
TriPlaneNet: An Encoder for EG3D Inversion

Ananta R. Bhattarai Matthias Nießner Artem Sevastopolsky

Technical University of Munich (TUM)

Abstract

Recent progress in NeRF-based GANs has introduced a
number of approaches for high-resolution and high-fidelity
generative modeling of human heads with a possibility for
novel view rendering. At the same time, one must solve
an inverse problem to be able to re-render or modify an
existing image or video. Despite the success of universal
optimization-based methods for 2D GAN inversion, those
applied to 3D GANs may fail to extrapolate the result onto
the novel view, whereas optimization-based 3D GAN in-
version methods are time-consuming and can require at
least several minutes per image. Fast encoder-based tech-
niques, such as those developed for StyleGAN, may also
be less appealing due to the lack of identity preservation.
Our work introduces a fast technique that bridges the gap
between the two approaches by directly utilizing the tri-
plane representation presented for the EG3D generative
model. In particular, we build upon a feed-forward con-
volutional encoder for the latent code and extend it with a
fully-convolutional predictor of tri-plane numerical offsets.
The renderings are similar in quality to the ones produced
by optimization-based techniques and outperform the ones
by encoder-based methods. As we empirically prove, this is
a consequence of directly operating in the tri-plane space,
not in the GAN parameter space, while making use of an
encoder-based trainable approach. Finally, we demonstrate
significantly more correct embedding of a face image in 3D
than for all the baselines, further strengthened by a proba-
bly symmetric prior enabled during training.

1. Introduction
In recent years, numerous works [7, 8] have tackled the

problem of multi-view consistent image synthesis with 3D-
aware GANs. Such methods make generators aware of a 3D
structure by modeling it with explicit voxel grids [15,30,40]
or neural implicit representations [8, 32]. Most notably,
EG3D [7] introduced a 3D GAN framework based on a tri-
plane 3D representation that is both efficient and expressive
to enable high-resolution 3D-aware image synthesis. More-
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Figure 1. For a given picture, our method predicts the appropri-
ate latent code and the tri-plane offsets for the EG3D generator
in a feed-forward manner. This way, both the frontal view and
the novel view rendering can be obtained with high fidelity and in
close to real time.

over, they demonstrate state-of-the-art results for uncondi-
tional geometry-aware image synthesis.

The main applications of 3D GANs include human face
inversion, including head tracking, reenactment, facial ma-
nipulation, and novel view synthesis of a given image or
video. Oftentimes, the classical GAN formulation does not
support trivial inversion, i.e. finding the appropriate code
in the learned GAN space for a given sample. A straight-
forward way to achieve this is by obtaining the latent code
of the input image via optimization-based or encoder-based
approaches, i.e. applying 2D GAN inversion techniques.
An existing branch of research studies 2D GAN inversion
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Figure 2. Overview of the proposed method. TriPlaneNet consists of two branches. The first branch (above) comprises the predictor
ŵ = ϕ(x) of the pivotal latent code ŵ ∈ W+, which results in an input-view RGB image ŷ = R(G(ŵ), π) and a mirror-view RGB image
ŷm = R(G(ŵ), πm) with corresponding camera matrices π and πm respectively after passing it through the EG3D tri-plane generator
G(·) and renderer block R(·, ·) containing super-resolution module. The second branch (below) uses the first-stage approximation ŷ its
difference with the target (x− ŷ), difference between mirror image and rendered mirror view image (xm − ŷm) and the tri-planes features
G(ŵ) to predict the numerical offsets to the tri-planes ∆T by a convolutional autoencoder ∆T = ψ(ŷ, x − ŷ), which yields the final
prediction y = R(G(ŵ) + ∆T , π).

in high detail [2, 3, 5, 36, 41, 53], but nevertheless, the prob-
lem remains underexplored in 3D.

Optimization-based inversion methods are often supe-
rior to encoder-based approaches in terms of reconstruc-
tion quality. However, encoder-based techniques are orders
of magnitude faster as they map a given image to the la-
tent space of GAN in a single forward pass. Compared to
2D GAN inversion, 3D GAN inversion is a more challeng-
ing task as the inversion needs to both preserve the iden-
tity of an input image and plausibly embed the head in 3D
space. In particular, optimization-based 2D GAN inversion
methods that have no knowledge of the specific GAN archi-
tecture make sure to yield a high-quality rendering of the
desired image from the same camera view, but the lack of
any geometry information in the image may produce bro-
ken or stretched geometry when rendered from a novel cam-
era. Optimization-based 3D GAN inversion techniques im-
prove these shortcomings by adding 3D constraints in the
optimization process. Even though these techniques pre-
vent geometry collapse and offer high-fidelity reconstruc-
tion, they are slow and time-consuming. We improve the
above-mentioned shortcomings in two separate ways. First,
by predicting an input latent code for the EG3D generator
with a convolutional encoder, we observe that the geome-
try is preserved better than by optimizing it. This can be
attributed to the fact that the encoder, trained for the inver-
sion task, is exposed to thousands of images under different
poses and, in this way, learns to be 3D-aware. Second, we
utilize the knowledge about the model and improve the de-

tails and consistency by predicting offsets to the tri-planes
that constitute the 3D representation in EG3D. Unlike voxel
grids or implicit representations, tri-planes can be naturally
estimated by 2D convnets and, as demonstrated by our ex-
periments, can realistically express object features beyond
the capabilities of an input latent code, e.g., hands and long
hair (see Fig. 1). This advantage is attained by recovering
the object representation directly in the world space. Since
the tri-plane offsets are fully predicted by convolutional lay-
ers, our inversion can run in close to real time on modern
GPUs.

We propose the EG3D-specific inversion scheme in two
stages. In the first stage, the initial inversion is obtained us-
ing the latent encoder that directly embeds the input image
into the W+ space of EG3D. In the second stage, we in-
troduce another encoder, TriPlaneNet, that learns to refine
the initial reconstruction. Conditioned on the input image
and corresponding tri-plane features, it predicts a numeri-
cal offset for them. The system is trained with a combina-
tion of perceptual and photometric losses. In addition, we
make use of the soft constraint based on the mirror image –
probably symmetric prior inspired by [46] – that makes the
encoder even more 3D-aware.

To summarize, our contributions are the following:

• We propose a novel and fast inversion framework for
EG3D that enables high-quality reconstruction and
plausible geometric embedding of a head in 3D space
by directly utilizing the tri-plane representation and a
soft symmetry constraint.
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• We demonstrate that our method achieves on-par re-
construction quality compared to optimization-based
inversion methods and is an order of magnitude time
faster. Our method is also more resilient towards
harder cases, such as when a hat or accessories are fea-
tured.

2. Related Work
3D Generative Models for Human Faces. Representing
and generating diverse 3D human faces and heads attracted
increasing attention over the last decade [9, 16, 29], while
the appearance of NeRF [27] has sparked additional interest
in that topic. The first generative models built upon NeRF-
style volumetric integration [31,38] achieved generalization
by conditioning the multi-layer perceptron on latent codes,
representing the object’s shape and appearance. Later intro-
duced π-GAN [8] and StyleNeRF [13] condition the gen-
erative network on the output of the StyleGAN-like gener-
ator [20], which amounted to the higher-quality rendering
of faces and arbitrary objects with subtle details. As a next
major improvement step, authors of EG3D [7] propose a
tri-plane 3D representation that serves as a bridge between
expressive implicit representations and spatially-restricting
explicit representations. As a byproduct, methods such as
EG3D and StyleSDF [32] allow for the extraction of ex-
plicit, highly detailed geometry of the human faces, despite
the fact that they are trained without any volumetric super-
vision. Further, recently demonstrated abilities of diffusion
models to generate highly accurate 2D images are currently
being transferred onto 3D objects [28, 51] and 3D human
heads [33, 44].
GAN Inversion. Unlike other kinds of generative mod-
els, such as VAE or normalizing flows, inverting a GAN
(finding the appropriate latent code for a given image) is
oftentimes a tricky and computationally demanding task.
Early attempts focused on the tuning of the latent code with
the optimization-based approaches [10, 20, 24]. Various ap-
proaches exploited the idea of predicting latent represen-
tation by an encoder [14, 26, 34, 35, 54]. In [37], a uni-
versal PTI method is introduced, which comprises the op-
timization of a latent code and, consequently, fine-tuning
parameters of the generator. A recent survey on GAN inver-
sion [47] compares multiple generic techniques introduced
since the appearance of GANs.
Inversion of 2D GAN. For StyleGAN, an important obser-
vation was made by the authors of [2] that operating in the
extended W+ space is significantly more expressive than in
the restrictive W generator input space. The latter idea has
been strengthened and better adapted for face editing with
the appearance of pSp [36] and e4e [42], as well as of their
cascaded variant ReStyle [5] and other works [3, 41, 53].
Similarly to PTI but in an encoder-based setting, Hyper-
Style [6] and HyperInverter [12] predict offsets to the Style-

GAN generator weights in a lightweight manner in order to
represent the target picture in a broader space of parameters.
Inversion of 3D GAN. Unlike the 2D case, the inversion
of a 3D GAN is a significantly more advanced problem due
to the arising ambiguity: the latent code must be both com-
pliant with the target image and correspond to its plausible
3D representation. While PTI remains a universal method
that solves this problem for an arbitrary generator, recent
art demonstrates that the quality rapidly declines when the
PTI inversion result is rendered from a novel view. The sug-
gested ways of resolving this fidelity-consistency trade-off
for an arbitrary 3D GAN include incorporating multi-view
consistency or geometry regularizers [23, 48], augmenting
training with surrogate mirrored images [49], introducing
local features [22], or optimizing camera parameters and la-
tent code simultaneously [21]. All of these approaches are
still optimization-based and require at least a few minutes of
inference time per image. A concurrent encoder-based work
Live 3D Portrait [43] also leverages the tri-plane representa-
tion for high-fidelity reconstruction while relying on a self-
constructed generator instead of EG3D and skipping the la-
tent code prediction part. Our work solves the inversion for
the pre-trained, frozen EG3D generator and addresses face
manipulation due to the use of the latent space. Addition-
ally, in [43], the training pipeline is reversed compared to
ours. Starting from the random latent code, they generate
synthetic images from EG3D to train the encoder. In con-
trast, we pass real and synthetic images through the encoder
to generate latent codes. Another work, EG3D-GOAE [50],
concurrent to ours, modifies the internal features of EG3D
instead of tri-planes directly.

3. Method
3.1. Preliminaries

GAN inversion. Given a target image x, the goal of GAN
inversion is to find a latent code that minimizes the recon-
struction loss between the synthesized image and the target
image:

ŵ = argmin
w

L(x,G(w; θ)) (1)

where G(w; θ) is the image generated by a pre-trained gen-
erator G parameterized by weights θ, over the latent w. The
problem in (1) can be solved via optimization or encoder-
based approaches. Encoder-based approaches utilize an en-
coder network E to map real images into a latent code. The
training of an encoder network is performed over a large set
of images {xi}Ni=1 to minimize:

min
E

N∑
i=1

L(xi, G(E(xi); θ)) (2)

During inference, an input image is inverted byG(E(x); θ).
In the recent works [6, 12, 37], a number of approaches are
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Figure 3. Qualitative comparison for image reconstruction. Compared to other approaches, our method can reconstruct a face in the same
view in more detail, especially introducing more detail for features such as hats, hair, and background.

proposed to additionally estimate image-specific generator
parameters θ(x) by a convolutional network.

EG3D. EG3D [7] uses tri-plane 3D representation for
geometry-aware image synthesis from 2D images. EG3D
image generation pipeline consists of several modules: a
StyleGAN2-based feature generator, a tri-plane representa-
tion, a lightweight neural decoder, a volume renderer, and a
super-resolution module. To synthesize an image, a random
latent code z ∈ RD (typically, D = 512) and camera pa-
rameters are first mapped to a pivotal latent code w ∈ W+
using a mapping network. Then, w is fed into the Style-
GAN2 CNN generator G(·) to generate a H × W × 96
feature map. This feature map is reshaped to form three
32-channel planes, thus forming a tri-plane feature repre-
sentation T of the corresponding object. To sample from
the tri-plane features, a position p ∈ R3 is first projected
onto the three feature planes. Then, corresponding feature
vectors (Fxy(p), Fxz(p), Fyz(p)) are retrieved using bilin-
ear interpolation and aggregated. These aggregated features
are processed by a lightweight neural decoder to transform

the feature into the estimated color and density at the lo-
cation p. Volume rendering is then performed to project
3D feature volume into a feature image. Finally, a super-
resolution module is utilized to upsample the feature im-
age to the final image size. For simplicity, we will later
refer to the lightweight neural decoder, renderer, and the
super-resolution block, all combined, as the rendering block
R(·, ·). The high efficiency and expressiveness of EG3D, as
well as the ability to work with tri-planes directly, motivates
the development of our model-specific inversion algorithm.

pSp. Richardson et al. [36] proposed a pSp framework
based on an encoder that can directly map real images into
W+ latent space of StyleGAN. In pSp, an encoder back-
bone with a feature pyramid generates three levels of fea-
ture maps. The extracted feature maps are processed by a
map2style network to extract styles. The styles are then fed
into the generator network to synthesize an image ŷ:

ŷ = G(E(x) + w̄), (3)

where G(·) and E(·) denote the generator and encoder net-
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Figure 4. Qualitative evaluation on novel view rendering of yaw angle -0.6, -0.3, and 0.6 radians (full and zoom-in). In comparison to
others, our method preserves identity and multi-view consistency better when rendered from a novel view.

works respectively and w̄ is the average style vector of the
pre-trained generator.

3.2. TriPlaneNet

Our TriPlaneNet inversion framework comprises two
branches (see Fig. 2 for the overview). The first branch em-
ploys a latent encoder following a design of pSp to embed
an input image into W+ space of EG3D. Specifically, given
an input image x, we train a encoder ϕ to predict the pivotal
latent ŵ ∈ W+:

ŵ = ϕ(x) + w̄ (4)

where the dimension of ŵ is K × D (for the output im-
age resolution of 128, K = 14, and D = 512). The piv-
otal code is then fed into StyleGAN2 generator G(·) in the
EG3D pipeline to obtain initial tri-plane features T . Then,
the tri-plane representation is processed by the rendering
block R(·, ·) to generate initial reconstruction ŷ:

ŷ = R(G(ŵ), π) (5)

where π is the input-view camera matrix.
The second branch consists of a convolutional auto-

encoder ψ that learns to predict numerical offsets to the
initial tri-plane features. The input to the encoder module
of the autoencoder network is the channel-wise concatena-
tion of initial reconstruction ŷ, the difference between an in-

put image and initial input-view reconstruction (x− ŷ), and
the difference between a mirrored input image and initial
mirror-view reconstruction (xm − ŷm). The decoder takes
input from the encoder and first branch tri-plane features.
Given these inputs, the autoencoder is tasked with comput-
ing tri-plane offsets ∆T with respect to tri-plane features
obtained in the first branch:

∆T = ψ(ŷ, x− ŷ, xm − ŷm, G(ŵ)) (6)

The new tri-plane features corresponding to the inversion of
the input image x are then computed as an element-wise ad-
dition of tri-plane offsets ∆T with initial tri-plane features
T = G(ŵ). This new tri-plane representation is similarly
processed by the rendering block R(·, ·) to obtain the final
reconstructed image:

y = R(T +∆T , π) (7)

A detailed view of the architecture is presented in Supp. [1].

3.3. Loss Functions

The pipeline is trained by minimizing the loss function
that decomposes into the separate loss expressions for two
branches:

Lϕ,ψ(x, y, ŷ, ym, ŷm) = Lϕ(x, ŷ, ŷm)+Lψ(x, y, ym) (8)
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For training the encoder ϕ(·) in the first branch, we em-
ploy pixel-wise L2 loss, LPIPS loss [52], and ID loss [11].
Therefore, the total loss formulation is given by

Lϕ(x, ŷ, ŷm) = λ1L2(x, ŷ) + λ2LLPIPS(x, ŷ)

+ λ3Lid(x, ŷ) + λmLm(xm, ŷm)
(9)

where xm = flip(x), and Lm(xm, ŷm) is a probably sym-
metric prior defined as

Lm(xm, ŷm) = λ4Lsymm(xm, ŷm, σ(xm))

+ λ5LLPIPS(xm, ŷm) + λ6Lid(xm, ŷm),
(10)

where Lsymm is a symmetric term inspired by [46]. Since
human faces are not perfectly symmetric, the symmetric
term is based on a per-pixel Gaussian density with the pixel-
wise uncertainty map σ(xm) that assigns lower confidence
to the region in the mirrored image where the symmetry as-
sumption fails.

The loss for the second branch Lψ is constructed the
same way as Lϕ by replacing L2 with L1 smooth loss in
(9), inside Lsymm in (10) and first branch output ŷ with the
second branch output y. Supp. [1] contains more details
about the loss functions.

4. Experiments
4.1. Training procedure

Datasets. Since our focus is on the human facial domain,
we use FFHQ [19] dataset and 100K generated images from
EG3D pre-trained on FFHQ for training and perform the
evaluation on the CelebA-HQ [18, 25] test set. Supp. [1]
contains more details about the dataset.

Training details. Our pre-trained EG3D generator is also
trained on the FFHQ dataset [19]. We train two versions
of the same model: Ours, trained on FFHQ and synthetic
data, and Ours (FFHQ), trained only on FFHQ data. We
discuss the motivation to use synthetic samples in Sec. 4.2
and describe the training procedure details in Supp. [1].

Table 2. Quantitative comparison on save-view inversion. The in-
ference time, including the EG3D pass, is given for a single RTX
A100 Ti GPU. Ours exceeds other encoder-based methods by pho-
tometric scores and embeds the head in 3D space significantly bet-
ter than all the other methods (see Depth ↓).

Method MSE↓ LPIPS↓ ID ↑ MS-SSIM↑ Depth↓ Infer. time ↓

O
pt

im
.


W+ [20] 0.071 0.17 0.55 0.80 0.086 77.07 s
PTI [37] 0.013 0.07 0.76 0.89 0.087 119.34 s
P. Opt. [21] 0.014 0.08 0.67 0.88 0.119 110.86 s
SPI [49] 0.005 0.05 0.94 0.95 0.078 258.84 s

E
nc

od
er


e4e [42] 0.060 0.21 0.33 0.70 0.061 0.04 s
pSp [36] 0.045 0.18 0.40 0.73 0.076 0.04 s
EG3D-GOAE [50] 0.026 0.11 0.67 0.84 0.053 0.18 s
Ours (FFHQ) 0.016 0.07 0.78 0.89 0.042 0.12 s
Ours 0.015 0.06 0.77 0.90 0.047 0.12 s

Table 3. Quantitative comparison on novel view rendering of the
inverted representation. We outperform all the other baselines on
extreme novel view yaw angles. MSE and others are not suitable
here due to spatial misalignment.

Method ID ↑ for novel yaw angle (rad): ID ↑
-0.8 -0.6 -0.3 0.3 0.6 0.8 Avg

O
pt

im
.


W+ [20] 0.26 0.32 0.42 0.42 0.33 0.28 0.33
PTI [37] 0.34 0.41 0.55 0.56 0.43 0.35 0.44
P. Opt. [21] 0.30 0.36 0.50 0.50 0.38 0.31 0.39
SPI [49] 0.43 0.52 0.70 0.71 0.54 0.44 0.55

E
nc

od
er


e4e [42] 0.19 0.23 0.28 0.28 0.24 0.21 0.23
pSp [36] 0.24 0.28 0.35 0.36 0.29 0.25 0.29
EG3D-GOAE [50] 0.38 0.46 0.57 0.57 0.48 0.40 0.47
Ours (FFHQ) 0.45 0.54 0.66 0.67 0.56 0.47 0.55
Ours 0.44 0.53 0.66 0.67 0.55 0.46 0.55

Baselines. We compare our approach with both
optimization- and encoder-based inversion methods.
Among optimization-based methods, we compare to
universal W+ optimization [20] and PTI [37], as well as
to Pose Opt. [21] and SPI [49], recently introduced for
3D GANs. Among encoder-based methods, we compare
to e4e [42], pSp [36] and EG3D-GOAE [50]. For W+
optimization, we optimize the latent code for 1K steps. For
PTI, we first optimize the latent code ŵ ∈ W+ for 1K
steps and then fine-tune the generator for 1K steps. For
Pose Opt. and SPI, we re-run their official implementation.
For pSp, we employ the original training configuration
from [36] with a batch size of 3. We train the pSp encoder
on both FFHQ and synthetic data, similarly to our method.
For EG3D-GOAE, we take the released checkpoint and run
the inference on our dataset.

4.2. Results

Comparison to the state-of-the-art. We present the eval-
uation of our approach w.r.t. the baselines in Fig. 3 and
Table 2. Commonly used metrics MSE, LPIPS [52], MS-
SSIM [45], and ID similarity [17] (measured by the pre-
trained face recognition network not used in training) have
been selected to analyze various aspects of perceptual sim-

Input w/o Lm No 2nd branch Lm = 0.5 Ours

Sa
m

e
V

ie
w

Novel View

Geometry

Figure 5. Qualitative ablation study for the loss, dataset, and ar-
chitecture changes. Electronic zoom-in recommended.
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W+ opt. + . . . W+ pred. + . . .

Input

Input

+ EG3D params + tri-plane (pSp) + EG3D + tri-plane + tri-plane pred. + tri-plane pred.
opt. (PTI) pred. params opt. opt. + symm. prior

Figure 6. Comparison of hybrid approaches on CelebA-HQ test dataset. We refer to the computation done via optimization as opt. and
via an encoder as pred. We observe that the methods starting from W+ opt. yield elongated head geometry, whereas subsequent tri-plane
pred. can partially alleviate it. Experiments starting from W+ pred. demonstrate that the tri-plane space is more spatially restrictive than
the EG3D parameters space. Ours = W+ pred. + tri-plane pred. + symmetry prior. Electronic zoom-in recommended.

Input PTI SPI Ours SfM
(119.34 s) (258.84 s) (0.12 s) reconstruction

Figure 7. Comparison of the estimated 3D geometry w.r.t. the
”ground-truth” reconstruction by Structure-from-Motion (SfM).
Our method estimates the view-consistent embedding of a head
in 3D from a single image. Electronic zoom-in recommended.

ilarity between inputs and corresponding reconstructions.
To assess the quality of 3D geometry, we measure Depth
MSE following a similar protocol from [39]. Among
optimization-based techniques, SPI achieves the best re-
sults for same-view reconstruction. We attribute this to the
almost three times longer optimization time than PTI and
Pose Opt. However, our method outperforms all the base-
lines according to the Depth metric while being an order of

magnitude times faster than optimization-based approaches.
Effectively, this means that the head shape is closer to the
one estimated by a parametric face prior model than for the
other methods.

Furthermore, we demonstrate the identity preservation
quality of input image re-rendering from a novel view in
Table 3 and in Fig. 4. We outperform all the baselines on
extreme novel view yaw angles, and our method embeds
the head in 3D space in a much more plausible way while
preserving fine details and not relying on any explicit face
or head priors. For all methods in general, the ID score
declines faster above a certain value of the yaw angle due to
the uneven angle distribution in the FFHQ dataset.

Ablation study. In Fig. 5 and Table 4, we ablate over
the possible differences in our model design, such as loss
functions weights and the presence of the second branch.
As some of those were introduced to handle occluded re-
gions in the input view, we demonstrate visually how the
incorporated symmetric prior affects the novel view and
3D geometry quality. All models in this ablation except
the first branch encoder are trained for 600K steps. We
observed that including symmetric prior significantly im-
proves novel-view quality and geometric consistency. De-

3061



Table 4. Quantitative ablation study for the loss, dataset, and architecture changes.

Method MSE ↓ LPIPS ↓ MS-SSIM ↑ Depth ↓
ID ↑

Same Novel View (Yaw angle in radians)
View -0.8 -0.6 -0.3 0.3 0.6 0.8

Ours 0.019 0.08 0.87 0.051 0.68 0.39 0.47 0.58 0.59 0.48 0.40
. . . (FFHQ) 0.022 0.09 0.86 0.044 0.70 0.41 0.48 0.60 0.60 0.50 0.42
. . . w/o Lm 0.017 0.08 0.88 0.082 0.69 0.39 0.47 0.59 0.59 0.48 0.40
. . . Lm = .005 0.018 0.08 0.87 0.068 0.69 0.38 0.46 0.59 0.60 0.48 0.40
. . . Lm = 0.5 0.028 0.11 0.83 0.049 0.64 0.37 0.44 0.55 0.56 0.45 0.37
No 2nd branch 0.047 0.18 0.73 0.056 0.41 0.25 0.30 0.36 0.37 0.31 0.26
. . . (FFHQ) 0.047 0.18 0.74 0.051 0.44 0.28 0.33 0.39 0.40 0.34 0.29
. . . w/o Lm 0.045 0.18 0.73 0.076 0.40 0.24 0.28 0.35 0.36 0.29 0.25
. . . Lm = .005 0.045 0.18 0.73 0.068 0.39 0.24 0.28 0.34 0.36 0.30 0.25
. . . Lm = 0.5 0.057 0.20 0.70 0.053 0.41 0.25 0.29 0.37 0.37 0.30 0.25
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Figure 8. Adding synthetic samples to
training (Ours) makes the model robust to
the input image shifts compared to trained
on FFHQ only (Ours (FFHQ)).

spite the model trained on FFHQ achieving a higher ID
score, in Fig. 8, we show that adding synthetic EG3D sam-
ples in training allows us to correctly canonicalize face for
a slightly shifted input, while our model trained with only
real images is very sensitive to minor image misalignment.
Geometry evaluation for a multi-view sequence. In
Fig. 7, we present a qualitative evaluation of the geome-
try obtained using our method against PTI [37], SPI [49],
and ground truth geometry obtained using a third-party SfM
software [4]. We notice that the estimated geometry is
highly view-consistent and is closer to the ground truth.

We present more evaluations and visual results in the
Supp. [1], such as novel view synthesis for a talking head
video and face manipulation capabilities.

4.3. PTI and tri-plane offsets behavior

Both our method and optimization- and encoder-based
baselines can be decomposed into two stages: estimating
the latent code and the delta for the generator parameters.
In Fig. 6, we show how combining these steps, each per-
formed either by optimization (opt.) or an encoder (pred.),
influences the inversion behavior.

W+ opt. inverts a single image and cannot account
for 3D geometry due to the lack of supervision from other
views, which results in incorrectly stretched geometry. Ac-
cordingly, the same happens with PTI = (W+ opt. + EG3D
params opt.) method. Interestingly, tri-plane prediction, ap-
plied on top of W+ opt., can alleviate the damage to the
geometry caused by W+ opt.

W+ pred. by a pSp encoder, on the contrary, embeds
the head in 3D more plausibly due to the supervision from
images under different poses during training. At the same
time, the same-view quality is marginally worse than PTI.
Applying the PTI’s second step (EG3D params opt.) helps
improve it significantly; however, it incorrectly modifies
head proportions, similar to the W+ opt. behavior. To
investigate this effect further, instead of optimizing EG3D
parameters after W+ pred., we try optimizing the tri-plane

offsets directly, and this fully cancels the incorrect stretch-
ing of geometry while preserving high fidelity in the same
view. Since both EG3D params opt. and tri-plane opt. are
performed for a single image (i.e. without multi-pose su-
pervision during training), this may indicate that offsetting
the tri-planes is more spatially restrictive and thus stable.
Therefore, we base our method on directly leveraging the
tri-plane representation.

We further improve the checkerboard artifacts in novel
view, noticeable for tri-plane opt., by tri-plane prediction,
and improve the embedding in 3D space by a symmetric
prior.

5. Conclusion

We present a novel approach for EG3D inversion that
achieves high-quality reconstructions with view consistency
and can be run in close to real time on modern GPUs.
We also show that directly utilizing tri-plane representa-
tion better estimates 3D structure compared to other ap-
proaches while preserving identity in the novel view. Al-
though our method achieves compelling results and is on
par with optimization-based approaches, both visually and
quantitatively, it has certain limitations. For instance, it is
limited by the range of yaw angles shown to EG3D during
training and cannot model the background depth. In addi-
tion, there is room for improvement of the temporal con-
sistency and for supporting input images with extreme head
poses.
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