African descent,
Asians, South Asians, Middle Eastern and Pacific Islander; Occluded: 10 defined ranges of occlusion, with a visibility label assigned to
every bounding box; Multi-scale: five different distances, ranging from 10m to 90m altitude, and a ground reference view for every actor.

occlusion. Figure 1 summarizes the key characteristics of
our dataset, including: Natural: representing a variety of
natural and man-made locations; cross-seasonal imagery,
ranging from summer to winter scenarios; demographic va-
riety on age and race, ranging from 18 to 78 years old,
and including White Caucasians, Latinos, African descent,
Asians, South Asians, Middle Eastern and Pacific Islander;
Occluded: with routines created to include occlusion and
a visibility label assigned to every bounding box annotated;
Multi-scale: with five different distances, ranging from 10m
to 90m altitude, and a ground reference view for every actor.

The remainder of this article is organized as follows.
Section 2 presents related work. Section 3 describes the
data collection process. Section 4 describes the data cura-
tion, key-frame selection and data annotation. Section 5 dis-
cusses NOMAD characteristics and its potential uses. Sec-
tion 6 reports baseline results achieved using state-of-the-
art CV detection models under different levels of occlusion,
and Sec. 7 summarizes the contributions of the work.

2. Related Work

2.1. Mobile Robotics for Emergency Response

There are numerous challenges associated with inte-
grating mobile robotics into emergency response missions
[19, 52, 54, 58, 71, 72]. Researchers, focusing on ground
mobile robots, have explored mapping of emergency scenes
[61, 65, 75], improved communication networks [50], and

specialized architectures [33,41]. User studies have demon-
strated the benefits of including aerial robots in emergency
response [76], potentially working in collaboration with
ground robots [17], to enhance surveying and mapping ca-
pabilities [64]. Other studies have explored the integration
of additional sensors, such as ground penetrating radar [63],
or cellphone tracking for missing person search [3]. Finally,
several researchers have explored efficient collaborations
between humans and sUAS at the intersection of software
engineering and human computer interaction [1, 2, 14, 20].

2.2. Real-World Object Detection

There are numerous challenges related to utilizing aerial
CV for real-time emergency response [48]. Real-time
CV applications tend to leverage the latest versions of
the YOLO family [39, 74], as well as their modifications
[35, 45, 56, 57], while other methods explore attention for
object detection [55] and multimodal techniques [4]. The
most recent work has focused on incremental learning of
unknown classes, in the modality known as Open World
Object Detection [40, 51, 83, 87], as well as its variations
[80, 84]. The challenges of object detection under occlu-
sion have also been studied [16, 60, 67]. Finally, tech-
niques incorporating human perception have been explored
for object detection [62] and other machine learning tasks
[8, 9, 24, 30, 34, 37, 69], demonstrating a plausible approach
to handling occlusion [18, 29, 66, 85].
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2.3. Aerial Datasets

While many datasets have been collected to aid aerial
detection of humans in search and rescue (SAR), none of
them have addressed the critical issue of occlusion. HERI-
DAL [10] comprises of approximately 500 labelled 4,000
by 3,000 pixel images suitable for object detection tasks.
SARD [68] comprises 1,981 manually labeled images ex-
tracted from video frames of persons simulating search and
rescue situations in roads, quarries, grass land, and forested
areas, under diverse weather conditions. However, both
datasets lack rich generalization characteristics and envi-
ronmental diversity. The recently published WiSARD [11]
dataset, comprises the richest set of images associated with
wilderness SAR scenarios, with 33,786 labeled RGB im-
ages, 22,156 labeled thermal images, and a subset consist-
ing of 15,453 temporally synchronized visual-thermal im-
age pairs. In addition to the useful multimodal imagery, the
dataset includes environmental diversity across seasons and
times of the day and night. WiSARD represents the rich-
est dataset for blind search in wilderness scenarios, that is,
search for any person on an area rather than the search for
an specific person; NOMAD provides richer demographic
diversity, includes man-made scenarios, provides rich meta-
data of actors, controlled multi-scales, and provides a new
benchmark for occlusion. It is the only dataset, to our
knowledge, to systematically address the issue of occlusion.

The BIRDSAI, VisDrone and UAVDT datasets [7,28,86]
incorporate occlusion labels into their annotations; how-
ever, they lack rich human metadata. BIRDSAI is a long-
wave thermal infrared dataset containing nighttime images
of animals and humans in Southern Africa. While suitable
for improving blind search of persons in emergency scenar-
ios, it only provides two levels of occlusion and lacks person
metadata. VisDrone consists of 288 video clips formed by
261,908 frames and 10,209 static images, and is captured
by various drone-mounted cameras, covering diverse loca-
tions, environments, objects (pedestrian, vehicles, bicycles,
etc.), and density. However, it provides only three levels
of occlusion and also lacks person metadata. Finally, while
UAVDT provides four levels of occlusion, it focuses purely
on vehicles and not people.

BRIAR, MEVID, UAV-Human, P-DESTRE and PRAI-
1581 [22, 25, 43, 47, 81] provide rich metadata and are well
suited for person re-identification. BRIAR and MEVID
datasets offer great diversity of camera views, with BRIAR
providing long range imagery of up to 1000m. BRIAR,
so far, includes more than 350,000 still images and over
1,300 hours of video footage of approximately 1,000 sub-
jects; MEVID, is part of the very-large-scale MEVA per-
son activities dataset [23] and comprises 158 unique people
wearing 598 outfits collected from 33 camera views. UAV-
HUMAN includes 67,428 annotated video sequences of 119
subjects for action recognition, 22,476 annotated frames for

pose estimation, 41,290 annotated frames of 1,144 identities
for person re-identification, and 22,263 annotated frames
for attribute recognition. While these three datasets rep-
resent the most complete datasets for their given purposes,
none of them reference occlusion and all lack representation
of emergency response scenarios. Finally, PRAI-1581 pro-
vides 1,581 identities and P-DESTRE provides rich meta-
data for 269 different identities, however, filming distances
are only up to 60m and 6.7m, respectively. Additional cate-
gorized aerial datasets can be found in [59].

Overall, NOMAD provides the demographic and envi-
ronmental diversity needed to tackle the person detection
task of emergency response scenarios from aerial views,
while being the first dataset to include an occlusion metric
for person detection, and to provide detailed metadata and
controlled multi-scale, making it suitable for many other
CV tasks as described in Sec. 5.

3. Data Collection Process
Our data collection process followed our IRB approved

protocol 21-11-6913. In a preliminary pilot study, our data
collection procedure included strict instructions regarding
the percentage of the body that the actor should expose to
the sUAS’ camera at each step. However, we observed that
these instructions were difficult to follow causing discon-
nected movements, and so we replaced the instructions with
simpler ones that led to more natural behavior.

3.1. Recruitment

As per our IRB protocol, all participants were at least 18
years old. Further, as the recruitment process evolved, par-
ticipants from already well represented demographic groups
were excluded in order to achieve a balanced gender distri-
bution, a variety of age ranges, and a rich race distribution.

3.2. Location Selection

Approval for use of premises was attained from own-
ers and responsible agencies for all locations filmed in the
dataset. The 12 locations included: 3 different Schools, 2
paintball courts, 1 forest park, 1 golf course, 1 lake shore,
1 quarry, 2 farms, and 1 AMA flying field. This resulted
in diversity of locations, including both natural and man-
made influenced, and provided a variety of different types
of obstacles for occlusion purposes.

3.3. Filming Sessions

All filming sessions followed IRB protocol guidelines
with participants being informed of the purpose of their per-
formance, the activities to be completed, and consent forms
being signed. All flights were conducted by a certified FAA
Part 107 remote pilot, and all FAA protocols were followed,
with air space reserved through LAANC systems such as
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AirMap and DroneUp. Although efforts were made to iso-
late the selected locations during the filming sessions, un-
expected persons appeared during a few of the filming ses-
sions. In most cases we stalled the filming until the person
exited the scene; however, in a few cases, these persons
agreed to appear on the dataset, signing a consent form.
From here on, we call actors the participants performing the
designated routine, while non-actors are other participants
who agreed to appear in the dataset but were otherwise not
engaged in the study.

Once the study introduction was completed, each actor
was assigned a unique obstacle at the filming location, and
then given instructions for performing the standard routine
with respect to their obstacle as follows:

• Starting Frame: With few exceptions, the first frame
represented a view of the actor completely visible.

• Hiding: All actors were instructed to hide behind their
obstacle two times, with small variations in their hid-
ing trajectory. This step allowed us to obtain varying
degrees of occluded aerial views.

• Laying: To provide a variety of poses, actors were
asked to lay down when completely visible and when
partially occluded by their obstacle.

• Walking: Finally, actors performed a small walking
trajectory at the end of their routine.

• General instructions: actors were informed of the
dataset’s focus on emergency response scenarios, and
were therefore asked to position themselves as if they
were hiding, trying to be rescued, or in need of help.

For the water routines, where the primary occlusion
source was the water itself, small but important variations
in instructions were given to simulate various drowning sce-
narios. All actors were asked to repeat their routine five
times, with the sUAS set at five progressively distant loca-
tions set to 10m, 30m, 50m, 70m, and 90m, with the dis-
tance measured, through the sUAS’ feedback from the First
Person View (FPV) screen, horizontally and vertically from
the expected starting point of the actor. Figure 2 illustrates
the sUAS position at a distance of 10m.

Additionally, a reference view of the actor was filmed,
with the sUAS positioned a few meters in front of the actor,
while the actor performed 360°rotations. The first rotation
involved arms hanging down and the second with arms ex-
tended up, providing multiple views of the actor at ground
level. Finally, true negatives were also filmed by asking the
actor to locate himself/herself outside of the camera view;
please note that in a few cases true negatives may still con-
tain consented non-actor participants. At the conclusion of
the session, actors were given a 20$USD prepaid card.

Figure 2. Filming process. Sample positioning of the sUAS at
10m horizontally and vertically from the actor’s starting location.

4. Data Annotation Process
4.1. Data curation

Although efforts were made to avoid filming non-
participants, during the revision of the films, unexpected
persons were observed on a couple of videos. For videos
where the non-participant was only visible at the beginning,
at the end, or at non-keyframes, trimming the video was a
direct solution, representing no impact to the quality of the
data. Nevertheless, situations where found where trimming
the portion of the video where the non-participant appeared
on screen would represent a loss of information of the ac-
tor’s performance; these situations were solved by blacking
out the non-participant area of the frames.

4.2. Metadata

Metadata provided in this dataset can be divided into En-
vironmental and Demographic categories, including outfit
descriptions that could aid in re-identification tasks. Full
list of metadata can be found in Tab. S1 in the Supple-
mental Material. Insight into selecting metadata factors was
obtained through a previous series of semi-structured in-
terviews with emergency responders, under IRB protocol
19-04-5269, to determine search terms used for describing
missing persons. Clothing descriptions may include up to
five words for salient figures. Hair length uses the same
metric for males and females, with bald meaning absence of
noticeable hair, short meaning ear-length, medium ranging
from ear- to shoulder-length, and long meaning longer than
shoulder-length. The Location descriptor School (Nature)
aggregates filming sessions where the researcher should ex-
pect nature domination despite it being filmed at a school
premises. The reported weather information was obtained
from the nearest weather station to the filming location.
Finally, the Exposure Value (EV) was separated from the
Video descriptor; while the Video descriptor is a constant
for all actors, the EV parameter was found to be different
than 0 on a couple of films, indicating a change in the illu-
mination, which is a relevant parameter for computer vision
tasks [77]. Table S2 from the Supplemental Material dis-
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plays the predefined lists of available colors for describing
clothing and hair color. Clothing colors were selected to
include the most common colors across the hue range on
the HSV color space; colors for the Hair descriptor were
selected based on emergency responders’ classifiers.

4.3. Keyframe selection

Manually labeling every frame from the films would
have been infeasible, therefore we selected 85 keyframes
at each of the five distances for every actor. This resulted
in 425 keyframes per actor, with the exception of Actor001,
for whom 750 keyframes were selected. Keyframe selection
was performed in accordance to the following guidelines:
(1) the 85 selected frames tracked the actor across their en-
tire routine, (2) each starting and ending frame of a trajec-
tory was selected as a keyframe, (3) each change in direc-
tion of the actor’s trajectory generated a new keyframe, (4)
the set of keyframes included different poses (e.g., stand-
ing, sitting, laying down), and finally, (5) all keyframes had
at least a part of the actor visible.

Finally, when the actor interacts with an obstacle, a cus-
tom sampling is performed to obtain views with different
levels of occlusion as the actor moves behind and away
from an obstacle. Figure 3a illustrates a sample routine with
12 keypoints selected following these guidelines. The red-
dashed arrows indicate where sampling for occluded views
would be performed. Activity labels were added to each
keyframe as: Walking, Laying, Hiding, Hiding (Laying),
Swimming, Drowning. Figure 3b shows sample labels for
the 12 keypoints illustrated on Fig. 3a.

4.4. Annotations

All 42,825 selected frames were sent to Labelbox [44], a
labelling company who employed expert annotators to add
bounding boxes and visibility labels to all images.

4.4.1 Occlusion Label

Figure 4 displays how percentages were assigned to each
body part of a person. The following is the procedure used
to calculate the visibility label, that is, the amount of an ac-
tor that was visible at a particular instant: (1) Given an im-
age, identify the body parts of a person that are visible. (2)
Review the percentages of the identified body parts based on
Fig. 4. (3) If less than half of a body part is visible, assign
half of the percentage indicated in Fig. 4. (4) If more than
half of the body part is visible, assign the full percentage
as indicated in Fig. 4. (5) Add up the percentages obtained
from each body part. (6) Assign the sum to one of the ten
ranges of visibility, with upper bounds of 10 to 100. For ex-
ample, selecting 10 means that the sum obtained from the
percentages is greater than zero but less than or equal to 10,

(a)

Keyframes Activity

1 - 2 Walking
2 - 3 Hiding
3 - 5 Walking
5 - 6 Hiding
6 - 7 Walking
7 Laying
7 - 8 Walking
8 - 10 Hiding (L)
10 - 12 Walking

(b)

Figure 3. Keyframe selection process. (a) Sample routine with 12
keyframes selected. Sampling for occluded views is indicated by
red-dashed arrows. (b) Sample Activity labels for the keyframes
illustrated. Hiding (L) represents Hiding (Laying).

Figure 4. Visibility label calculation. Percentages assigned to each
body part of a person.

while selecting 20 means that the sum is greater than 10 and
less than or equal to 20, and so on.

Please note that shadows were not considered to be part
of the human, and under normal circumstances, the actor’s
own clothing are not treated as a source of occlusion. Also
note that although we are reporting a visibility metric, this is
just the inverse of the occluded amount of the actor’s body.

5. Dataset Characteristics
NOMAD provides 500 routine videos of 100 different

actors, with each actor performing at five different dis-
tances, set as 10m, 30m, 50m, 70m, and 90m, including
42,825 frames manually annotated with a bounding box and
visibility label. Videos’ duration ranges from 30s to 180s
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depending on the actor’s pace. It also provides one refer-
ence video per actor and 500 true negative short-duration
videos, with each true negative video corresponding to one
routine video. All videos are of 30fps, MP4-H265 coding,
5.4k video quality, and frames of 5472 by 3078 pixels.

5.1. Natural

Figure 5 shows the distribution of the 100 actors with
respect to their filming locations. The variety of locations
provides coverage of natural and man-made environments,
and is aimed at training CV models for effectively support-
ing a wide range of emergency response scenarios.

To further increase robustness of our dataset in terms
of environmental conditions, cross-seasonal imagery was
collected, with temperatures ranging from 30F to 90F,
wind speeds of 0MPH to 20MPH, morning, afternoon, and
evening sessions, capturing hot sunny summer days, au-
tumn colorful scenes, and winter’s snowy conditions. Fi-
nally, we made every effort to mitigate potential demo-
graphic bias to support fair and equitable emergency re-
sponse. Figure 6 presents the distributions of gender,
age and race. The gender distribution shows a 50/50
male/female distribution, and although age distribution
shows that the majority of the population was younger than
30 years old, actors across the range of 30 to 78 years old
are still present in significant percentage. Finally, we show
a comparison between our race distribution and the USA
race distribution [13,38], showing an improvement with the
purpose of generalizing CV models and mitigating potential
biases [49,73]. While the USA federal census does not con-
sider Latino/Hispanic as a race, and distribute their classifi-
cation as an ethnicity distributed across races [13], we have
incorporated it as a race in alignment with its recognition
as a separate class by current computer vision models [70].
Lastly, although the non-rigid aspect of our routine creates
uncertainty about specific levels of our visibility label, it al-
lows the actor to provide data using more natural behaviour,
adding fidelity to the actor’s performance.

5.2. Occluded

NOMAD provides the data needed to face occluded per-
sons’ detection during high-pressure, life-or-death emer-
gencies. It labels each bounding box with the degree of
visibility on 10 levels, providing a representative number of
frames at each level as shown in Fig. 7. The higher amount
of frames at lower visibilities responds to the manual selec-
tion process as well as to the increasing annotation difficulty
and additional sources of occlusion at further distances.

5.3. Multi-scale

Effective collaboration between sUAS and humans aims
to exploit each of their individual strengths. sUAS have the
ability to quickly scan large areas from greater altitudes, or

Figure 5. Distribution of the filming locations for the 100 actors.

to provide a focused close-up view of the target. NOMAD
provides five different aerial distances, supporting both gen-
eralized models or models specialized for each distance. Ta-
ble S3 from the Supplemental Material shows the expected
minimum Ground Sampling Distance (GSD) for the five
different distances, assuming that the actor is on the camera
optical axis [5]. This is not always true as the actors moved
to perform their routine and the camera gimbal position was
often set to avoid potential areas of non-participants or areas
outside the filming premises. This moved the actors away
from the camera optical axis, increasing their GSD, and de-
creasing the number of pixels representing them, as well as
creating a non-fixed pitch and adding real variance.

5.4. Computer Vision Uses

The characteristics of NOMAD provide an environment
to improve emergency response in four main areas of CV:

• Occlusion benchmark: the effort of NOMAD’s ten
levels of visibility aims to provide a new benchmark
dataset to assess the research community’s improve-
ments on person detection under occlusion, a previ-
ously under-explored factor in aerial datasets.

• Person detection: search and rescue scenarios in re-
mote areas tend to search for any person (i.e., blind
search). The demographic and environmental diversity
provided by NOMAD, as well as its multi-scale com-
ponent, supported by the bounding boxes’ annotations,
can be leveraged to improve this general CV task.

• Person re-identification: additional to blind search, de-
scriptions of the searched person translate the detec-
tion task to a CV re-identification problem, especially
on crowded scenarios. NOMAD provides a rich meta-
data and a reference view of every actor to support re-
identification tasks from aerial views.

• Person tracking: in many emergency response sce-
narios, the aim is to detect and then track. Due to
the strategic selection of manually labelled keyframes,
NOMAD allows the assessment of tracking tech-
niques, following the actor’s key movements and
changes of direction throughout their full routine.
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(a) (b)

(c) (d)

Figure 6. Distribution of the demographic descriptors of (a) Gender, (b) Age, and (c) Race, for our 100 actors. Our race distribution is
compared to the (d) USA race distribution, improving generalization by mitigating possible biases.

Figure 7. Distribution of the visibility label across the 42,825 man-
ually annotated frames.

6. Computer Vision Models metrics

To demonstrate the use of NOMAD for benchmark-
ing CV models at varying levels of occlusion, we com-
pared the performance of three state-of-the-art CV mod-
els. Our first model was YOLOv8 from Ultralytics [39],
representing the most recent upgrade to the YOLO family.
YOLOv8 supports real-time detection with limited com-
putational and memory resources, matching the require-
ments for sUAS-based aerial detection. Additionally, we
selected a FasterRCNN and a RetinaNet model from the
Detectron2 library [78]. The specific versions tested are

YOLOv8l, FasterRCNN-R101-FPN, and RetinaNet-R101-
FPN, with a reported mAP@0.5:0.95 of 52.9, 42.0 and 40.4
on the COCO benchmark, respectively. Available models
of YOLOv8x and FasterRCNN-X101-FPN provide higher
mAP, nevertheless, the latency of these models increases
substantially compared to the gained mAP [39, 79].

For evaluation purposes, 10 folds of 10 actors each were
randomly created, with a constant seed for reproducibility
across models. From each fold, 50 tests were performed,
one per each distance-visibility (5 distances, 10 visibilities),
with the results of these 50 tests being averaged across the
10 folds. Figure 8 shows the averaged mAP@0.5:0.95 score
and standard deviation of the CV models against differ-
ent levels of occlusion and distances. We can observe that
YOLOv8l performs better on the closest distance than the
other models, a result supported by the higher initial mAP
reported; nevertheless all models suffer from critical degra-
dation as the distance increases. This behaviour is expected
as their training data is focused on ground views rather than
aerial ones. Finally, although this degradation is expected
to be mitigated by fine-tuning the models with aerial data,
the results emphasize the degradation problem that occlu-
sion represents, for even though the models achieve de-
cent scores at the closest distance with full visibility, the
mAP values drastically drop as the occlusion increases. The
usefulness of NOMAD to the research community can be
justified from the previous baseline by three reasons: (1)
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(a) (b) (c)

Figure 8. Performance across different levels of occlusion of (a) YOLOv8l’s, (b) FasterRCNN-R101’s, (c) RetinaNet-R101’s pretrained
weights when tested on NOMAD, with the task of person detection. Oclussion increases as the level of visibility decreases, therefore, mAP
scores fall drastically as we increase in distance and occlusion. The higher performance of the models at the closest distance is expected as
the data resembles ground view from COCO training data, nevertheless, mAP scores fall significantly as we increase in occlusion even for
the closest distance, calling for improvement and robustness of models against occlusion in aerial views.

NOMAD is built with a real-world variance imagery (Nat-
ural), making it a fair benchmark towards emergency re-
sponse scenarios; (2) occlusion on person detection can be
assessed thanks to the granularity of our visibility label;
(3) the multi-scale characteristic allows occlusion to be as-
sessed also across different distances, key to the improve-
ment of aerial detection on sUAS. To exemplify the diffi-
culty of person detection on emergency response scenarios,
Fig. 9 shows imagery from our tests with increasing diffi-
culty, due to distance and occlusion.

7. Future Work and Conclusions
The structure and characteristics of NOMAD offer many

opportunities for improvements in aerial human detection,
recognition and tracking, especially the following:

• Detection under occlusion: NOMAD allows us to ex-
plore and understand the limits of detection under oc-
cluded views, with future work focusing on improving
CV models’ performance by exploiting human psy-
chophysical metrics and temporal information.

• Person re-identification: Addressing emergency re-
sponse scenarios, future work will focus on improving
person re-identification through leveraging software
architectures that support hybrid onboard/offboard so-
lutions and integrate the human into the loop.

• Real-world deployment: We have found through our
own experiences in deploying CV on sUAS that there
are major additional challenges and some degradation
in results. Using the models trained on NOMAD, we
will deploy and evaluate occlusion-ready CV models
on physical sUAS.

In conclusion, as indicated by the results of our baseline
evaluation, occlusion represents a non-trivial challenge that
remains to be tackled. NOMAD’s characteristics of Natural,

(a) (b)

(c) (d)

Figure 9. Test samples. (a) Easy sample at 10m and 100 visibility.
(b) Medium level difficulty sample (50m, 100 visibility). (c) Hard
sample due to heavy occlusion (10m, 30 visibility). (d) Hard sam-
ple due to high distance and light occlusion (90m, 90 visibility).

Occluded, Multi-scale aerial views, provide a new bench-
mark dataset for tackling this challenge, and can serve as
the next step in improving the accuracy of aerial search and
detection for emergency response.
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