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Abstract

We study a new highly-practical problem setting that
enables resource-constrained edge devices to adapt a pre-
trained model to their local data distributions. Recognizing
that device’s data are likely to come from multiple latent do-
mains that include a mixture of unlabelled domain-relevant
and domain-irrelevant examples, we focus on the compar-
atively under-studied problem of latent domain adaptation.
Considering limitations of edge devices, we aim to only use
a pre-trained model and adapt it in a feed-forward way,
without using back-propagation and without access to the
source data. Modelling these realistic constraints bring us to
the novel and practically important problem setting of feed-
forward latent domain adaptation. Our solution is to meta-
learn a network capable of embedding the mixed-relevance
target dataset and dynamically adapting inference for target
examples using cross-attention. The resulting framework
leads to consistent improvements over strong ERM baselines.
We also show that our framework sometimes even improves
on the upper bound of domain-supervised adaptation, where
only domain-relevant instances are provided for adaptation.
This suggests that human annotated domain labels may not
always be optimal, and raises the possibility of doing better
through automated instance selection.

1. Introduction

Domain shift presents a real-world challenge for the ap-
plication of machine learning models because performance
degrades when deployment data are not from the training
data distribution. This issue is ubiquitious as it is often
impossible or prohibitively costly to pre-collect and anno-
tate training data that are sufficiently representative of test
data statistics. The field of domain adaptation [6, 21] has
therefore attracted a lot of attention with the promise of
adapting models during deployment to perform well using
only unlabeled deployment data. The main body of work in
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deep domain adaptation assumes that there is a pre-specified
source domain and a pre-specified target domain. An un-
labeled adaptation set is provided from the target domain,
and various methods define different learning objectives that
update a deep model on the unlabeled adaptation set, with
the aim of improving performance on new test data drawn
from the target domain.

In this paper we make two main contributions: A con-
ceptual contribution of a new highly practical variant of the
domain adaptation problem; and an algorithm for effective
domain adaptation in this condition.
A motivating scenario Let us introduce an illustrative
application scenario that motivates the variant of the do-
main adaptation problem that we propose here. Suppose that
a robot or other mobile embedded vision system needs to
recognise objects. Because it is mobile, it may encounter
objects in different unconstrained contexts, e.g. indoor or
outdoor backgrounds, sunny or rainy weather, rooms with
lights on or lights off. The robot’s object recognition model
should adapt to maintain strong performance across all these
conditions, for example by adapting based on a buffer of re-
cently experienced unlabelled images. However, unlike stan-
dard pre-defined domain adaptation benchmarks with neatly
curated domains, there are two new challenges: 1) Using
such a buffer as the adaptation set means the adaptation data
can be of mixed relevance to the test image to be processed
at any given instant. For example, the recent history used for
adaptation may span multiple rooms, while any individual
test image comes from a specific room. 2) The adaptation
needs to happen on-board the robot and ideally happen in
real-time as the adaptation set itself is updated over time.
The first challenge is the latent domain challenge, wherein
uncurated adaptation sets do not have consistent relevance to
a given test image (Figure 1). The second challenge requires
adaptation to take place without back-propagation as it is
too slow and not supported on most embedded platforms. It
means adaptation should be feed-forward.
Latent domain adaptation While domain adaptation is
very well studied [6, 21], most work assumes instances have
been pre-grouped into one or more subsets (domains) that
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Figure 1. Illustration of standard and latent domain adaptation (LDA) settings. In the LDA setting (support) images come from a variety of
domains of mixed and unknown relevance to the test (query) image. In standard DA adaptation images are all assumed to be equally relevant.

differ statistically across groups, while being similar within
groups. We join a growing minority [7,15,28,36] in arguing
this is an overly restrictive assumption that does not hold in
most real applications of interest. Some collection processes
may not provide meta-data suitable for defining domain
groupings. Alternatively, for other data sources that occur
with rich meta-data there may be no obviously correct group-
ing and existing domain definitions may be sub-optimal [7].
Consider the popular iWildCam [2] benchmark for animal
detection within the WILDS [19] suite. The default setup
within WILDS defines domains by camera ID. But given
that images span different weather conditions and day/night
cycles as well as cameras, such domains may neither be
internally homogenous, nor similarly distinct. There may be
more transferability between images from nearby cameras
at similar times of day than between images from the same
camera taken on a sunny day vs a snowy night. As remarked
by [15,36], domains may more naturally define a continuum,
rather than discrete groups. That continuum may even be
multi-dimensional – such as timestamp of image and spa-
tial proximity of cameras. Our latent domain formulation
of the domain adaptation problem spans all these situations
where domains are hard to define, while aligning with the
requirements of real use cases.
Feed-forward domain adaptation Unsupervised domain
adaptation aims to adapt models from source datasets (e.g.
ImageNet) to the peculiarities of target data distributions in
the wild. The mainstream line of work updates models by
back-propagation on an adaptation set from the target data
distribution [6,21] (and often simultaneously uses the source
data [26]). We consider adaptation under the practical con-
straints of an edge device, namely that neither the hardware
capability nor the software stack support back-propagation.
Therefore we focus on the feed-forward case where adapta-
tion algorithms should use only feed-forward operations, and

only the target dataset (source-free condition [26]). For ex-
ample, simply updating batch normalization statistics, which
can be done without back-propagation, provides a strong
baseline for back-propagation-free adaptation [30, 39].
Our solution To solve the challenge posed earlier, we pro-
pose a feed-forward adaptation framework based on cross-
attention between test instances and the adaptation set. The
cross-attention module is meta-learned based on a set of
training domains, inspired by [39]. This is a one-off cost
paid up-front and performed on a server, after which the ac-
tual adaptation is fast. The pre-trained model is meant to be
deployed to a large number of devices, each of which would
benefit from being able to do fast feed-forward adaptation
to its own unique data. Figure 2 illustrates the desired ap-
plication scenario. The deployed recognition model flexibly
enables each inference operation to draw upon any part of
the target adaptation set, exploiting each adaptation instance
to a continuous degree. This can improve performance by
eliminating adaptation instances that would be convention-
ally in-domain yet lead to negative transfer (e.g. same cam-
era/opposite time of day), and include transfer from adapta-
tion instances that would conventionally be out-of-domain
but could benefit transfer (e.g. similar images/different cam-
era). Our experiments show that our cross-attention approach
provides useful adaptation in this highly practical setting
across a variety of synthetic and real benchmarks.

2. Background and related work

Test-time domain adaptation TTDA has emerged as a
topical adaptation scenario that focuses on model adaptation
without access to source data at adaptation time (i.e. source-
free condition), and further adapts to each minibatch at test
time, aligning with an online adaptation scenario. A meta-
learning framework for TTDA has been recently proposed
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Figure 2. Illustration of the desired application scenario where a
pre-trained model is deployed to many edge devices. Each device
utilizes its own data coming from several domains to quickly adapt
the model for the current test image.

under the name adaptive risk minimization (ARM) [39].
ARM provides a variety of options for how TTDA is done,
including context network that embeds information from the
whole minibatch and updates to batch normalization statis-
tics. ARM learns to do TTDA by meta-learning across a
large number of tasks. TENT [35] is another TTDA method
and is based on optimizing channel-wise affine transforma-
tion according to the current minibatch. There is also contin-
ual TTDA (CoTTA) [36] that considers non-stationary and
continually changing environments. A common limitation
of TTDA is that it typically requires adapting to a whole
minibatch at once rather than one example at a time (e.g. to
obtain more reliable statistics for adaptation). In contrast,
in our setup, we can utilize device’s own data to adapt the
model to incoming test examples one at a time.
Latent domains In settings with latent domains, informa-
tion about domains is not available i.e. there are no domain
labels. Further, some domains may be more similar to each
other so the boundaries between domains are often blurred.
Various approaches have been proposed to deal with latent
domains, e.g. sparse latent adapters (SLA) [7], domain
agnostic learning [29] that disentangles domain-specific fea-
tures from class information using an autoencoder and [28]
that discovers multiple latent domains using a specialized ar-
chitecture with multiple branches. However, these methods
focus on standard domain adaptation or supervised learning
that is done across many epochs of training. Related setting
is the open compound domain adaptation (OCDA) [27, 40],
where the target domain includes a mixture of unlabeled
domains. Evaluation images come from one of the tar-
get domains or new unseen domains. Compared to our
setup, OCDA is typically not source-free and uses back-

propagation. However, SF-OCDA method [40] that was
developed for the problem of segmentation is source-free.
Meta-learning Meta-learning can take various forms [16],
but one of the most common is episodic meta-learning where
the learning is done across tasks. As part of episodic meta-
learning, the goal is to learn meta-parameters that will help
achieve strong performance when presented with a new task.
The most popular application of episodic meta-learning is
few-shot learning, where we try to e.g. learn to distinguish
between different classes after seeing only a few examples
of each class. Example meta-parameters include weight
initialization [1,10,25] and metric space as is the case in Pro-
totypical [32] and Relation networks [33]. Prototypical and
Relation networks are both examples of feed-forward meth-
ods. Episodic meta-learning has also been used in domain
generalization [23] and as part of the ARM framework [39].
Episodic (task-based) meta-learning models our setup well
because each deployment of the pre-trained model to a new
device represents a new task, with its unique data to be used
for adaptation. We use the episodic meta-learning paradigm.
Transformers Our method uses cross-attention inspired
by the attention mechanism found in the transformer archi-
tecture [34]. After transformers became common in natural
language processing, they have also led to strong results
within computer vision, most prominently as part of the
ViT model [9]. ViT model has served as foundation for
more recent vision transformers, including CrossViT [4] that
combines strong performance with efficiency. Our cross-
attention mechanism is broadly inspired by the CrossViT
cross-attention module [4]. Our approach has also been in-
spired by the idea of non-parametric transformers [20] that
can reason about relationships between data points. Differ-
ent to CrossViT, we use image-to-image attention, instead of
patch-to-patch, and show how to exploit this for feed-forward
source-free latent domain adaptation. Cross-attention has
also found use in few-shot classification [8,17,38], but these
approaches use it to obtain better representations of class
prototypes for few-shot supervised learning rather than to
reason about which unlabelled examples come from relevant
domains to drive unsupervised learning.

3. Methods

3.1. Set-up

Preliminaries During deployment the high-level assump-
tion made by many source-free domain adaptation frame-
works is that we are provided with a predictive model fψ and
an unlabeled target adaptation dataset xs whose label-space
is the same as that of the pre-trained model [26]. Given
these, source-free DA approaches define an algorithm A
that ultimately leads to classifying a test instance xq as
yq ≈ ŷq = A(xq,xs, ψ). There are numerous existing
algorithms for this. For example, pseudo-label strategies
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[24,26,37] proceed by estimating labels ŷs for the adaptation
set xs, treating these as ground-truth, back-propagating to
update the model ψ′ such that it predicts ŷs, and then classi-
fying the test point as fψ′(xq). We address the feed-forward
setting where algorithm A should not use back-propagation.
For example, BN-based approaches [30, 39] use the adapta-
tion set xs to update the BN statistics in ψ as ψ′ and then
classify the test point as fψ′(xq).

While the conventional domain adaptation setting as-
sumes that target domain test examples xq and target domain
training examples xs are all drawn from a common distribu-
tion, the latent domain assumption has no such requirement.
For example, xs may be drawn from a mixture distribution
and xq may be drawn from only one component of that mix-
ture. In this case only a subset of elements in xs may be
relevant to adapting the inference for xq .
Deployment phase Rather than explicitly updating model
parameters, we aim to define a flexible inference routine
fψ that processes both xq and xs to produce ŷq in a feed-
forward manner, i.e. ŷq = A(xq,xs, ψ) = fψ(xq,xs). In
this regard our inference procedure follows a similar flow to
variants of ARM [39], with the following key differences: 1)
ARM is transductive: it processes a batch of instances at once
without distinguishing test instances and target adaptation
set, so xs is composed of elements xq. 2) ARM makes
the conventional domain-observed assumption that domains
have been defined by an external oracle that ensures all xq
and xs are drawn from the same distribution. We do not
make this assumption and assess robustness to irrelevant
elements in xs.
Pre-training phase To train a model that can be used
as described above, we follow an episodic meta-learning
paradigm [16, 39]. This refers to training fψ using a set
of simulated domain adaptation tasks. At each iteration,
we generate a task with a unique pair of query and support
instances (xs, (yq, xq)), keeping label space the same across
all tasks. We simulate training episodes where xs contains
instances with varying relevance to xq . The goal is for fψ to
learn how to select and exploit instances from xs in order to
adapt inference for xq to better predict yq .

In particular, our task sampler defines each task as having
support examples uniformly sampled across a random set
of ND domains, with the query example being from one of
these domains. More formally, each task can be defined as:

T = {{xs,1, xs,2, . . . xs,Ns
} , xq, yq}

for Ns unlabelled support examples xs,. and query exam-
ple xq with label yq .

Sampling of latent domains During pre-training and
deployment, disjoint sets of domains are used, from which
domains are sampled to create individual tasks. In each task
the domain of the query example belongs to the set of support
domains available on the deployed device. The support set

contains also irrelevant domains to the query (test) set, but
there are no domain labels in the task.

3.2. Objective

Our goal is to train a model that can adapt to relevant
examples from the support set and obtain superior perfor-
mance on the query examples. We can formalize this using
the following objective:

min
θ,ϕ,ω

E(θ,ϕ,ω) = Epd|{di}Ep{xq,yq|d},{xs|{di}} 1

Nq

Nq∑
k=1

ℓ(fϕ(fθ◦ω(xq,k;xs), yq,k))

 , (1)

where ψ = {θ,ϕ,ω} are the parameters of the feature
extractor, classifier and cross-attention module respectively
(described in detail next), xs are the support examples used
for adaptation, while xq are the query examples for which
we make predictions and come from domain d. The support
examples come from a set of domains {di} with d ∈ {di}.
There are Nq query examples and E represents the general-
ization error after adapting the model.

3.3. Architecture

The key to solving Eq. 1 is defining an architecture fψ
that can identify and exploit relevant support instances within
xs. Our solution to this relies on cross-attention between
query and support images. We first embed the support and
query examples using the same feature extractor, after which
we pass the embeddings through the cross-attention mod-
ule. The output of cross-attention module is added to the
embeddings of the query examples as a residual connection,
after which the classifier makes predictions. Compared to
CrossViT [4], we do cross-attention between support and
query images from different domains, image-to-image rather
than patch-to-patch and on extracted features right before
the classifier layer.
Cross-attention module Given a set of support examples
xs and query examples xq, we use the feature extractor fθ
to extract features fθ(xs), fθ(xq). Cross-attention mod-
ule CAω(fθ(xs); fθ(xq)) parameterized by ω then trans-
forms query embeddings fθ(xq), using support embeddings
fθ(xs) as keys. The output is added to the query exam-
ple features via a residual connection, which is then used
by the classifier fϕ to predict labels of the query examples
ŷq = fϕ(fθ(xq) + CAω(fθ(xs); fθ(xq))).

The cross-attention module itself performs image-to-
image cross-attention, rather than patch-to-patch. More
specifically, after extracting the features we flatten all spatial
dimensions and channels into one vector, which represents
the whole image. The overall representation should intu-
itively better capture the nature of the domain rather than
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Algorithm 1 Feed-forward adaptation to a new task com-
bined with inference using CXDA

Require: Model parameters θ,ϕ,ω, support xs and query xq

examples from new domains
1: ŷq ← fϕ(fθ(xq) + MCAω(LN(fθ(xs));LN(fθ(xq)),ω)))

a patch, inspiring the use of image-to-image attention for
domain adaptation. Performance comparison with patch-to-
patch attention is included in the appendix.

Our cross-attention module is parameterized by a set
of learnable projection matrices Wq,Wk,Wv (all of
size RC×(C/R)) with additional projection matrix W ∈
R(C/R)×C to transform the queried outputs (we refer to
all of these parameters collectively as ω). The output of
the feature extractor fθ is flattened into one vector (any
spatial information is flattened), giving C channels, so
fθ(xq) ∈ RNq×C , fθ(xs) ∈ RNs×C . We also specify ra-
tio R that allows us to use rectangular projection matrices
with fewer parameters, which improves efficiency and also
provides regularization.

Formally we express CAω as:

q = fθ(xq)Wq, k = fθ(xs)Wk, v = fθ(xs)Wv,

A = softmax
(
qkT /

√
C/h

)
, CAω(fθ(xs)) = Av.

Similarly as CrossViT [4] and self-attention more broadly,
we use multiple heads h, so we refer to it as MCA. We also
use layer normalization as is the common practice. The
output of MCA is added to the query example embeddings as
a residual connection:

z = fθ(xq) + MCAω(LN(fθ(xs));LN(fθ(xq)))),

which is then passed through the classifier fϕ to obtain pre-
dictions ŷ = fϕ(z). Following CrossViT, we do not apply a
feed-forward network after cross-attention. We directly add
the output via residual connection and pass it to the classifier.

3.4. Meta-learning

We train the main model (composed of the feature ex-
tractor fθ and classifier fϕ) and the cross-attention module
(parameterized by ω) by meta-learning across many tasks.
Each task has the structure described in Section 3.1. Meta-
learning is computationally efficient in this case because the
inner loop does not include back-propagation based opti-
mization – the adaptation to the support examples is done
purely feed-forward. We show how we do feed-forward
adaptation on a new task combined with inference using
CXDA in Algorithm 1. Algorithm 2 shows how we do the
episodic pre-training that allows us to do efficient adaptation
on new tasks during deployment.

Algorithm 2 Episodic pre-training for source-free latent
domain adaptation with CXDA

Require: # training steps T , # latent domains in a task ND , #
support examples Ns, # query examples Nq , learning rate η

1: Initialize: θ,ϕ,ω
2: for t = 1, . . . , T do
3: Sample ND support domains {Ds}ND

1 from training do-
mains

4: Sample query domain Dq from the support domains
{Ds}ND

1

5: Sample Ns unlabelled support images xs uniformly from
the selected support domains {Ds}ND

1

6: Sample Nq labelled query images xq,yq from domain Dq

7: Predict query labels ŷq ← fϕ(fθ(xq) +

MCAω(LN(fθ(xs));LN(fθ(xq)))))

8: (θ,ϕ,ω)← (θ,ϕ,ω)− η∇(θ,ϕ,ω)

∑Nq

k=1 ℓ(ŷq,k, yq,k)

9: end for

4. Experiments

4.1. Benchmarks

We evaluate our approach on a variety of synthetic and
real-world benchmarks, namely FEMNIST [3], CIFAR-
C [14], TinyImageNet-C [14] and iWildCam [2]. These
benchmarks have a large number of domains, e.g. around
100 for CIFAR-C and TinyImageNet-C, and around 300 for
FEMNIST and iWildCam. Using a large number of domains
for pre-training is reasonable as for many practical problems
it is possible to collect such pre-training data. We describe
each benchmark next.

FEMNIST dataset includes images of handwritten let-
ters and digits, and is derived from the EMNIST dataset [5]
by treating each writer as a domain. CIFAR-C extends
CIFAR-10 [22] by a applying a variety of corruptions such
as different brightness, snow or various types of blurring.
There are different levels of severity with which the corrup-
tions are applied, giving rise to multiple domains for the
different levels. TinyImageNet-C is an extension of TinyIm-
ageNet analogous to CIFAR-C. iWildCam is a large-scale
real-world dataset that includes images of different animal
species taken by cameras in different locations. There is a lot
of variability in the style of images in different cameras, for
example different illumination, camera angle or vegetation.
The dataset has also substantial class imbalance, so macro
F1 score is used for evaluation.

For FEMNIST, CIFAR-C and TinyImageNet-C we fol-
low the splits into meta-training, meta-validation and meta-
testing sets as selected in [39]. For iWildCam we follow the
splits of domains selected in [19]. Additionally for iWild-
Cam we filter out domains with fewer than 40 examples.
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4.2. Baselines

ERM Empirical risk minimization or ERM is a domain
generalization baseline that simply trains on all training do-
mains and performs no domain adaptation. It is known to
work surprisingly well and is often difficult to beat when
properly tuned [12]. In our case it is trained following the
episodic pipeline for fair comparison i.e. it is directly trained
using the query examples during meta-training.
BN A simple and often useful method for source-free do-
main adaptation is to update the batch normalization statis-
tics using the unlabelled target domain data [30]. It has
achieved strong results in conventional source-free domain
adaptation (SFDA) [18]. However, in the latent DA setting
it is unclear if statistics calculated across a support set of
varying relevance will be helpful for achieving better perfor-
mance. During evaluation, the statistics are updated using all
support examples, and directly used for the query examples.
CML Contextual Meta-Learning is the main instantiation
of ARM [39] as a way to extract information from the whole
minibatch in test-time adaptation and use it to obtain better
performance on test images. We apply the CML on the
whole support set with images from different domains and
then use it as additional information for making predictions
on test images. CML is a feed-forward domain adaptation
method, but it has not been designed for the latent domain
adaptation problem.
Back-prop-based Fine-tuning with standard domain adap-
tive losses such as entropy minimisation [11] (FT-EM) and
infomax [31] (FT-IM) for 10 steps with 0.1x of standard
learning rate. Fine-tuning with these objectives is widely
used in prior SFDA methods, and these baselines roughly
correspond to applying methods such as TENT [35] and
SHOT [26] to our problem setting respectively. These re-
sults are presented for context rather than fair comparison,
because they use back-prop (which we do not) and they are
not designed for latent domain adaptation (unlike us).

Latent and continual DA approaches We have repur-
posed several methods designed to handle latent or continu-
ally changing domains into our setup to test more advanced
baselines. The methods we evaluate are SF-OCDA [40],
CoTTA [36] and SLA [7]. SF-OCDA and CoTTA use back-
propagation for the adaptation, while SLA uses adapters to
handle new domains. Further details are in the appendix.

4.3. Implementation details

Our solution – CXDA Our cross-attention module first
flattens all spatial information and channels into one vector
for each image, so it works image-to-image. In line with
existing literature [4, 34], we use 8 heads and layer normal-
ization on the flattened features of support and query images.
The use of layer normalization means that our approach does
not rely on a minibatch of query examples i.e. it natively
supports streaming mode and does not need mutiple query

examples to obtain strong results, unlike existing test-time
domain adaptation approaches [35, 39].

Support images are projected into keys and values, while
query images act as queries for cross-attention after transfor-
mation by a projection matrix. After calculating the attention
map and applying it to the values, we multiply the output by
a further projection matrix. We use only one cross-attention
layer and our projection matrices have rectangular shape
of C × C/2 where C is the dimensionality of the flattened
features. No dropout is used.
Data augmentation We use weak data augmentation dur-
ing meta-training. The exact augmentations are cropping,
horizontal flipping, small rotations (up to 30 degrees) and are
different from the corruptions tested in some of the bench-
marks. These are applied with probability 0.5 independently.
Task sampling Our tasks have 5 support domains, with
20 examples in each, overall 100 support examples (realistic
for a deployed device). Query examples come from one
randomly selected support set domain (out of 5 options) and
there are 20 of them. Note that the method fully supports the
streaming mode, so it works independently for each query
example without having to calculate statistics across the
minibatch. The exact number of tasks for meta-validation
and meta-testing is respectively (420, 420) for FEMNIST,
(850, 11000) for CIFAR-C, (1700, 11000) for TinyImageNet-
C, and (745, 2125) for iWildCam.
Training We use hyperparameters from [39] for FEM-
NIST, CIFAR-C and TinyImageNet-C, and we also train
the cross-attention parameters with the same optimizer.
For FEMNIST and CIFAR-C a small CNN model is used,
while for TinyImageNet-C a pre-trained ResNet-50 [13] is
fine-tuned. For iWildCam we also fine-tune a pre-trained
ResNet50 model, and we follow the hyperparameters se-
lected in [19], but with images resized to 112 × 112 and
training for 50 epochs. All our experiments are repeated
across three random seeds.
Evaluation metrics We follow [39] in reporting average
and worst performance over all testing tasks. While [39]
reports the worst single task, we modify this metric to report
the average performance of the worst decile of tasks. The
reason is that for some benchmarks, among many test tasks
with varying domain transfer difficulty there can easily be at
least one task with zero accuracy.

4.4. Results

We report our results in Table 1 for all benchmarks:
FEMNIST, CIFAR-C, TinyImageNet-C and large-scale real-
world iWildCam benchmark. We include both average per-
formance as well as reliability via the worst case perfor-
mance [39], with our bottom decile modification. From
the results we can see our cross-attention approach results
in consistent improvements over the strong ERM baseline
across all benchmarks, as well as the other baselines. The en-
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FEMNIST CIFAR-C TinyImageNet-C iWildCam

Approach W10% Avg W10% Avg W10% Avg W10% Avg

ERM 52.7 ± 1.4 77.2 ± 0.9 44.3 ± 0.5 68.6 ± 0.3 4.8 ± 0.2 26.4 ± 0.4 0.0 ± 0.0 38.7 ± 0.8
CML [39] 50.4 ± 1.3 76.0 ± 0.9 44.8 ± 0.5 69.5 ± 0.5 4.8 ± 0.5 25.7 ± 0.6 0.0 ± 0.0 38.7 ± 1.1
BN [18, 39] 52.2 ± 1.5 78.0 ± 0.7 45.4 ± 0.7 69.3 ± 0.4 5.9 ± 0.2 27.7 ± 0.3 1.9 ± 1.1 42.5 ± 0.8
Our CXDA 53.3 ± 0.6 78.3 ± 0.0 49.4 ± 0.6 72.0 ± 0.3 6.5 ± 0.2 28.6 ± 0.3 3.6 ± 1.5 43.5 ± 1.5

FT-EM (TENT) [11] 51.7 ± 1.4 77.6 ± 0.8 44.9 ± 0.6 69.2 ± 0.4 3.9 ± 0.4 25.7 ± 0.3 0.0 ± 0.0 38.6 ± 0.8
FT-IM (SHOT) [26, 31] 52.5 ± 1.2 77.5 ± 0.8 45.6 ± 0.5 69.5 ± 0.3 4.8 ± 0.4 24.6 ± 1.0 0.0 ± 0.0 38.7 ± 0.8

SF-OCDA [40] 51.5 ± 1.4 77.5 ± 0.7 46.7 ± 1.2 70.1 ± 0.5 5.5 ± 0.2 26.7 ± 0.2 0.0 ± 0.0 38.4 ± 0.6
CoTTA [36] 51.4 ± 0.4 76.8 ± 0.2 46.2 ± 0.3 69.8 ± 0.2 4.9 ± 0.5 26.0 ± 0.7 0.0 ± 0.0 38.6 ± 0.5
SLA [7] 46.0 ± 1.4 74.1 ± 0.8 40.8 ± 1.1 64.0 ± 0.7 2.5 ± 0.1 16.9 ± 0.3 0.0 ± 0.0 29.9 ± 1.4

Table 1. Main benchmark results: average and worst-case (worst 10% tasks) test performance, with standard error of the mean across 3
random seeds. Accuracy is reported for all except iWildCam, where F1 score is used (%). The best results are highlighted in bold. Our
CXDA approach achieves the best performance across all of the benchmarks.

couraging result on iWildCam highlights our method works
well also in practical real-world scenarios.

Overall we see CML and BN strategies that naively com-
bine information from all support examples have limited
success when the support set has both domain relevant and
domain irrelevant examples. In fact, CML achieves lower
performance than ERM in some of the benchmarks, despite
having a mechanism for domain adaptation. The results
show the need to adaptively select the right examples from
the support set when they come from domains of mixed
relevance. The results confirm our cross-attention based
framework can successfully select useful information from
the set of examples with both relevant and irrelevant exam-
ples and ultimately achieve superior performance. Back-
propagation-based alternatives usually perform worse, de-
spite being slower, due to lack of support for latent domains.
Methods for latent or continual domain adaptation have also
not obtained strong results, likely because the setups they
were designed for are too far from our setup – e.g. we do not
focus on segmentation and we use a source-free setup.

4.5. Further analysis

As part of analysis we study several questions: 1) How
does the performance of unsupervised cross-attention com-
pare with a supervised version? 2) How fast is our approach
in comparison with the other approaches? 3) What do the
attention weights look like and what do they imply? 4) How
does the performance vary with variable number of domains
in the support sets? 5) How does the size of the support set
influence the performance?
Domain-supervised adaptation Recall that our main
CXDA algorithm and experiments earlier are domain un-
supervised. This may induce a cost due to distraction by
domain-irrelevant adaptation data (e.g. as observed by CML
under-performing ERM previously) or a potential benefit
due to enabling transfer. We therefore compare our unsu-

pervised method with a domain-supervised alternative, with
manually defined attention weights based on domain labels.
Table 2 shows the results are dataset-dependent. The fact
that in at least some cases domain-unsupervised adaptation
outperforms the supervised case shows that the benefit can
sometimes outweigh the cost, and that it is possible for a
suitable model to outperform manual domain annotations.

Speed evaluation We compare the accuracy vs time per
task (adaptation and inference) in Figure 3. The analysis
shows our CXDA approach achieves the best performances,
is capable of real-time adaptation with similar speed as the
other feed-forward baselines, and is significantly faster than
the back-propagation based approaches. The precise times
are in Table 3 in the appendix, together with the time needed
for pre-training. While our method requires more time for
pre-training than the baselines, this cost is amortized and not
of interest due to the focus on being fast when solving new
adaptation tasks during deployment.

Analysis of attention weights We have analysed the atten-
tion weights to understand the learned behaviour of the cross-
attention mechanism. We have selected the large-scale iWild-
Cam benchmark and used one of the trained cross-attention
models. Figure 4 shows the density histogram of attention
weights for same and different domain support examples,
relative to the query examples in each task. From the plot we
observe: 1) There is a significant amount of weight spent on
attending to examples in domains different from the current
query. This suggests that the model is exploiting knowledge
transfer beyond the boundaries of the standard (camera-wise)
domain annotation in the benchmark, as illustrated in Fig-
ure 1. 2) Nevertheless, overall the weight distribution tends
to attend more strongly to the in-domain instances than out-
of-domain instances. This shows that our cross-attention
module has successfully learned how to match query in-
stances with corresponding domain instances in the support
set, despite never experiencing domain-supervision.
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Cross-attention FEMNIST CIFAR-C TinyImageNet-C iWildCam

Domain-unsupervised 78.3 ± 0.0 72.0 ± 0.3 28.6 ± 0.3 43.5 ± 1.5
Domain-supervised 79.4 ± 0.4 69.8 ± 0.4 28.6 ± 0.2 52.0 ± 1.2

Table 2. Comparison of domain-unsupervised and domain-supervised CXDA on our benchmarks. Average test accuracy for all benchmarks
apart from iWildCam where F1 score is reported (%). Domain supervision is helpful in multiple cases, but can be outperformed.
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Figure 3. Analysis of test accuracy (%) vs time per task (ms) for the various approaches evaluated. CXDA achieves the best performance,
has similar speed to other feed-forward baselines and is faster than fine-tuning approaches that use back-propagation (1 and 10 adaptation
steps are shown for FT-EM and FT-IM). The difference is especially large when the fine-tuning approaches use 10 fine-tuning steps, but even
if only 1 step is used there is a visible speed difference. Time per task includes adapting to the task and making a prediction.
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Figure 4. Density histograms of attention weights for pairs of same
and different domain examples in the test tasks of iWildCam.

Variable number of domains Tables 4 and 5 in the ap-
pendix show that the best performance is obtained when
there are fewer domains, confirming our intuition. How-
ever, CXDA can handle well also cases when there is a
large number of domains and consistently outperforms other
approaches irrespective of the number of domains.
Variable support set size Tables 6 and 7 in the appendix
analyse the impact of variable number of examples in the
support set. The results confirm CXDA is scalable and
outperforms other approaches even if the support set size
changes to more or fewer examples.

4.6. Discussion

Broader impact CXDA is designed to help obtain bet-
ter performance in settings which are underrepresented in the
training data. It performs adaptation when back-propagation
is not supported, and thus benefits users whose resources

may be limited to lower-power, embedded or mobile devices.
Scalability and applicability Our cross-attention ap-
proach is fast in the scenario when there are a moderate
number of examples for adaptation (in our experiments we
use 100), and not too many inferences to be made per adapta-
tion. In this regime it is much faster than the mainstream line
of back-propagation-based adaptation solutions [6,21,26,35].
Whereas, if there are very many inferences to be made, then
the overhead cost of back-propagation would eventually be
amortized. As for attention more broadly, its computational
cost depends on the number of query and support examples,
and the approach would become increasingly expensive in
computation if the number of support examples became very
large. For a very large support set, one could simply use
a random or semi-random subset of images for adaptation.
However, the most effective use case is one where the adap-
tation set is smaller and/or changes rapidly compared to the
frequency of inference. Instantiations of our approach using
efficient approximations to attention can be developed as
part of future work.

5. Conclusion
We have introduced a new highly practical setting suit-

able for resource-constrained devices, where we efficiently
adapt a pre-trained model using examples that come from a
mixture of domains and are without domain or class labels.
To answer this new challenging adaptation problem, we have
developed a novel solution based on cross-attention that is
able to automatically select relevant examples and use them
for fast feed-forward adaptation that happens in real time.
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