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Abstract

Surface reconstruction from multi-view images is a chal-
lenging task, with solutions often requiring a large number
of sampled images with high overlap. We seek to develop
a method for few-view reconstruction, for the case of the
human foot. To solve this task, we must extract rich geo-
metric cues from RGB images, before carefully fusing them
into a final 3D object. Our FOUND approach tackles this,
with 4 main contributions: (i) SynFoot, a synthetic dataset
of 50,000 photorealistic foot images, paired with ground
truth surface normals and keypoints; (ii) an uncertainty-
aware surface normal predictor trained on our synthetic
dataset; (iii) an optimization scheme for fitting a genera-
tive foot model to a series of images; and (iv) a benchmark
dataset of calibrated images and high resolution ground
truth geometry. We show that our normal predictor out-
performs all off-the-shelf equivalents significantly on real
images, and our optimization scheme outperforms state-of-
the-art photogrammetry pipelines, especially for a few-view
setting. We release our synthetic dataset and baseline 3D
scans to the research community.

1. Introduction
3D reconstruction of human body parts from images is a

challenging computer vision task, of significant interest to
the health, fashion and fitness industry. In this paper, we
address the problem of human foot reconstruction. Shoe
retail, orthotics, and personal health monitoring all bene-
fit from accurate models of the foot, and the growth of the
digital market for these industries has made the prospect of
recovering a 3D foot model from images very appealing.

Existing solutions for foot reconstruction fit into one of
four categories: (i) expensive scanning equipment [2, 6, 7];
(ii) reconstruction of noisy point clouds, e.g. from depth
maps [30] or phone-based sensors such as a TrueDepth
camera [8]; (iii) Structure from Motion (SfM) followed by
Multi-View Stereo (MVS) [34, 35]; and (iv) fitting genera-
tive foot models to image silhouettes [26].

Figure 1. Method overview: (a) we use Blender [17] to syntheti-
cally render foot images, masks, surface normals, and keypoints;
(b) we train a normal predictor on this data; (c) we predict nor-
mals on real images and optimize in a multi-view, calibrated setup
to reconstruct the foot, evaluating on a ground truth scan.

We find none of these solutions are satisfactory for
accurate scanning in a home setting: expensive scanning
equipment is not accessible to most consumers; phone-
based sensors are limited in availability and ease of use,
and noisy point clouds are difficult to use for downstream
tasks such as rendering and taking measurements; SfM is
dependent on a large number of input views to match dense
features between images, and MVS can also produce noisy
point clouds; and (until recently) foot generative models
have been low quality and restrictive, and using only
silhouettes from images limits the amount of geometrical
information that can be obtained from the images, espe-
cially problematic in a few-view setting. The performance
of these methods is also limited by the lack of paired im-
ages and 3D ground truth data for feet available for training.
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To this end, we introduce FOUND, Foot Optimisation
using Uncertain Normals for surface Deformation - which
seeks to improve on typical multi-view reconstruction opti-
mization schemes by leveraging per-pixel surface normals
along with uncertainties. Similar to [26], our method only
requires a small number of calibrated RGB images as input.
While [26] relied only on silhouettes (which lack geometric
information), we exploit additional cues - surface normals
and keypoints. To address the lack of data, we also release a
large-scale dataset of photorealistic synthetic images paired
with ground truth labels for such cues. We outline our key
contributions as follows:

• To facilitate research on 3D foot reconstruction, we
release SynFoot, a large-scale synthetic dataset of
50,000 photorealistic foot images, coupled with ac-
curate silhouette, surface normal, and keypoint labels.
While collecting such data for real images requires ex-
pensive scanning equipment, our dataset is highly scal-
able. Despite only containing 8 real world foot scans,
we show that our synthetic dataset sufficiently captures
variation within foot images enough for downstream
tasks to generalize to real images. We also release an
evaluative dataset of 474 images of 14 real feet, each
paired with ground truth per-pixel surface normals and
a high-resolution 3D scan. Finally, we release our cus-
tom Python library for generating large scale synthetic
datasets efficiently using Blender [17].

• We demonstrate that an uncertainty-aware surface
normal estimation network, trained purely on our
synthetic data from 8 foot scans, generalizes to real in-
the-wild foot images. We use aggressive appearance
and perspective augmentation to close the domain gap
between synthetic and real foot images. The network
estimates per-pixel surface normals and corresponding
uncertainty. The uncertainty is useful in two regards:
we can get accurate silhouettes for free (i.e. without
training a separate network) by thresholding the un-
certainty; and we can use the estimated uncertainty
to weight the surface normal loss in our optimization
scheme, increasing robustness against potential inac-
curacy of the predictions made in certain views.

• We propose an optimization scheme capable of fitting
a generative foot model [13] to a set of calibrated im-
ages with predicted surface normals and keypoints via
differentiable rendering. Our pipeline is uncertainty-
aware, capable of reconstructing a watertight mesh
from very few views, can be applied to data collected
from a consumer mobile phone, and beats state-of-the-
art photogrammetry for surface reconstruction.

2. Related work
Synthetic dataset generation. In recent years, the capa-
bilities for rendering photorealistic images in large quanti-
ties has improved significantly. This has resulted in a grow-
ing interest in generating high quality synthetic datasets for
computer vision tasks. Synthetic data has the benefits of
being much more scalable, cheap and accurate than typical
data collection pipelines - especially for tasks difficult or
impossible for human labellers. Many works have shown
that synthetic data can be used as the primary source of
training data for various deep learning problems. For hu-
man body reconstruction tasks, synthetic data has been used
for bodies [36], faces [11, 37], and eyes [38].

Single-image surface normal estimation. The goal of
this problem is to estimate the pixel-wise surface normal,
defined in the camera reference frame. While classical ap-
proaches [20, 27] relied on handcrafted image features and
simplified the problem by discretizing the output and solv-
ing a classification problem, recent methods [10,18,28] use
deep neural networks to directly regress the per-pixel nor-
mal. Unlike depth, surface normals are not affected by scale
ambiguity and can be estimated from low-level cues like
edges and shading [10], improving generalization. We fol-
low the approach by Bae et al. [10] to quantify the uncer-
tainty associated with the normal predictions and use it to
improve the robustness of our foot optimization.

Normal integration. A surface normal map can be inte-
grated to recover 3D shape up to a scale ambiguity. Meth-
ods like [15, 16] optimize per-pixel depth such that the nor-
mal map computed from the depth map is consistent with
the input normal map. However, such methods (1) cannot
recover the scale, (2) are not applicable for multi-view im-
ages, (3) are unable to reconstruct unseen parts of the ob-
ject and (4) are not uncertainty-aware (i.e. sensitive to in-
accurate normal predictions). Conversely, we optimize the
foot shape based on multi-view uncertainty-aware normal
and keypoint constraints, so that the contribution of high-
uncertainty predictions can be down-weighted. The opti-
mized foot shape is both water-tight and accurately scaled,
useful for commercial applications like virtual shoe try-on.

Human foot reconstruction. Human foot reconstruction
is a task of interest to the footwear and orthotics industries.

Some foot reconstruction methods seek to reconstruct
point clouds of feet [30], often leveraging LiDAR or
structured light sensors available in some modern mobile
phones. These sensors are not ubiquitous however, and
these often noisy point cloud reconstructions are limited in
their use for downstream tasks, often useful only to take a
small number of measurements of the foot.
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Other methods fit a generative model to predicted image
silhouettes [26]. Building statistically-derived generative
models for feet is difficult, in part because there are no large
scale datasets available to the research community, outside
of population measurement statistics [21, 22]. While gener-
ative models of the foot that use Principal Component Anal-
ysis (PCA) are not new [9], these have been very limited in
their resolution and capabilities until recently. Recent work
by Osman et al. [32] introduced SUPR, a PCA model of the
human foot to be combined with the SMPL [29] full body
model for the task of expressive, full body reconstruction.
Boyne et al. [13] also recently released a generative model
of the human foot, FIND. Instead of PCA, this model uses
an implicit network to define per-vertex deformations to de-
form a template mesh into a target pose and shape. A dataset
of high resolution foot scans was released with FIND.

Multi-view reconstruction. Reconstruction of depth
and geometry from images requires known camera posi-
tions and internal parameters. These can be obtained di-
rectly from a capturing device using Augmented Reality
(AR) technologies and Inertial Measurement Units (IMUs),
or via a sparse 3D reconstruction from Structure From Mo-
tion (SfM) [34].

From this, a common method for reconstructing surface
geometry is Multi-View Stereo (MVS) [14, 35], which in-
volves the fusion of features matched across views. To pro-
duce a mesh as output, a surface reconstruction algorithm is
required [12, 23].

Recent work has ventured into using neural rendering
for surface reconstructions [31, 39], in which some neural
representation of a 3D scene is learned which matches the
reference views when rendered. Such methods are often de-
pendent on a high number of input views and require large
amounts of training time to produce a reconstruction.

3. Method

3.1. SynFoot - Synthetic dataset
We generate 50,000 images at 480 × 640 resolution us-

ing Blender’s [17] Cycles engine. We replicate the behavior
of images typically used for foot reconstruction commercial
applications: captured from a handheld device, in a vertical
arc around the foot, with the foot placed on the floor. We
generate this dataset using a custom Python library built for
large scale synthetic dataset rendering, which we release to
the research community.

Camera. We sample camera positions in a vertical arc
above the foot, uniformly sampling a radius from 30 to
40 cm, angle to the vertical from - 0.4π to 0.4π rad, and lat-
eral displacement from 0 to 10 cm. We use a camera focal
length of 30mm, and point the camera at the world origin.

Figure 2. Samples from SynFoot, our synthetic dataset. We show
(a) RGB, (b) silhouettes, (c) surface normals, and (d) keypoints.
Further examples included in the supplementary.

Leg models. We find current generative models lack nec-
essary photorealism, and do not capture enough geometry
up the leg, for use in our synthetic dataset. As a result, we
use 8 foot and leg scans adapted from the Foot3D dataset
[13] - we find that a small number of leg scans, coupled with
a large variety in environment and viewpoint, provide suf-
ficient training data to train networks on downstream tasks.
We also align one of two trouser models (with a randomly
selected texture) to the model.

As the scan data does not capture the entire leg, there
exists a horizontal cutoff plane on each mesh. From most
views this is not visible, but certain viewpoints would suffer
reduced realism as a result. We avoid this by (a) covering
the plane with trousers, and (b) avoiding viewpoints where
we detect that the cutoff plane would occupy more than 20%
of the rendered image.

Lighting. We sample one of 14 HDRI environments [5],
with a random intensity value to simulate variable lighting
conditions. We add a point light at a random horizontal po-
sition, to add further realistic lighting variation. We also
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add a plane behind the camera, with dimensions of a typi-
cal mobile phone, to replicate the shadow typically seen in
mobile phone captured images.

Floor surface. We sample one of 34 textures collected
from a number of license-free asset stores [1,3–5] to model
variety in flooring. We use diffuse, normal, reflectance, and
roughness maps where available to provide realism to the
surface. To replicate specular reflections seen on real sur-
faces, we apply a uniformly sampled [0, 0.3] specularity
value to 20% of the dataset samples.

Compositing. As shown in Figure 2, for each sample we
render: RGB images; silhouettes of the visible leg scan;
surface normals relative to the camera, normalized from
[-1, 1] to [0, 255], with XYZ corresponding to RGB; and
keypoints based on 12 handlabelled keypoints on each scan
(detailed in Figure 3).

3.2. Label prediction

So that we can optimize a generative foot model to real
images, we seek to use our synthetic dataset to learn to pre-
dict useful representations of real data for subsequent fit-
ting: per-pixel surface normals, silhouettes, and keypoints.

Surface normal prediction. Following [10], we predict
the surface normal probability distribution and train the net-
work by minimizing the negative log-likelihood (NLL) of
the ground truth. Given N pixels (indexed with i) with
ground truth surface normal ngt

i , the loss can be written as

Ltrain
norm = − 1

N

N∑
i

log pAngMF,i(n
gt
i |µi, κi)

=
1

N

N∑
i

κi cos
−1 µT

i n
gt
i + log

(1 + exp(−κiπ))

(κ2
i + 1)

,

(1)
where µi and κi are the predicted mean direction and the
concentration parameter. The objective of the training is to
minimize the angle between µi and ngt

i while reducing κi

for the pixels with high error. The expected angular error
can then be used to quantify the uncertainty [10].

For our synthetic dataset, the ground truth is provided
only for the foot. To encourage the network to estimate high
uncertainty for the background, we generate noisy labels
for the background pixels by sampling them uniformly on
a unit hemisphere facing the camera. For the background
pixels, the same loss (Equation 1) is computed and is down-
weighted by a factor 0.1. When back-propagating the loss
for the background pixels, the gradient is detached for µ to
only influence the uncertainty.

Toes Arch Heel Width

Figure 3. 12 keypoints defined for our dataset on two synthetic im-
ages - detailed keypoint definitions included in the supplementary.

Data augmentation. While our synthetic images look re-
alistic, there still remains substantial domain gap with re-
spect to the in-the-wild real images of human foot. Inspired
by [11], we add aggressive data augmentation to close this
domain gap. Specifically, we add random horizontal flip-
ping, JPEG compression and Gaussian blur/noise, together
with randomization of brightness, contrast, saturation and
hue. We also add perspective augmentation by rotating the
camera around the yaw, pitch and roll axes. More detail is
provided in the supplementary material.

Silhouette prediction. From the surface normal predic-
tion, we can get the expected value of the angular error. We
conveniently obtain silhouettes by masking out the pixels
with uncertainty higher than 30◦.

Keypoint prediction. Similar to surface normal predic-
tion, we estimate the probability distribution for the key-
point locations, parameterized with a 2D Gaussian with a
diagonal covariance matrix. We train a ResNet-50 [19]
model to predict for an image, for each of the 12 key-
points visualized in Figure 3: its 2D image position k nor-
malized to unit image coordinates k̄; a visibility flag v
(whether within the image bounds); and predicted uncer-
tainty σ = (σx, σy). We learn to predict keypoints and un-
certainty by comparing against ground truth keypoints kgt,

Ltrain
kp =

1

N

N∑
i

v̂i

(∥∥∥∥((k̄i,j,x − k̄gt
i,j,x)/σ̄x,i

(k̄i,j,y − k̄gt
i,j,y)/σ̄y,i

)∥∥∥∥2
2

+ log σ̄2
x,iσ̄

2
y,i

) (2)

We learn visibilities with an ℓ2 loss comparing to ground
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truth visibility. Similarly to our normal network, we train on
our 50,000 synthetic images, adding affine and pixel color
augmentations to the input data to improve the quality of
training. We include examples showing the performance of
the keypoint predictor on real images in the supplementary.

3.3. Multi-view fusion

Once we can predict surface normals, silhouettes and
keypoints for real input images, we seek to fit a generative
foot model to the images.

Generative model. For few-view fitting, a generative
model is critical to enforce a strong prior over the foot
space, and reduce the dimensionality of the optimization
task. We use FIND [13], an implicit-explicit model which
captures shape, pose and texture. The model is composed
of a template mesh and an MLP F . The MLP predicts, for
given shape and pose encodings zs and zp, the deformation
for a template vertex at position x to deform it to the target
shape,

∆x = F (x, zs, zp) (3)

The application of F to every point x on the template re-
sults in a deformed, explicit mesh. This is then transformed
by registration parameters r, t, and s - Euler rotation, trans-
lation, and XYZ scaling respectively. The FIND model is
also capable of producing per-vertex colours parameterized
by a texture encoding - in this work, we fix this encoding,
as our focus is on accurate geometry reconstruction.

Differentiable rendering. Using PyTorch3D [33], we
differentiably render surface normals and silhouettes in the
camera reference frame, and project keypoints onto the im-
age, for optimization.

3.4. Optimization

We now have the tools to optimize the FIND model to
the predicted labels. We optimize the registration (align-
ment) parameters {r, t, s} and shape and pose parameters
{zp, zs}. We optimize over N views, each of size (H , W ).

Keypoint loss. For K keypoints, we compute the ℓ2 dis-
tance between the ith keypoint projected in the jth view and
normalized to unit coordinates k̄i,j and that predicted by our
keypoint predictor ˆ̄ki,j . We ignore ‘invisible’ keypoints us-
ing the visibility flag v̂, and use our predicted normalized
uncertainty (σ̄x,i, σ̄y,i),

Lopt
kp =

1

NK

N∑
i

K∑
j

v̂i,j

∥∥∥∥∥
(
(k̄i,j,x − ˆ̄ki,j,x)/σ̄x,i

(k̄i,j,y − ˆ̄ki,j,y)/σ̄y,i

)∥∥∥∥∥
2

2

(4)

We use σ to down-weight the error for keypoints with
high uncertainty - this typically corresponds to keypoints
occluded in the image.

Normal loss. Given the estimated per-pixel surface nor-
mal probability distribution, parameterized by µ and κ, we
minimize the negative log-likelihood of the surface normal
of the rendered foot model. The loss can be written as,

Lopt
norm =

1

N

N∑
i

κi cos
−1 µT

i n
render
i . (5)

Equation 5 differs from 1 in that the term only depen-
dent on κ is discarded as it is not being updated. Equation
5 reduces the angular error between the predicted normal
and the current estimate of the foot shape, while down-
weighting the error for predictions with high uncertainty
(i.e. low κ).

Silhouette loss. An ℓ2 loss between the rendered FIND
model silhouette, and the pseudo-GT silhouette (found by
thresholding the predicted normal uncertainty at 30◦).

3.5. Implementation details

Label prediction. We train the keypoint and surface nor-
mal predictors on our synthetic dataset. We use the Adam
optimizer [25] for both, at a learning rate of 0.0001. We
train the normal predictor for 20 epochs, and the keypoint
predictor for 70.

Optimization scheme. We first downsample our images
to increase speed and reduce memory usage. We optimize
in two stages: (i) registration, with only FIND’s {r, s, t}
as free parameters, and only a keypoint loss; and (ii) defor-
mation, with free parameters {r, s, t, zs, zp}, and keypoint,
silhouette and normal losses present.

We use the Adam optimizer, with a learning rate of
0.001, for 250 epochs and 1000 epochs respectively for the
two stages. On a Titan X GPU, this takes approximately 2
minutes for 3 input views. We show in Figure 4 a visualiza-
tion of the result of a reconstruction.

Where we restrict views for experimentation, we choose
the restricted views by selecting views distributed evenly in
the y direction (left-to-right as the images were taken).

Evaluative dataset. As described in Section 3.6, we use
camera extrinsic and intrinsic parameters obtained using
Structure from Motion in COLMAP [34]. This method
requires a certain amount of overlap between views. We
use these cameras to provide a fair comparison between our
method and COLMAP, only measuring the reconstruction
performance and not the quality of the camera calibration,
and so that we can evaluate on our ground truth dataset.
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(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

(i)

(ii)

(iii)

Figure 4. Here, we show our method optimizing to input images of a real foot, visualizing for three views: (a) RGB, (b) silhouette, (c)
normals, and (d) keypoints, for (i) real input image, (ii) fitted FIND model, and (iii) the error. Note that the RGB for FIND uses FIND’s
default texture. To view the reconstruction quality compared to COLMAP and the GT scan, see Figure 8.

Figure 5. An example of a scan from our dataset. We show a
sample of the calibrated images; the ground truth scan in grey;
and the COLMAP reconstructed dense point cloud in green.

In practice, these parameters could be obtained directly
by using tracking systems on mobile devices (e.g. ARKit on
iOS). We show in Section 6 that our method can reconstruct
successfully with cameras obtained via such approaches.

3.6. Experiments

Dataset. To evaluate multi-view reconstruction perfor-
mance, we collect a dataset of calibrated image captures
around static feet, alongsde 3D ground truth scans from an
Artec Leo [2] scanner.

We perform sparse reconstruction via COLMAP [34],
sufficient for relative camera alignment, with a scale ambi-
guity. While this would be sufficient for shape fitting (albeit
with a scale ambiguity), to be able to evaluate our normal
predictor and our fitting process, it is necessary to align the
COLMAP result to the ground truth scan.

To do this, we perform dense reconstruction in
COLMAP [35]. We run outlier detection on this recon-

structed dense point cloud, and floor detection and removal
[40] on both the Leo scan and the COLMAP point cloud.
We rotate and translate both so that the (now removed)
floors are horizontal and at a height of zero. To align the
two precisely, we run an optimization scheme to minimize
the chamfer loss between the dense point cloud and the 3D
scan, optimizing over four parameters: in-plane rotation, in-
plane translation, and isotropic scale. We also use some out-
lier rejection stages to improve the accuracy of this process.
An example output of this process can be seen in Figure 5.

Once this process is complete, we also conveniently can
render the ground truth meshes onto each captured image
to get ground truth surface normals, examples of which are
in Figure 6. Note that this process was incredibly labour
intensive, and produces a far smaller number of paired RGB
and surface normal images than in our synthetic dataset.

The completed dataset contains 14 scenes of scanned
feet, with a total of 474 calibrated images.

Normal predictor evaluation protocol. The accuracy of
our surface normal estimation network is compared against
COLMAP [35] and Bae et al. [10]. 20 images are sampled
from each scan to form a test set of 280 images. Pixel-wise
angular error is computed and the mean, median and root-
mean-squared errors are reported. We also report the per-
centage of pixels with error less than [11.25◦, 22.5◦, 30◦].
As we focus on the surface reconstruction of the foot, we
discard the prediction for legs and trousers by slicing the
ground truth mesh at 20 cm above the floor, and evaluating
only on the pixels below the cutoff.

Optimization evaluation protocol. We evaluate the qual-
ity of our 3D optimization method by comparing the out-
put mesh to a ground truth scan from our dataset. We se-
lect a sample of 10,000 points from each mesh, sampling
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RGB GT COLMAP [35] Bae et al. [10] Ours Ours - uncertainty

0◦ 60◦

Figure 6. Qualitative comparisons of per-pixel normals, masking
each prediction according to the GT. Further examples of in-the-
wild surface normal predictions included in the supplementary.

Method Normal error (◦) ↓ Normal accuracy (%) ↑
Mean Median RMSE 11.25◦ 22.5◦ 30◦

COLMAP [35] 28.24 17.22 40.88 33.00 60.46 70.33
Bae et al. [10] 28.54 25.89 32.79 12.43 41.27 59.75

Ours (aug. from [10]) 25.50 19.66 32.26 27.02 55.66 67.61
Ours 11.30 9.24 14.43 62.06 91.73 96.21

Table 1. Evaluation metrics of normal predictions, comparing
against our baseline GT scans.

uniformly over the surface area. We compare the nearest
neighbor (NN) between each point in the two sampled point
clouds, and evaluate two metrics: the NN distance, and the
NN surface normal angular error.

We compare our method against a meshed COLMAP re-
construction, which is built from COLMAP’s dense point
cloud via Poisson surface reconstruction [24].

4. Results
Normal prediction. Table 1 compares the accuracy of our
surface normal predictor to the baseline methods. We out-
perform both methods across all metrics. When our predic-
tor is trained with data augmentation from [10], the perfor-
mance degrades substantially, suggesting that the proposed

Method NN chamfer error (µm) ↓ NN normal error (◦) ↓
Mean Median RMSE Mean Median RMSE

Ours 15.2 7.5 29.3 12.9 9.9 17.4
COLMAP 16.1 3.3 43.3 20.3 13.7 27.7

Table 2. 3D Results on fitting to all images available in each scan
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Figure 7. We show how the reconstruction quality of our method
varies with number of input views, comparing with COLMAP, and
with our method without normals and normal uncertainties. We
show that COLMAP reconstruction fails for fewer than 15 views,
whereas our method maintains accuracy for 3-5 views.

aggressive augmentation helps reduce the synthetic-to-real
domain gap. Qualitative comparison in Figure 6 shows that
our method captures the complex geometry around the toes.

3D fitting results. Table 2 shows the quantitative per-
formance of our method compared to COLMAP for the
many view case. Qualitative examples of the reconstruc-
tion quality can be seen in Figure 8. The results suggest
that COLMAP can capture some geometry more precisely
(seen by the lower median chamfer error), at the cost of
a noisy reconstruction that has some larger errors, and poor
surface normal consistency. Conversely, our method obtains
a smoother reconstruction with fewer outliers, and surface
normals that much more closely resemble the ground truth.

Number of views. We show in Figure 7 our method’s
ability to perform accurate reconstructions with few avail-
able views. COLMAP achieves similar reconstruction ac-
curacy for 30+ views, but fails almost completely for fewer
than 15 views. Our method, on the other hand, is able to
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GT COLMAP Ours GT COLMAP Ours

[Reconstruction result from Fig. 4]

Figure 8. Qualitative results on four reconstructions from all avail-
able images (approximately 30 per scan). We show geometry and
surface normal renders of the ground truth 3D mesh, the COLMAP
reconstruction, and the results of our optimization method. Further
examples included in the supplementary.

NN Chamfer error (µm) ↓ NN Normal error (◦ ) ↓

3 view 20 view 3 view 20 view

Ours 18.60 15.30 13.58 13.12
w/o keypoint uncertainty 19.28 16.50 13.70 13.27
w/o normal uncertainty 23.08 21.05 15.57 15.37

w/o normal loss 102.11 59.20 24.23 22.13

Table 3. Ablation study on our 3D optimization method.

retain virtually all accuracy for as few as 3 views, and even
handles the 2 view case with reasonable accuracy (better
than COLMAP with 15). Furthermore, the graph shows
that the use of our normal loss both substantially improves
the reconstruction quality, and significantly improves our
method’s ability to handle few views.

Ablation study. We show results of our ablation of our
optimization process in Table 3. The data shows that, for
both the few view and many view cases, our normal loss
is crucial for accurate surface reconstruction. Furthermore,
using normal uncertainty, and to a lesser extent keypoint
uncertainty, further improve the quality of reconstruction.

(a) (b) (c) (d) (a) (b) (c) (d)

(i)

(ii)

(iii)

Figure 9. We show qualitative reconstruction on cameras obtained
via AR tracking. We show here two out of the three used views,
visualizing (a) RGB, (b) silhouette, (c) normals, and (d) keypoints,
for (i) input image, (ii) fitted FIND model, and (iii) the error.

5. Conclusion
In this paper, we introduced our synthetic dataset Syn-

Foot, that effectively captures variation in foot images de-
spite only containing 8 real world leg scans. We have de-
veloped a method for learning to predict normals with un-
certainty purely from this synthetic data, using aggressive
data augmentation to bridge the synthetic-to-real domain
gap and obtain accurate surface normal predictions on real
images. Experimental results show that this method sig-
nificantly outperforms off-the-shelf normal predictors, and
MVS reconstruction. We have also shown a method for re-
constructing a foot model from a small number of views
that utilises the predicted normals with uncertainties, that
outperforms typical MVS pipelines while requiring an or-
der of magnitude fewer input images.

6. Future work
Generalization. While we only show results on the con-
strained case of a foot placed on the floor, nothing inherent
in our method restricts us to this use case. As future work,
we would like to extend this to posed feet in arbitrary posi-
tions, and to other body parts, such as hands.

Cameras from AR tracking. Our evaluation dataset
shows results on cameras obtained via SfM, reliant on many
views with significant overlap for accuracy. However, our
method is also possible using camera parameters obtained
via AR camera tracking. Although we do not have GT
meshes, we show qualitatively on a private dataset with AR
calibrated cameras that our optimization is able to fit to real
images successfully. Figure 9 shows one example of this,
and further examples are included in the supplementary.
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