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Abstract

Large-scale foundation models, such as CLIP, have
demonstrated impressive zero-shot generalization perfor-
mance on downstream tasks, leveraging well-designed lan-
guage prompts. However, these prompt learning techniques
often struggle with domain shift, limiting their generaliza-
tion capabilities. In our study, we tackle this issue by
proposing STYLIP, a novel approach for Domain Gener-
alization (DG) that enhances CLIP’s classification perfor-
mance across domains. Our method focuses on a domain-
agnostic prompt learning strategy, aiming to disentangle the
visual style and content information embedded in CLIP’s
pre-trained vision encoder, enabling effortless adaptation to
novel domains during inference. To achieve this, we intro-
duce a set of style projectors that directly learn the domain-
specific prompt tokens from the extracted multi-scale style
features. These generated prompt embeddings are subse-
quently combined with the multi-scale visual content fea-
tures learned by a content projector. The projectors are
trained in a contrastive manner, utilizing CLIP’s fixed vi-
sion and text backbones. Through extensive experiments
conducted in five different DG settings on multiple bench-
mark datasets, we consistently demonstrate that STYLIP
outperforms the current state-of-the-art (SOTA) methods.

1. Introduction
Advancements in large-scale vision and language mod-

els, such as CLIP [50] and ALIGN [18], have made remark-
able progress in computer vision tasks. These models em-
ploy contrastively trained vision and text encoders to cap-
ture semantically meaningful concepts in a shared embed-
ding space. They demonstrate impressive zero-shot gen-
eralization performance using text prompts like A photo
of a [CLS]. However, designing an optimal prompt is
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Figure 1. The performance of different DG techniques for the
DomainNet [48] dataset for both the RN-50 and ViT backbones.
Zero-shot CLIP falls behind SOTA traditional DG models like
SWAD [6], indicating poor generalization. However, incorporat-
ing domain identifiers in prompts boosts baseline CLIP’s perfor-
mance. Finally, STYLIP outperforms the previous best prompting
techniques [10, 22, 74] substantially, highlighting the importance
of style and content disentanglement in the prompts for DG tasks.

challenging, and recent studies focus on data-driven prompt
optimization [69]. Despite their success, prompt learning
is limited to the training data distribution and is suscep-
tible to domain shift [9]. Domain shift, common in real-
world applications, poses challenges as deep learning mod-
els are sensitive to differences between training and test data
distributions [17]. To tackle this, researchers explore Do-
main Generalization (DG) [28, 67, 71], which aims to learn
a domain-agnostic representation from multiple datasets
sourced from different domains for application to novel tar-
get domains. Traditional DG techniques rely on vision en-
coders trained exclusively on image data [70,72,73]. Recent
efforts combine foundation models with prompt engineer-
ing [50, 69] to bridge the semantic gap, but their practical
applicability in DG settings requires further exploration.

In this paper, we focus on a more challenging setting
where significant visual variations exist across different do-
mains, unlike existing prompting methods [38, 68, 69, 74]
that evaluate CLIP’s generalization capabilities on datasets
with limited domain shift (e.g., variants of ImageNet [24]).
Fig. 1 illustrates the average multi-source DG performance
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on DomainNet [48], where zero-shot CLIP [50] underper-
forms compared to the best traditional DG model, SWAD
[6], by approximately 2.5%. Using a domain-conditional
prompt (A [Domain] of a [CLS]) boosts CLIP’s ac-
curacy by nearly 3%, highlighting the importance of a rep-
resentative prompt for DG. However, domain-level annota-
tions are not always available, and the static domain name
may not capture the style properties characterizing the do-
mains [42]. Existing specialized prompt-tuning techniques
[64, 68, 74] improve CLIP’s performance (Fig. 1), but their
effectiveness for DG is uncertain as prompts refined from
random vectors may not effectively encode domain knowl-
edge [68, 74]. Zhang et al. [64] propose a domain-prompt
initialization strategy based on batch statistics of visual fea-
tures but overlook important lower-level style characteris-
tics and consider domain-level supervision. Another recent
approach [45] learns prompts from CLIP without utilizing
visual samples from the source domains but incorporates
textual domain knowledge.

These discussions highlight a research gap in learning
prompts that account for unknown domain shifts without
explicit domain identifiers. We argue that leveraging visual
features in such scenarios is crucial, along with dynamically
incorporating object-level variations into the prompts to aid
in cross-domain generalization tasks [68]. Motivated by
these considerations, our research question is whether we
can utilize CLIP’s vision backbone to encode image style
and content information for learning domain and instance-
aware prompts to address DG.

Our proposed STYLIP: We introduce STYLIP, a novel
generic prompt tuning strategy for CLIP that addresses
these challenges. Our approach aims to enhance the
prompts’ understanding of class concepts by condition-
ing them on domain and content information derived from
CLIP’s visual space. To achieve this, we leverage the hy-
pothesis that instance-wise feature statistics from interme-
diate layers of an image encoder capture the visual domain
information [35]. We extract mean and standard devia-
tion values from CLIP’s intermediate feature map outputs
and utilize a set of STYLE PROJECTORS to learn domain-
specific tokens in the prompts. Unlike existing models such
as [68,69,74] that learn prompt token embeddings from ad-
hoc sentences, our approach benefits from using style fea-
tures at different scales, which leads to improved domain-
aware prompts and better prompt initialization.

Additionally, we propose to incorporate image content
information into the prompt embeddings to capture object-
level variations and avoid overfitting to the training classes,
which is particularly important in DG scenarios concerning
disjoint training and test classes. While Zhou et al. [68]
addresses this issue by adding high-level semantic features
from CLIP’s vision encoder to prompt tokens, we consider
a DG setting where the distributions of training and test

classes differ [40]. To achieve this, we combine visual fea-
ture responses from different layers of CLIP’s vision en-
coder and aggregate them through a CONTENT PROJEC-
TOR. By encoding mid- to high-level image characteris-
tics that are more generic across categories [66], we aim to
enhance transferability across domains/classes. Unlike the
literature [22, 68], we propose a learnable fusion network
to aggregate these visual features with the final prompt em-
beddings obtained previously.
Contributions: We highlight our major contributions as:
- We introduce STYLIP, a domain-unified prompt learning
strategy that leverages CLIP’s frozen vision encoder to ex-
tract the domain and content information from an image and
deploy them in prompt learning through light-weight learn-
able style and content projectors.
- We acquire prompt tokens from visual style features at
various scales, facilitating the consolidation of hierarchi-
cal domain knowledge, thereby assisting in generalization
across different domains. Moreover, we incorporate multi-
scale visual content information into prompt embeddings,
effectively mitigating overfitting and promoting generaliza-
tion across different categories.
- We showcase the performance of STYLIP for multiple
datasets on five major DG tasks: i) single-source and multi-
source DG, ii) cross-dataset DG, iii) in-domain base to
novel class DG, and iv) cross-domain base to novel class
DG, a novel task we introduce in the context of prompting.
Experimentally, STYLIP outperforms the competitors in all
tasks at least by 0.2−4%. To our knowledge, ours is the first
attempt to extensively study the DG problem using CLIP.

2. Related Works
Domain generalization. The DG problem has different
variations. Single-source DG [49, 60] trains with one do-
main, while multi-source DG [11,21,72] considers training
multiple domains simultaneously. In a closed-world set-
ting, where the label set is shared across domains, DG ap-
proaches commonly address domain shift. Heterogeneous
DG [36, 58] faces additional challenges due to different la-
bels between the source and target domains. Previous re-
search on DG proposed methods such as domain alignment
losses [20, 32, 33, 59], self-supervised learning [5], ensem-
ble learning [62], domain-specific networks [41], and meta-
learning [47]. However, these methods often require more
training domains, which can influence DG performance. To
overcome this, novel pseudo-domains have been generated
using domain augmentation approaches [21, 34, 72, 73]. In
single-source DG models [49, 60, 65], diverse styles can be
synthesized by perturbing the source domain through en-
tropy maximization, meta-learning, and adversarial learn-
ing. Conversely, methods for heterogeneous DG [31,37,72]
aim to improve model generalizability for novel tasks.

DPL [64] used CLIP [50] for multi-source DG by in-
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ferring domain information from batch-wise visual fea-
tures. However, DPL doesn’t fully leverage CLIP’s abil-
ity to extract domain-specific artifacts and can overfit with
small batches due to challenges in obtaining an unbiased
style estimate. Researchers have explored domain invariant
prompts [26, 45] through text-based source domain knowl-
edge or image patches for prompt input in ViT models,
similar to VPT [19]. Our STYLIP approach differs from
[26, 45, 64] by considering style features at different visual
encoder levels to learn individual prompt tokens and explor-
ing multi-scale visual features in prompt learning, which
have been successful in various DG tasks.

In a recent study, Cumix [40] combines DG with the no-
tion of zero-shot learning [61] for the recognition of new
domains and classes. The following research investigated
the use of structured multimodal information [8] or disen-
tangled feature learning [43] for similar aims. Our proposed
experimental setup for a base to novel class generalization
is identical; however, we are interested in analyzing the per-
formance of the prompting techniques for VLMs in this re-
spect, contrary to the more ad-hoc models mentioned above.
Prompt tuning for vision-language models (VLMs).
VLMs have gained attention in language processing and
computer vision [2, 3, 14, 25, 51, 54, 55]. These models uti-
lize task-centric textual descriptions for visual data [15,16].
Earlier prompting strategies were manual but later works
focused on prompt learning. CoOp [69] optimized unified
and class-specific prompts through back-propagation. Co-
CoOp [68] addressed CoOp’s generalization issue through
input-conditioned prompt learning. CLIP-adapter [10] pro-
posed fine-tuning feature adapters in visual and language
branches. ProGrad [74] prevents knowledge forgetting
from the foundation model. TPT [53] utilizes consistency
among multiple image views for supervision. Probabilistic
and variational models [38, 39] learn prompt distributions
to match visual feature spreads. LASP [4] improves the
learned prompt via text-to-text cross-entropy loss. MaPle
[22] enhances compatibility between CLIP encoders at dif-
ferent levels. However, these approaches are not tailored
to deal with multi-domain data. In opposition, we intro-
duce the notion of visual content-style disentanglement for
prompt learning for DG tasks using CLIP.

3. Proposed Methodology
3.1. Problem and notation

The DG problem involves N labelled source domains
Si = {xk

i , y
k
i }

ni

k=1 ≈ PSi

data, 1 ≤ i ≤ N , where xi ∈ X i,
yi ∈ Y , and PSi

data denote the input data, label, and the joint
distribution concerning the data and the label space, respec-
tively. Furthermore, PSi

data ̸= PSj

data ∀i, j ∈ {1, 2, · · · ,N},
indicating that the source domains are mutually distinct. We
call the setting single-source DG if N = 1, else it is known

as multi-source DG. The goal is to train a model f : X → Y
given S = {Si}Ni=1, which is expected to generalize for a
novel target domain SN+1 = {xk

t , y
k
t }

nt

k=1 unseen during
training with xt ∈ X t and yt ∈ Yt and P t

data denotes the
target distribution which is different from the source distri-
butions. Typically, we consider a closed-set setting where
Y ∪ Yt = Y ∩ Yt. Also, for the base to new class general-
ization setting, we consider Y ∩ Yt = ∅.

3.2. The STYLIP model

Here, we introduce STYLIP, a novel approach for DG
based on CLIP [50]. STYLIP leverages CLIP’s frozen vi-
sion encoder (fv) and text encoder (ft), trained on a large
volume of image-text pairs (see Fig. 2). fv that transforms
an input image into a feature embedding vector can be im-
plemented with different architectures: in our experiments
(see Section 4), we consider ResNet-50 (RN50) [13], and
ViT-B/16 [12]. ft is built upon a Transformer [56]: it is
provided with an input of a sequence of word tokens and
converts them into a vectorized representation.

As stated, STYLIP seeks to utilize the multi-scale vi-
sual features extracted from different levels of fv to esti-
mate the style and content primitives and further channel
them in learning a generic prompt space regarding a con-
cept. Typically, high-level representations of the deepest
layer of a vision encoder tend to capture the abstract ob-
ject semantics suitable for classification but suffer from a
lack of description of local patterns like oriented edges or
local shapes [66]. Therefore, the set of characteristics ob-
tained from multiple levels is deemed more transferable be-
tween tasks than the high-level features alone. Similarly,
the instance-wise feature statistics calculated from multiple
layers of the encoder capture different levels of style, e.g.,
the texture in the top layers usually has larger granularity
than those in the bottom layers [1].

To model a continuous prompt embedding space using
these multilevel visual features, STYLIP (see Fig. 2) adopts
a set of projector networks on top of fv and ft: a set of M
style projectors {Pm}Mm=1 to encode domain characteristics
into M prefix tokens {cm}Mm=1, a content projector PC to
encode feature responses from all the L encoder layers of
fv after reducing their dimensions using bottleneck layers
{Bl}Ll=1, and a fusion projector PA. We discuss the struc-
ture of the proposed projectors in detail below.
Embedding multi-level style information into prompt to-
kens: For calculating the style features, let us consider the
vector Fl(x) = [µ⃗l(x); σ⃗l(x)] denoting the channel-wise
mean and standard deviation of the feature map outputs
from the lth layer ( 1 ≤ l ≤ L) of fv , also indicated as
f l
v(x). Here, [−;−] denotes the concatenation operation.

Specifically, if f l
v(x) is of dimensions W ×H ×C (height,

width, and depth dimensions), the statistics corresponding
to the cth feature map f lc

v , (µc
l , σ

c
l ), are calculated as:
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where

Input Image
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Image Features

CoOp

DPL

Ad-hoc Prompt with Domain Name

CoCoOp

Figure 2. STYLIP generates a joint embedding space for image and prompt embeddings, leveraging style and content information extracted
from the vision encoder fv . The projectors {Pm}Mm=1, {Bl}Ll=1, and PC adapt these features for the target task. For each image x, the
style features from layer m of fv are used to learn the mth token of the prompt, cm(x), through the style projector Pm. Similarly, the
multi-scale content features are aggregated using PC after dimensionality reduction by the bottleneck networks Bl. The fusion projector
PA computes the classification weights. Unlike existing prompt tuning techniques (CoOp, CoCoOp, and DPL), STYLIP differs in its
approach. vm represents the prompt learner from a random vector, and Xd

b denotes a batch of samples for domain d.

µc
l =

1

WH

W,H∑
w,h=1

f lc
v (x)w,h (1)

σc
l =

√√√√ W,H∑
w,h=1

(f lc
v (x)w,h − µc

l )
2 (2)

In the simplest case, when the context length M equals
the number of encoder layers L, we seek to learn the mth

context vector cm from Fm(x). Considering that the di-
mensions of Fm(x)s are inconsistent and to appropriately
input Fm into the text encoder ft, we deploy the style pro-
jectors {Pm}Mm=1 and compute cm(x) = Pm(Fm(x)), i.e.
the mth context vector for the text prompt. We define

ty = [c1(x)][c2(x)] · · · [cM (x)][CLSy] (3)

as the prompt for (x, y) where [CLSy] is the word embed-
ding of label y. Finally, ft generates the embedding ft(ty).

However, the context length in prompting is a hyper-
parameter, meaning an M different from L may be pre-
ferred for a given task. To incorporate this flexibility in
our prompt learning, we consider aggregation or replication
of representations from {Fl(x)}Ll=1 depending on whether
M < L or M > L, respectively.
Supplementing the prompt embeddings with multi-scale
image content features: The paradigm of ty considers the
information of the visual style of the images, but a static
class embedding CLSy for all images with the label y may
limit its versatility. To further generalize the prompt em-
beddings, we propose to supplement ty with content image
information. As discussed, we extract multiple complemen-
tary visual characteristics associated with an image by ag-
gregating the multilevel feature responses obtained from the
L blocks of fv .

One naive way to combine this multilevel information
is by flattening the feature maps of individual blocks, fol-

lowed by concatenation. However, this leads to a very high-
dimensional vector representation compared to the dimen-
sionality of ty , undermining the effects of ty in the final
classification weights. As a result, the contrastive task may
lead to triviality. We propose reducing the feature maps’
dimensions before concatenation as a remedy. This also
shrinks the size of the inputs to PC , thus controlling its
number of learnable parameters and the amount of infor-
mation exchanged by the two encoders.

Precisely, given the lth-layer feature maps f l
v(x), we

perform 1 × 1 convolution followed by flattening using Bl

to reduce the channel depth of f l
v(x) from original C to

Ĉ << C, resulting in Bl(f
l
v(x)) ∈ RWHĈ×1. Finally, we

concatenate the B(f l
v(x))s to obtain f̂v(x):

f̂v(x) = [B1(f
1
v (x));B2(f

2
v (x)); · · · ;BL(f

L
v (x))] (4)

The content projector PC learns the combined image
embedding PC(f̂v(x)) through a linear transformation. To
generate the classification weights for a given (x, y), we
first concatenate PC(f̂v(x)) with ft(ty) and transform the
aggregated information through the fusion projector PA to
obtain t̂(x, y) as follows:

t̂(x, y) = PA([PC(f̂v(x)); ft(ty)]) (5)

3.3. Training and inference

The projectors are trained using a contrastive loss Lcon

between t̂(x, y) and the image features obtained from the
final embedding layer of fv , i.e., fv(x), as follows:
Lcon = argmin

{Pm}M
m=1,

{Bl}L
l=1,PC ,PA

E
(x,y)∼PS

data

− log(p(t̂(x, y)∥x)) (6)

where PS
data is the joint data distribution of S and

p(t̂(xk, yk)∥xk) =
eδ(t̂(x

k,yk),fv(x
k))/τ∑

n∈Y
eδ(t̂(xk,n),fv(xk))/τ

(7)
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δ defines the cosine similarity and τ is the temperature
hyperparameter. The contrastive loss synergistically max-
imizes the similarity between the image and the correct
class prompt embeddings while minimizing the similarity
between the image and all the opposing classes.

During inference, we calculate the compatibility be-
tween fv(xt) and the prompt embeddings for all classes in
Yt. The class with the highest compatibility is selected as:

ŷt = argmax
n∈Yt

p(t̂(xt, n)∥xt) (8)

4. Experimental Results
Datasets: We evaluate STYLIP over five benchmark
datasets for multi-source and single-source domain gener-
alization, namely Office-Home [57], PACS [29], VLCS
[30], Digits-DG [72] ], and DomainNet [48]. We fur-
ther analyze the performance of STYLIP for cross-dataset
generalization, where STYLIP is trained on ImageNet
[24] and tested on ten other different datasets [69]. Detailed
descriptions of the datasets are provided in SUPPLE.
Implementation, training, and evaluation protocols: We
implement the projectors in (PC ,PA, {Pm}Mm=1) as single
dense layers. We train the model with Adam optimizer [23]
with a learning rate of 2e − 2 and betas (0.9, 0.999). We
consider a context length of four for all the experiments fol-
lowing [68, 69]. For RN50, we consider the feature map
outputs from the four convolution stages to extract the style
and content features, hence L = M = 4. For ViT-B/16,
we obtain the embedding outputs from the L = 12 encoder
layers. We further average the features for every three con-
secutive layers of fv in a bottom-up manner without overlap
to generate four intermediate feature representations, which
are subsequently used to produce four distinct domain in-
formation vectors to be passed to {Pm}4m=1. As we show
in Fig. 3, the feature statistics capture the domain informa-
tion in ViT-based prompt learning for STYLIP, similar to
RN50. We fix the number of output channels of the bot-
tleneck Ĉ = 3 using cross-validation, where 10% images
from each source domain are treated as the validation set.
We further ablate Ĉ in Section 4.2 to check other architec-
ture choices. Finally, we consider a mini-batch size of 4
for DomainNet and Office-Home, while it is 8 for the other
datasets, and we train the model for 10 epochs. We report
the average top-1 classification performance on SN+1 over
three different executions. In terms of model complexity,
STYLIP is extremely light-weight and consists of 0.18%
more parameters than CoOp and CoCoOp and 0.06% more
parameters than MaPLe.
Baselines: We consider three types of methods for com-
parison to check the generalizability of pre-trained CLIP
features and that of the prompting strategies. Our base-
line is zero-shot CLIP with the prompt as ‘A Photo of
a [CLS]’. We also include domain name in the prompt as

DPL STYLIP

Figure 3. t-SNE visualization of the prompt embedding outputs
from ft for DPL [64] and STYLIP for multi-DG on PACS dataset.
All the domains are highly clustered in STYLIP.

‘A [Domain] of a [CLS]’. We use CLIP features to
train a linear classifier, which we term Linear Probing. Fur-
thermore, we deploy these features in conjunction with the
benchmark DG technique of CROSSGRAD [52], where we
put the learnable networks on top of frozen CLIP for back-
propagation training. From the traditional DG literature,
we report the performance of SWAD [6] for Multi-DG and
SagNet [44] and DSBF [63] for Single-DG, respectively.
Furthermore, we choose to compare STYLIP with exist-
ing prompt learning techniques including CoOp [69], Co-
CoOp [68], CLIP-Adapter [10], DPL [64], ProGrad [74],
VPT [19], CSVPT [26], MaPLe [22] and, TPT [53], etc.

Finally, we evaluate three variants of STYLIP intend-
ing to ablate the individual components of our approach:
i) {Pm}Mm=1 are trained from random vectors (similar to
CoOp), but we consider the multi-scale content feature
learning of STYLIP through ({Bl}Ll=1,PA,PC), respec-
tively. (STYLIP-con). This establishes the importance of
including the visual style information in the prompt tokens.
ii) the model without content features and ({Bl}Ll=1,PC)
but with {Pm}Mm=1 (STYLIP-sty). This is to verify the
importance of the multi-scale content features, and iii) the
version of STYLIP where the features of the deepest layer
of fv are used for the content branch together with BL only
(STYLIP*). This is to assess the importance of the multi-
scale content features over the single-scale high-level visual
content properties as used in the literature [68].

4.1. Comparison with state-of-the-art

We discuss the experimental comparisons of STYLIP
with the literature in the following order of the DG tasks:
i) multi-source DG, ii) single-source DG, iii) cross-domain
base to novel class DG, iv) in-domain base to novel class
DG and, v) cross-dataset DG, respectively. We follow the
leave-one-domain-out evaluation protocol for multi-source
DG where all the domains except one are considered source
domains while the model is to be verified on the held-out
target domain. For single-source DG, we train the model on

1Methods are trained for a large number of epochs such as VPT [19]
trains for 100 epochs, whereas STYLIP is trained only with 10 epochs.
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Table 1. Comparison of our proposed STYLIP with the state-of-
the-art methods on PACS, VLCS, Digits-DG, Office-Home, and
DomainNet datasets for multi-source DG in terms of mean leave-
one-out performance. † uses a different backbone than CLIP. (In
%) #1Methods perform fine-tuning the visual backbones.

Backbone Method PACS VLCS Off.Home Dig.DG Dom.N.

C
L

IP
R

N
50

SWAD† [6] 88.10 79.10 70.60 - 46.50

Lin. Probing 91.65 79.48 70.17 62.22 46.10
CROSSGRAD [52] 91.56 79.63 70.47 62.98 45.64
ZS-CLIP [50] 90.32 76.43 66.75 56.41 44.18
ZS-CLIP + DN 91.86 - 67.93 - 47.50
CoOp [69] 92.28 81.87 71.65 73.11 49.71
CoCoOp [68] 91.64 82.30 71.93 74.58 50.16
CLIP-Adapt. [10] 92.08 82.35 72.18 73.79 50.25
DPL [64] 91.96 82.12 72.54 74.33 50.38
ProGrad [74] 92.01 82.23 71.85 74.45 50.27
TPT [53] 92.16 82.39 72.07 74.68 50.30
STYLIP-con 92.35 84.07 73.89 75.90 51.43
STYLIP-sty 92.96 84.39 74.22 76.21 51.80
STYLIP* 92.47 83.60 73.56 75.81 51.63
STYLIP 93.59 84.83 74.80 76.49 52.29

C
L

IP
V

iT
-B

/1
6

Lin. Probing 96.54 82.63 80.43 70.15 57.46
CROSSGRAD [52] 96.40 83.76 80.55 70.83 57.60
ZS-CLIP [50] 95.81 80.57 78.57 65.79 54.08
ZS-CLIP + DN 96.30 - 79.10 - 56.95
CoOp [69] 97.00 82.98 81.12 76.41 59.52
CoCoOp [68] 96.73 83.59 80.70 78.49 59.68
CLIP-Adapt. [10] 96.41 84.32 82.23 77.86 59.90
DPL [64] 97.07 83.99 83.00 77.32 59.86
ProGrad [74] 96.50 83.82 82.46 78.26 59.65
TPT [53] 96.99 83.72 82.45 78.51 59.87
MIRO [7] 95.80 83.60 82.30 - 57.20
VPT# [19] 97.20 84.90 85.20 - 59.80
CSVPT# [27] 97.30 84.90 85.00 - 60.00
DUPRG# [46] 97.10 83.90 83.60 - 59.60
MaPLe# [22] 97.56 85.12 83.35 - 60.43
STYLIP-con 96.82 85.61 83.90 80.63 61.51
STYLIP-sty 97.25 86.27 84.18 80.91 61.77
STYLIP* 97.11 85.88 83.41 80.56 61.39
STYLIP 98.05 86.94 84.63 81.38 62.02

Table 2. Comparing STYLIP with CLIP-based SOTA methods for
single-source DG on PACS, VLCS, and Office-Home datasets in
terms of mean leave-all-but-one-domain-out performance. (In %)

Backbone Method
PACS VLCS Office Home

SagNet [44] 61.90 - 68.00
DSBF [63] 85.33 - 63.91

CLIP RN50

Lin. Probing 85.67 69.42 65.99
CoOp [69] 89.88 74.04 69.04
CoCoOp [68] 88.69 74.80 69.48
CLIP-Adapter [10] 88.86 75.31 69.29
DPL [64] 89.24 74.86 69.10
Prograd [74] 88.51 75.40 69.49
TPT [53] 88.93 75.02 69.58
STYLIP-con 90.56 75.92 70.41
STYLIP-sty 91.77 76.39 70.87
STYLIP∗ 89.14 75.67 69.85
STYLIP 92.61 77.18 71.60

CLIP ViT-B/16

Lin. Probing 89.85 76.15 77.71
CoOp [69] 95.59 80.10 80.44
CoCoOp [68] 94.92 80.44 81.19
CLIP-Adapter [10] 94.60 80.27 80.86
DPL [64] 94.70 80.58 80.79
Prograd [74] 94.82 80.38 81.37
TPT [53] 95.14 80.57 81.43
MaPLe [22] 95.33 80.15 81.95
STYLIP-con 96.17 81.26 82.79
STYLIP-sty 96.58 82.41 83.58
STYLIP* 95.64 80.82 82.04
STYLIP 97.03 82.90 83.89

one domain and test it on the remaining domains (leave-all-
but-one-domain-out). We consider the standard few-shot
training dataset with 16-shots, following the CLIP litera-
ture [22, 69] for all the tasks. However, we have mentioned
a detailed sensitivity analysis of STYLIP against the num-
ber of available training samples in Fig. 5.
Discussions on multi-source and single-source DG: We
present the mean leave-out performance of PACS, VLCS,
Office-Home, Digits-DG, and DomainNet in Table 1

Table 3. Analysis of the generalization from base to new classes
across domains. We show results on DomainNet with ClipArt act-
ing as the source domain, while others denote the target. The
model is trained (backbone CLIP ViT-B/16) using 16 shots from
the base classes. (In %)

Method

DomainNet

Base New

Clip Art Clip Art Infograph Painting Quick Draw Real Sketch

CLIP [50] 78.00 76.55 49.80 70.84 17.56 88.11 66.54
CoOp [69] 82.79 75.60 48.60 71.38 20.90 85.19 67.39
CoCoOp [68] 82.85 77.40 52.61 72.06 20.80 88.00 68.12
CLIP-Adapter [10] 80.51 76.33 51.70 71.81 20.15 87.30 67.60
DPL [64] 82.35 76.49 52.10 71.88 20.30 87.54 67.73
ProGrad [74] 83.00 77.50 51.44 72.16 20.86 87.11 67.05
MaPLe [22] 82.84 77.61 51.65 71.95 20.51 87.35 67.82
STYLIP-con 83.71 77.86 52.04 72.53 20.97 87.20 67.70
STYLIP-sty 84.19 77.62 52.80 73.00 21.10 87.54 68.29
STYLIP* 83.34 77.30 51.92 72.36 20.93 87.39 67.97
STYLIP 84.90 78.14 53.09 73.60 21.69 87.90 68.61

for both RN50 and ViT-B/16 backbones. Our method,
STYLIP, surpasses zero-shot CLIP, Linear Probing, and do-
main alignment approaches by at least 3% for both back-
bones, achieving state-of-the-art (SOTA) results. Addi-
tionally, STYLIP outperforms competitors, including DPL,
CSVPT, and other prompting methods, across all datasets
and vision backbones. Notably, when using ViT-B/16,
STYLIP achieves outstanding performance with scores of
86.94% on VLCS, 81.38% on Digits-DG, and 62.03% on
DomainNet, surpassing others by at least 3%.

Comparatively, the performance of STYLIP-con is
slightly lower than STYLIP by approximately 0.5-
1.3%, while STYLIP-sty performs marginally better than
STYLIP-con but remains inferior to STYLIP. However,
both STYLIP-sty and STYLIP-con exhibit comparable or
better performance than other prompting methods. The lim-
itations of these variants of STYLIP are that they only cap-
ture partial visual properties, leading to sub-optimal prompt
learning. In contrast, STYLIP fully leverages both style
and content information of images, reducing the gap be-
tween visual and semantic spaces. Moreover, STYLIP out-
performs STYLIP* due to the multi-scale content features,
which are more generalizable than deeper semantically ori-
ented visual representations.

In the single-source DG setting, using PACS, VLCS,
and Office-Home datasets, we report the average leave-
all-but-one-domain-out in Table 2 for all domain combi-
nations. Remarkably, STYLIP achieves a convincing im-
provement of approximately 1.4-2.5% over other prompting
techniques, establishing a new SOTA for single-source DG.
For detailed domain-wise results in both single-source and
multi-source DG setups, please refer to SUPPLEMENTARY.
Generalizing across novel domains and categories: In
this experiment on DomainNet, we consider ClipArt as
the source domain while the others denote the target do-
main. We divide the classes equally, and the model is
trained and tested on the disjoint class sets, following [40].
In Table 3, STYLIP outperforms the other prompting tech-
niques in nine out of ten cases by ≈ 0.3− 4% while gener-
alizing to novel classes from both the source and the target
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Table 4. Comparison with SOTA methods on base-to-new gener-
alization. STYLIP shows better generalization performance over
existing methods on 11 different recognition datasets on 16-shots
and a context length of four. HM is the harmonic mean. (In %)

Average over 11 datasets

Methods Base New HM
CLIP [50] 69.34 74.22 71.70
CoOp [69] 82.69 63.22 71.66
CoCoOp [68] 80.47 71.69 75.83
LASP [4] 82.70 74.90 78.61
MaPLe [22] 82.28 75.14 78.55

STYLIP-con 82.64 75.39 78.85
STYLIP-sty 82.93 75.67 79.13
STYLIP∗ 82.30 75.24 78.61
STYLIP 83.22 75.94 79.41

M = 1 and L = 1 to 4

70

80

90

1 2 3 4

PACS VLCS OfficeHome

L = 4 and M = 1 to 4

70

80

90

1 2 3 4

PACS VLCS OfficeHome

Figure 4. Effects of using style features from an increasing number
of layers from fv for the fixed content features from the Lth layer,
and using content features from an increasing number of layers for
a fixed style feature (M = 1).

domains, respectively. For the Real domain of DomainNet,
STYLIP lags [68] by a mere 0.21%. STYLIP is less prone
to overfitting to the classes of the source domain due to the
better transferability offered by our model through multi-
scale feature embedding. To validate this, we repeat this ex-
periment using the model STYLIP*, which deals with only
the deepest layer visual encodings. Confirming our hypoth-
esis, we find that the performance of STYLIP* is consis-
tently poorer than STYLIP for all cases (≈ 0.2− 1.2%).
In-domain base to novel class generalization: In addi-
tion to the cross-domain generalization to novel categories,
we show the performance of STYLIP on the 11 datasets
[69] where the base and novel classes are divided for each
dataset to define the source and the target domains. A con-
text length of four and 16 samples per class are considered
for training the model. We depict the average performance
over all the datasets in Table 4, which shows that STYLIP
beats the state-of-the-art, CoOp [69], CoCoOp [68], LASP
[4], and MaPLe [22] convincingly by more than 0.8% on
average H-score (H-score is the harmonic mean of the base-
class and novel-class accuracies). Specifically, STYLIP is
better than CoOp and CoCoOp by ≈ 8% and 4%, respec-
tively. We observe that STYLIP is able to beat the others
both for the base as well as novel classes. This is important
since the existing methods are mostly found to boost the
performance of novel classes at the cost of decreasing base
class performance. Refer to Supplementary for the de-
tailed results.
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Figure 5. Sensitivity of prompting techniques (with ViT-B/16) on
the context length (M ) and the number of training samples per
class. We show the average performance for multi-source DG on
the PACS dataset.

4.2. Ablation analysis

Generalization across datasets: Following the literature
[69], we perform prompt learning using 16-shots from the
1000 classes of ImageNet (source) and test on the other 10
datasets (target). On the source domain, STYLIP beats the
recent [22] by almost 1.6% (Table 5). In contrast, for more
specialized target datasets, such as DTD, EuroSAT and FG-
VAircrafts, STYLIP beats the other competitors. For the
fine-grained datasets, STYLIP shows improvements up to
2%, exhibiting much stronger transferability.
Analysis of multi-scale features: For the PACS and VLCS
datasets with RN50, we conducted two experiments to in-
vestigate the impact of multi-scale features from fv on per-
formance. In the first experiment, we focused on the con-
tent feature corresponding to the Lth layer of fv , varying
M from 1 to 4 for the style features. In the second experi-
ment, we fixed M = 1 for the deepest layer style features
and varied L from 1 to 4 for the content features. As shown
in Figure 4, increasing the number of layers for both style
and content features positively influenced the performance.

In another experiment, we seek to show the usefulness of
the multi-scale content features. In this regard, we compare
STYLIP with a multi-scale version of CoCoOp [68] where
we combine the multi-scale features to the input tokens in-
stead of the deepest layer features as done in the CoCoOp
paper. It can be observed from Tab. 6 that STYLIP is able
to beat MS-CoCoOp on multiple datasets for the Multi-DG
task. This can be attributed to the improved prompting of
STYLIP using the disentangled style and content features.
Context length (M): As we mention in Fig. 5, we
evaluate the effects of different context lengths for multi-
source DG on PACS using the ViT backbone. We find
that STYLIP outperforms the other techniques, including
[10, 64, 68, 69, 74] for context lengths of 1, 4, 6, 12, and 16.
To generate the style primitives for M = 16, we choose to
replicate the feature statistics vectors for the final four en-

5548



Table 5. Comparison of STYLIP with the prompt benchmark methods for generalization across datasets. We train the model on ImageNet
using 16-shots with CLIP ViT-B/16 and test on 10 other datasets. (In %)

Method Source Target

ImgNet. C101 Pets Cars Flowers Food Aircraft Sun397 DTD EuroSAT UCF101 Average

CoOp [69] 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
CoCoOp [68] 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
MaPLe [22] 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
STYLIP-con 71.44 94.96 90.75 66.83 72.14 87.56 24.88 67.45 46.63 47.72 68.85 66.47
STYLIP-sty 72.05 95.13 91.44 67.02 72.29 88.31 25.17 67.92 47.64 48.09 69.12 67.25
STYLIP∗ 70.93 93.87 90.53 65.75 72.00 86.85 24.63 67.30 46.53 47.92 68.74 66.41
STYLIP 72.30 95.45 91.60 67.09 72.36 88.60 25.21 68.11 47.86 48.22 69.30 67.38

Table 6. Comparison of our proposed STYLIP with CoCoOp, in-
cluding its extension with multi-scale features on the meta net-
works for PACS, VLCS, and Office-Home datasets for multi-
source DG in terms of mean leave-one-out performance. (In %)

Backbone Method
PACS VLCS Office Home

CLIP RN50

CoCoOp [68] 88.69 74.80 69.48
MS-CoCoOp 89.15 75.90 69.72
STYLIP 92.61 77.18 71.60

CLIP ViT-B/16

CoCoOp [68] 94.92 80.44 81.19
MS-CoCoOp 95.14 81.06 81.93
STYLIP 97.03 82.90 83.89

Table 7. Ablation analysis of STYLIP for multi-source DG on
PACS and Office-Home (OH) using ViT-B/16 backbone. (In %)

Baselines PACS OH

Late Fusion Projector (max-pool) 95.33 82.10
Late Fusion Projector (average pool) 93.21 81.33

Depth of {Pm}Mm=1 and PC (2 Layers) 97.28 84.47
Depth {Pm}Mm=1 and PC (3 Layers) 97.43 84.40

{Pm}Mm=1 Only (µ) 96.81 83.26
{Pm}Mm=1 Only (σ) 97.00 83.42

{Bl}Ll=1 (GAP over the spatial dimensions of the feature-maps) 97.64 83.99
{Bl}Ll=1 (only flatten) 97.30 83.57
{Bl}Ll=1 (conv 1x1 with Ĉ = 2) 97.57 83.79
{Bl}Ll=1 (conv 1x1 with Ĉ = 4) 97.92 84.33
{Bl}Ll=1 (conv 1x1 with Ĉ = 16) 96.44 83.10

STYLIP (Ĉ = 3) 98.05 84.63

coder layers, i.e., F9−12(x), in addition to that of the orig-
inal 12 layers and feed them to {Pm}16m=1. A context of 4
provides the optimal performance for STYLIP. We further
find that a longer context length drastically deteriorates the
performance of [68, 74], while STYLIP performs consis-
tently across all context lengths.
Sensitivity to the number of training samples: To as-
sess the robustness of STYLIP versus the number of train-
ing samples for the conventional DG setting, we train the
single-source DG model on PACS while varying the number
of training samples per class in the range [1, 5, 10, 16, All].
As shown in Fig. 5, the DG performance of [68, 69] de-
grades in the low-data regime, while [10,64,74] shows com-
paratively better performance. Finally, STYLIP maintains
its superior performance for very few training samples and
shows improvements with more shots.
Depth of style and content projectors: To check the sen-
sitivity of STYLIP on the depth of {Pm}Mm=1 and PC , we
consider cases of multi-source DG where the projectors are
two-layers and three-layers deep with a consistent number
of nodes per layer, respectively, in PACS and Office-Home
(Tab. 7). We find that performance decreases marginally
with increasing depth: 0.6−0.8% for PACS and 0.2−0.4%

for Office-Home than STYLIP with linear projectors, sug-
gesting STYLIP is indeed lightweight.
Learnable vs. non-learnable PA: Typically, PC and ft
produce feature embeddings of similar dimensions; hence,
one way to fuse them in PA is through element-wise feature
pooling. In this regard, we use the max and average feature
pooling strategies and observe in Tab. 7 that such aggrega-
tions affect the performance, reducing the multi-source DG
accuracies on PACS and Office-Home by ≈ 2− 3% in max
pooling and ≈ 4− 5% in average pooling than STYLIP.
Analysis of style features: Typically, the mean and std.
of the feature maps together are known to capture the vi-
sual style information. To validate the same, we study the
model’s performance with either mean or std. being used
as input to the style projectors. In this regard, we see a de-
crease in the performance of 1− 2% compared to STYLIP,
suggesting the importance of both statistical estimates. In-
terestingly, we see better accuracy when only std. is used
for context learning than only mean (Tab. 7).
Sensitivity to the depth of the bottleneck layer Ĉ: We
consider different Ĉ values in the range 2, 3, 4, 16 to see the
effects of the bottleneck dimensions in the final accuracy
(Tab. 7). While Ĉ = 3 provides the best performance, we
see the numbers decreasing from Ĉ = 4 onwards, finally
producing a dip of almost 1.5% for Ĉ = 16. Besides, we
consider the scenario where 1×1 convolutions are not used,
and we perform global average pooling (GAP), or directly
flatten the feature maps and then concatenate. Both options
perform poorly compared to STYLIP by 0.5− 1%.

5. Takeaways
In this paper, we aim to address the challenge of domain

shift in DG tasks by proposing STYLIP, a domain-agnostic
prompt learning strategy for CLIP. By disentangling and in-
corporating multi-scale visual style and content information
from CLIP’s frozen vision encoder into the prompt learning
process, we enhance its generalizability. Extensive evalua-
tions on various cross-domain inference tasks demonstrate
the consistent state-of-the-art performance of STYLIP. Our
study on task-generalizable prompt learning paves the way
for new research opportunities in computer vision. Fu-
ture directions could explore domain-aware prompt learning
with different foundation models and extend the proposed
approach to structured prediction tasks.
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