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Abstract

Multi-view classification problems are common in med-
ical image analysis, forensics, and other domains where
problem queries involve multi-image input. Existing multi-
view classification methods are often tailored to a spe-
cific task. In this paper, we repurpose off-the-shelf Hy-
brid CNN-Transformer networks for multi-view classifica-
tion with either structured or unstructured views. Our ap-
proach incorporates a novel fusion scheme, mutual distilla-
tion, and minimal additional parameters. We demonstrate
the effectiveness and generalization capability of our ap-
proach, MV-HFMD, on multiple multi-view classification
tasks and show that it outperforms other multi-view ap-
proaches, even task-specific methods. Code is available at
https://github.com/vidarlab/multi-view-
hybrid.

1. Introduction
In multi-view classification, the goal is to predict a target

label from a collection of two or more images (or views).
For such problems, the underlying assumption is that the
component views in a collection give added context and
complementary information that is useful or even necessary
to make an informed prediction.

Much of the work in this area focuses on the cross-
view setting, where each collection is comprised of a struc-
tured set of (usually two) views of the same object. Cross-
view problems are prevalent in the medical image analy-
sis domain, such as the detection of breast cancer from
a pair of craniocaudal and mediolateral mammography
scans [1, 3, 47, 49, 65]. These types of multi-view prob-
lems are quite structured in the sense that each view is
captured from a pre-determined pose and intended to high-
light a particular feature. Outside the medical domain,
some less structured cross-view tasks include 3D-shape
recognition [13, 38, 46, 50, 53, 58], plant species identifi-
cation [8, 28, 40], and action recognition [11, 15]. Other
multi-view problems are direct extensions of their single-
view analogs, where the additional views are not rigidly

Figure 1. We present a general-purpose multi-view classifier ap-
plicable to problems in medical imaging and image forensics.

prescribed, but may be available at inference time. Fig-
ure 1 shows image pairs from various multi-view classifi-
cation problems.

Existing multi-view methods are often task-specific and
not trivially transferable to other related multi-view or
single-view problems. In this paper, we present a general
framework that employs a novel fusion strategy, is appli-
cable to both structured and unstructured multi-view col-
lections, and only requires minor modifications to off-the-
shelf models. We repurpose a hybrid CNN-Transformer
network [10] for multi-view classification. The transformer
component serves as one aspect of the multi-view fusion
model by merging the learned representations from the in-
put images. We also introduce a novel loss term where the
fused prediction of the single-views and the multi-view pre-
diction are used as sources of mutual knowledge distillation.

Notably, our approach introduces minimal extra param-
eters to the single-image backbone and generalizes to col-
lections with varying number of views, including single im-
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ages. In this paper, we make the following contributions:
• introduce a novel hybrid multi-view fusion strat-

egy, which takes advantage of the hybrid CNN-
Transformer architecture;

• apply mutual distillation to multi-view; and
• demonstrate the effectiveness of our approach with ex-

tensive experimentation on many multi-view tasks.

2. Related Work
The literature on multi-view methods is vast. Our ap-

proach introduces a novel method for multi-image fusion
and training multi-view networks using mutual distillation.
In this section, we review related methods for multi-view
fusion strategies and distillation.

2.1. Multi-view Fusion Strategies

Multi-view methods can be broadly characterized by the
stage where the information from the inputs is fused: early
fusion, late fusion, and score fusion, as we move down-
stream the typical processing pipeline.

Early-fusion strategies involve combining low-level fea-
tures from each view and continuing the training and infer-
ence processes in much the same way as the single-view
case. Some methods aggregate shallow feature maps from
each view before they are processed through a deep net-
work [47, 66]. This approach is often employed in the mul-
timodal setting, such as fusing RGB and optical flow for
action recognition [15]. Cross-view Transformers [49] em-
ploy attention to transfer ResNet features across the pro-
cessing streams of each view. One downside to early fusion
is that task- irrelevant features may be incorporated early in
the processing pipeline [32].

In late fusion, features are learned mainly independently
for each input, then combined. Late fusion is a popular
strategy, as evidenced by the variety of methods proposed.
Some approaches simply concatenate the single-view fea-
tures [3, 50] or apply pooling operations [38, 46]. Others
employ additional processing between the fusion and classi-
fication stages. Group View CNN [13] for 3D object recog-
nition uses a learned, two-stage pooling strategy. View fea-
tures are first assigned to groups and pooled prior to a global
pooling step. Other late-fusion strategies utilize bilinear
pooling [59], graph convolutions [12, 53], recursive neural
networks [33, 34], transformers [4, 57], or other specialized
modules [11, 16, 18, 35, 51, 58, 65].

Score fusion can be considered as extreme late fusion
where training and inference essentially follow the single-
image process, and the output distributions are fused to gen-
erate a final prediction. Some methods perform element-
wise pooling of the single-view class distributions to gener-
ate a multi-view prediction [1, 8, 40, 42]. Bekker et al. [1]
train view-specific classifiers on cross-view mammography
data, before combining the predictions. Trusted Multi-View

(a) Early fusion (b) Late fusion

(c) Score fusion (d) Hybrid fusion

Figure 2. Multi-view fusion paradigms. Multi-view approaches
are commonly classified as early, late, or score fusion approaches.
Our hybrid fusion approach takes advantage of Hybrid CNN-
Transformer architectures for multi-stage fusion.

Classification [17] aims to model prediction uncertainty by
combining Dirichlet distribution estimates to generate the
multi-view distribution.

Figure 2 provides a sketch of these three fusion strate-
gies along with our proposed hybrid fusion approach, which
combines late fusion with score fusion during training.

2.2. Knowledge Distillation and Mutual Learning

Knowledge distillation [2, 20] is a technique used to
guide the training of a model (the student) using a sepa-
rate, more complex model (the teacher). For classifica-
tion, knowledge is typically transferred by modifying the
student loss function to include an additional divergence
term between the predicted distribution with that of the
teacher [5, 9, 19, 22, 26, 31, 39, 55, 64]. It has been shown
that a higher capacity teacher is not necessary, and perfor-
mance gains can be achieved using equivalent teacher and
student models [14, 60].

Self-knowledge distillation (self-KD) methods forgo a
separate teacher model entirely. Inspired by label smooth-
ing [48], Teacher-Free KD [60] augments cross-entropy loss
with an additional KL-divergence penalty calculated be-
tween the temperature-softened class probability distribu-
tion and a uniformly smoothed target distribution. Other
approaches have demonstrated the effectiveness of using
previous model checkpoints as the teacher [25, 52]. Data-
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Figure 3. Illustration of our hybrid fusion model, with the two fusion points indicated in green: late fusion of the CNN feature maps and
score fusion using mutual distillation of the single-view predictions.

based self-KD approaches involve minimizing the distance
between intermediate features or output distributions of a
given set of training examples. Augmentation methods ap-
ply data distortions to a given training example in order to
generate additional model inputs to use in the calculation of
the regularization term [27,56]. Other methods add regular-
ization using pairs of different images with the same label
to improve classification accuracy [43, 61].

Mutual distillation methods use a feedback loop such
that the teacher generating distribution also improves over
the course of training the student. For example, in Deep
Mutual Learning (DML) [63], an ensemble of models is
trained together, each network acting as a teacher for the
others. As a given model improves, it generates a more ac-
curate teacher distribution to help train the others. Shadow-
KD [30] uses a frozen, pre-trained teacher with a learnable
proxy head that facilitates mutual distillation with a stu-
dent model. Other mutual learning methods utilize a single
network with auxiliary output branches to use for distilla-
tion [24,62,67]. Various degrees of weight sharing between
the branches facilitate the teacher-student feedback loop.
Rather than adding additional branches, Teacher-Free Fea-
ture Distillation [29] introduces both inter and intra-layer
loss terms during training.

The aforementioned methods have only been applied to
single-view inputs. Only recently have distillation methods
been developed for the multi-view setting. ViewsKD [37]
uses a pretrained multi-view network to guide the training
of a smaller student model. MVC-Net [66] introduces self-
distilling mimicry loss to minimize pairwise l2 distances be-
tween output class-probability vectors of each view.

We introduce a mutual distillation loss calculated be-
tween the multi-view and the score-fused single-view pre-
dictions. Compared to previous methods, our approach does
not require a pre-trained teacher, and computation scales
linearly with the number of views.

3. Preliminaries
Our main contributions, hybrid fusion and mutual dis-

tillation for multi-view classification, take advantage of the
Hybrid CNN-Transformer architecture. In this section, we
briefly review this model to introduce the notation and lay
the foundation for our work.

CNN-Transformer hybrids combine the benefits of each
component. The CNN produces a feature map, C(I) ∈
Rh×w×c, where (h,w) is the downsampled resolution and
c is the number of channels. This feature map is flattened
along the spatial dimension and encoded into the token la-
tent space with a linear projection matrix E ∈ Rc×d to pro-
duce a sequence of S = hw dimensional image tokens, each
∈ R1×d. A learnable positional encoding Epos ∈ RS×d is
then summed with the image tokens:

E (I) = [C (I)1 E; ...; C (I)S E] +Epos (1)

where C (I)i refers to the i-th spatial feature. A learnable
token xclass ∈ R1×d is then concatenated with E (I) and
passed to the Transformer, which consists of a series of L
encoder blocks. Information between the tokens is shared at
each attention stage; the Transformer facilitates further re-
finement of the extracted CNN features while incorporating
image-wide context. After the last encoding block, xL

class is
passed to the classification layer to produce the class logit
distribution. For brevity, we summarize the Transformer
and subsequent classification layer as T :

z = T ([xclass; E (I)]) (2)

where z ∈ R1×k and k is the number of classes. In the
next section, we describe how this model facilitates hybrid
fusion and mutual distillation.

4. Method
First, we introduce a simple modification to hybrid

CNN-Transformers to classify an input set of images. Let
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{I1, I2, ..., IN} be the input collection of N views. The
tokens generated for the collection are passed to the Trans-
former component of the hybrid model.

z′ = T ([xclass; E ′ (I1) ; E ′ (I2) ; ...; E ′ (IN )]) (3)

where z′ is the predicted distribution for the input collec-
tion and E ′ is E (Eq 1) plus another learnable encoding,
Eimg ∈ RN×d, that is shared for all tokens from a given
image. These image embeddings encode the source view
in the collection of each token. The number of trainable
parameters only increases by Nd compared to the single-
image case when the weights are shared for the CNN com-
ponent of the hybrid model.1 Figure 3 (left) illustrates our
method with the token fusion highlighted.

4.1. Mutual Distillation Training

We formulate our training loss as a combination of three
terms, shown visually in Figure 3 (right):

L = Lm + Ls + λLmd (4)

where λ is a trade-off parameter to balance the contribution
of the distillation term, Lmd, and classification terms. The
first term, Lm is a classification loss between the multi-view
output and the ground truth label. The second term, Ls, is
the mean classification loss between the single-view outputs
and the ground truth label. For these two terms, there are
many choices for loss functions. In Section 5, we show how
this approach can be applied to standard loss functions, such
as cross-entropy and more modern approaches that include
label smoothing or regularization. We also show how both
terms contribute to the performance of our method.

For the remainder of the section, we focus on the third
loss term, Lmd, which considers the set of single-view pre-
dictions and the multi-view prediction as sources of mu-
tual knowledge distillation [63] for each other. Our ap-
proach follows the distillation scheme of Hinton et al. [20],
which minimizes the KL-divergence between temperature-
softened distributions produced by a teacher and student
model:

Lkd (t, s; τ) = DKL (σ̃ (t, τ) , σ̃ (s, τ)) (5)

where t and s are the teacher and student logits, respec-
tively, and σ̃ denotes softmax after dividing by a tempera-
ture hyperparameter τ > 0. While traditional knowledge
distillation involves a one-way knowledge transfer from the
teacher to the student, for Lmd we compute two asymmetric
distillation terms between a score-fused class distribution
and z′.

1For cross-view medical image analysis or multimodal problems, it is
common for the weights associated with each view to be unshared.

Lmd ({z1, ...,zN}, z′; τ) =

1

2
τ2

(
Lkd

(
ˆ̄z, z′; τ

)
+ Lkd (ẑ

′, z̄; τ)
) (6)

where z̄ = 1
N

∑N
i=1 zi. Similar to other self-KD methods,

the loss term, Lmd, uses the model predictions as sources
of distillation. It is tailored to the multi-view setting by pe-
nalizing misalignment of the score-fused logits and multi-
view predictions, which (as we demostrate in Section 5) im-
proves generalization capability. Note that ˆ̄z and ẑ′ signify
gradient-detached copies of z̄ and z′. This follows previ-
ous work in treating the teaching distributions as a constant
for the purpose calculating gradients [36, 61]. Additionally,
following the recommendation in [20], the distillation term
is weighted by τ2 to account for the resulting decrease in
gradient magnitude when using temperature softening.

Inference While training requires computing single-view
predictions from each image in the collection, inference
only requires computing the multi-view prediction, z′.

5. Experiments
We evaluate the effectiveness of our Multi-View Clas-

sifier with Hybrid Fusion and Mutual Distillation (MV-
HFMD) on three different multi-view domains.

5.1. Experimental Setup

Unless otherwise specified, the backbone model is the
ResNet26+Small ViT pre-trained on Imagnet [7] with an
effective 32× CNN downsampling ratio [45]. The model is
optimized using stochastic gradient descent, with a 1-cycle
learning rate scheduler [44], and a batch size of 64. Ex-
periments were conducted using NVIDIA RTX GPUs. Test
set results are reported for the checkpoint that achieves the
highest accuracy on the held-out validation set.

Datasets The CheXpert dataset [21] contains chest x-ray
images collected from over 65,000 patients. Following [49],
we use the subset of samples that include both a frontal and
lateral scan for a given patient. Each pair is annotated for 13
different observations with one of four possible labels: “un-
known” (missing), “uncertain”, “negative”, or “positive”.
There are 23,628, 3,915, and 2,802 samples in the train, val-
idation and test splits, respectively. Hotels-8k [23] consists
of 99,513 images of hotel rooms belonging to one of 7,774
different hotels. This dataset represents an unconstrained
multi-view variant as images from the same class may con-
tain minimal to no overlap between views. We use the des-
ignated train and test split, withholding 10% of the training
data for validation. Google LandmarksV2 [54] consists of
millions of images. We use a subset of GLM that consists of
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Method CNN Arch AUC-ROC
MVCNN [46] ResNet26 .815 ± .004
CVT [49]* ResNet18 .813 ± .003
MVC-NET [66]* ResNet26 .813 ± .005
GVCNN [13] InceptionV4 .805 ± .003
TMC [17]* ResNet26 .802 ± .002
MVT [4] N/A .816 ± .003
MV-HFMD (ours) ResNet26 .835 ± .003
MV-HFMD (ours)* ResNet26 .845 ± .002

Table 1. Cross-view chest x-ray classification. AUC-ROC (mean
± SD) across 13 classification tasks, each repeated over four train-
ing runs. * indicates unshared weights for input views.

104,763 images from 18,283 classes for training, 21,019 for
validation and 28,098 for testing. Images in a given class in-
clude a well-defined human-made or natural landmark that
is at least partially visible in each view. For Hotels-8k and
Google Landmarks, images are re-sized to 224× 224 prior
to processing, resulting in 49 tokens per view. CheXpert im-
ages are re-sized to 384 × 384, resulting in 144 tokens per
view. Images from Hotels-8k and Google LandmarksV2 are
not naturally paired; training image pairs are dynamically
generated from images of the same class. The results of the
test set include all combinations for a given collection size.

Hyperparameter Tuning Hyperparameters were tuned
using cross-validation with the Hotels-8k dataset. The ap-
proach is relatively insensitive to the value of the tempera-
ture hyperparameter, τ ; we use τ = 4, which aligns with
other distillation methods [6, 26, 61]. For the weighting
term, we set λ = .1.

Baselines We compare MV-HFMD to the following
methods: Cross-View Transformers (CVT) [49], Multi-
View Transformers (MVT) [4], Trusted Multi-View Clas-
sification (TMC) [17], Multi-View Chest Radiograph Clas-
sification Network (MVC-NET) [66], Multi-View CNN
(MVCNN) [46], and Group-View CNN (GVCNN) [13].
We use the author’s implementation where available and the
same training and evaluation process as MV-HFMD.

5.2. Cross-view Classification

CheXpert is a benchmark dataset representative of clas-
sic cross-view classification problems common to medical
image analysis. We follow the experimental protocol de-
scribed in [49], which includes 13 binary classification tasks
repeated over four training runs.2

The results, presented in Table 1, show the mean AUC-
ROC score reported across all tasks. Our method outper-

2Methods with better CheXpert results in the literature generally use
the full dataset (not just cross-view) and hi-res images.

Accuracy Computation
Method T1 T5 Params GFLOPS
MVCNN [46] .460 .623 14.0 9.40
CVT [49] .451 .621 12.4 14.9
GVCNN [13] .475 .660 41.2 24.5
MVC-NET [66] .515 .677 32.6 30.4
TMC [17] .515 .681 14.0 9.40
MVT [4] .597 .756 21.7 17.0
MV-HFMD (ours) .651 .807 36.1 13.9

Table 2. Performance (Top-1 and top-5 classification accu-
racy) and computational efficiency (millions of parameters and
GFLOPS) for multi-view classification on Hotels-8k.

forms all baseline methods in cross-view accuracy and in
all but three of the 13 individual tasks3. We evaluated MV-
HFMD with both shared and unshared weights for the CNN
component and observed a 1% performance improvement
with the latter. While common in medical image analysis,
the unshared approach doubles the total CNN parameters.

5.3. Unstructured Mutli-view Classification

For the more general case of multi-view classification,
we evaluate on Hotels-8k, where each class represents mul-
tiple views of hotel rooms from the same hotel. Unlike med-
ical image analysis, the views are neither paired nor pre-
scribed and show a much greater variance in camera pose
and capture time. For all models, the CNN weights are
shared due to the unstructured nature of the collections. Re-
sults are presented in Table 2, showing the Top-1 and Top-5
classification accuracy for two-image inputs.

MV-HFMD outperforms all baselines on this dataset,
some by quite a wide margin. This dataset includes im-
age pairs with very little overlap and, thus, high intracollec-
tion variability, which violates some of the assumptions of
specialized cross-view methods. Figure 4 shows examples
where one (or both) of the constituent views were incor-
rectly classified, but the multi-view collection was correctly
classified.

Table 2 also includes a comparison of the model size and
total computation of each method. While MV-HFMD is
comparable in size to some of the larger models, the compu-
tation requirements are on par with the most efficient mod-
els in this domain. MV-HFMD can be efficiently trained
using a single high-end workstation GPU.

5.4. Multi-view Training as Regularization

Similar to previous work [46], we observe that our
multi-view training method acts as a regularizer for single-
view classification. We follow the multi-view training pro-

3Expanded individual view and subtask results in the supplemental ma-
terial
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Figure 4. Examples from MV-HFMD with correct multi-view
classification but one (or both) of the constituent views were in-
correctly classified (correct: green, incorrect: red).

cess, but at inference evaluate single-view input. We com-
pare this to the same hybrid CNN-Transformer architecture
trained in the standard single-view manner. In these exper-
iments, we include results from a subset of Google Land-
marksV2 (GLM), which is not a dataset (or problem) typ-
ically considered in the multi-view paradigm. We do not
seek to report SOTA results on GLM, but demonstrate the
benefit of this training scheme for single-view inference.
Table 3 shows the results for single-view classification.

Our method outperforms the single-view baselines,
achieving 7% and 4% higher top-1 classification accuracy
for Hotels-8k and Google Landmarks, respectively. This
approach outperforms published results on Hotels-8k. Our
method achieves a MAP@5 of .558. For comparison, the

Hotels-8k Landmarks
Method T1 T5 T1 T5
Baseline .463 .633 .818 .904
MV-HFMD .498 .653 .851 .926

Table 3. Cross-view training as regularization. Top-1 and top-5
classification accuracy for single-view classification on Hotels-8k
and Google LandmarksV2. The cross-view training method acts as
a regularizer and improves single-view classification performance.

# Ls Lm Lmd Multi-view Single-view
1 ✓ .562 .448
2 ✓ .559 .376
3 ✓ ✓ .612 .458
4 ✓ ✓ .590 .403
5 ✓ ✓ .611 .490
6 ✓ ✓ → .628 .471
7 ✓ ✓ ← .646 .499
8 ✓ ✓ ✓ .651 .498

Table 4. Ablation study. Top-1 classification accuracy on Hotels-
8k using different combinations of loss terms.

dataset authors report a MAP@5 of .551 [23].

5.5. Ablation Study

We perform an ablation study (Table 4) on the three
components of the loss function: single-image (Ls), multi-
image (Lm) and mutual distillation (Lmd). For each setting,
we train the model and evaluate the performance on Hotels-
8k for both the multi-view and single-view predictions.

We first notice that all three components play a role in
the overall performance; all subsets of the loss terms signif-
icantly underperform the full loss function. Next, we ob-
serve the significance of the single-view loss term by com-
paring settings 2 vs 3 and 4 vs 8. In both cases, we ob-
serve a positive contribution by including the single-view
and multi-view parallel training. Our novel mutual distilla-
tion term, Lmd contributes the most to the performance of
the method. This can be observed by comparing settings 3
vs 8, where the improvement is roughly 6-8% depending on
the classification mode. Settings 6 and 7 show the unidirec-
tional variants of Lmd, which include one of the two terms
of Equation 6. Both perform worse than the mutual dis-
tillation version in the multi-view setting, while using only
the multi-view prediction as the teacher (setting 7) performs
similarly to the full method for single-view.

5.6. Other Classification Losses

For the preceding experiments, we simply applied stan-
dard cross entropy loss for the two classification terms in
our model, Ls andLm. However, more modern approaches,
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Architecture Loss Ls + Lm +Lmd ∆

R+ViT-Ti/16

CE .517 .550 +.033
LS .537 .551 +.014

TF-KD .529 .549 +.020
CS-KD .549 .567 +.018
PS-KD .543 .535 - .008

R26 +
ViT-S/32

CE .612 .651 +.039
LS .631 .663 + .032

TF-KD .609 .646 + .037
CS-KD .682 .692 + .010
PS-KD .662 .680 +.018

R50 +
ViT-B/16

CE .664 .733 +.069
LS .714 .738 +.024

TF-KD .664 .731 +.067
CS-KD .738 .752 +.014
PS-KD .734 .736 +.002

Table 5. Multi-view accuracy using different loss functions on
Hotels-8k with and without our mutual distillation loss.

such as distillation, can be substituted for these loss terms.
Using the Hotels-8k dataset, we evaluate other classification
losses, including label smoothing (LS) [48] and three self-
knowledge distillation methods: Teacher-Free KD (TF-KD)
regularization [60], Classwise-KD (CS-KD) [61], and Self-
Distillation with Progressive Refinement of Targets (PS-
KD) [25]. For the self-KD methods, we use the implemen-
tations provided by the respective authors.4 Table 5 shows
the results for each classification loss function across three
(small, medium, large) architectures. For each, we train
with and without our mutual distillation term included.

In line with the single-view results presented in the re-
spective papers, incorporating label smoothing and self-
distillation improves the performance in the multi-view set-
ting. Moreover, adding our mutual distillation term gives
an extra boost in performance in all but one case. Notably,
we observe the largest gains in the medium and larger sized
networks, which likely benefit the most from the additional
regularization that the mutual distillation term provides.

5.7. Beyond Two Views

Although we focused on the most common setting of
multi-view classification with N = 2 images in the col-
lection, we show that our method, MV-HFMD, continues to
outperform competing approaches when more images are
used in training and testing. Figure 5 shows the accuracy
on Hotels-8k with collection sizes of up to 4 images for
MV-HFMD and two competing methods. Although perfor-
mance increases with additional views, there are diminish-
ing returns as more are added, which is unsurprising since

4For PS-KD, we compute Ls and Lm using the single and multi-view
logits generated from the checkpoint from the previous epoch.
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Figure 5. Top-1 multi-view classification accuracy on Hotels-8k
for N = 1, 2, 3, 4 multi-view collections.

each additional view is more likely to contribute redundant
information. Nonetheless, the marginal gains achieved with
each additional view are far greater for MV-HFMD than for
MVCNN and GVCNN, which both degrade at N = 3.

6. Discussion
We evaluated both cross-view classification and the gen-

eral case of multi-image classification. Across various do-
mains, model architectures, and other settings, our method
demonstrated strong performance at a variety of multi-view
tasks and also as a regularization method to improve more
common single-view tasks.

Single-view vs Multi-view Activation Maps To better
understand multi-view classification, we inspect the class
activation maps for the same images in the single-view
regime compared to the multi-view case. Each row of Fig-
ure 6 shows the activation maps generated for a pair of im-
ages with models trained for single-view classification and
(N = 2) multi-view classification. Activation maps are
computed using the method in [41] with the token embed-
dings that immediately precede the final transformer block.

The visualizations suggest that saliency changes signifi-
cantly between these classification regimes. In the first ex-
ample, the single-view maps show that the most prominent
regions include the floor and curtains. For multi-view, the
most activated regions are the wall in the first image, and
the headboard in the second. This suggests that the model
learns to associate different combinations of features with a
given class, including those that span multiple views. We
again observe this pattern in the second row, where the acti-
vated regions of the first image shifts to the chair, while the
focus of the second image shifts away from the bed in the
multi-view setting.
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Input Views Single-view Multi-view

Figure 6. For each pair of input images (left), the middle columns show the class activation maps in the single-view setting and the right-
most columns show the class activation maps in the multi-view setting.

Compared to the images in Hotels-8k, images in Google
LandmarksV2 contain a higher degree of overlap. Consider
the third example. In both single-view maps, suspension
cables are highlighted as a prominent feature. However, for
the multi-view case, the region for the cables remains active
for the right image while the left image adds new salient re-
gions around the road. Similarly, we see this in the fourth
example with the steeple, where saliency shifts in the sec-
ond image to the building facades. Typically, when there
exists overlapping visual information, it activated for only
one of the views in the cross-view case.

Architecture The motivations for using a hybrid CNN-
Transformer for multi-view classification are twofold. First,
it follows the paradigm of recent late-fusion methods, which
use a CNN to extract view-specific features before aggre-
gating them into a global collection embedding [35, 38, 46,
65]. Second, transformer-based fusion enables compati-
bility with structured and unstructured collections. Fusion
strategies requiring knowledge of how views relate, such
as graph convolutional networks [53] or sequential integra-
tion [16,18,33,34], may not generalize to unstructured data.

7. Conclusion

We introduced a general-purpose approach for multi-
view classification, which takes advantage of hybrid CNN-
Transformer architectures and introduces hybrid fusion.
Our approach outperforms baselines and specialized meth-
ods across a range of domains. For future work, we plan to
investigate distillation schemes that explicitly account for
the overlap between the input views. We also plan to ex-
plore multimodal applications; however, this setting would
introduce non-trivial changes. Our current approach adapts
an off-the-shelf model for multi-view classification. Non-
image input would require separate processing and intro-
duce additional parameters.
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