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Abstract

In this paper we highlight the importance of historical
aerial images in better understanding past events and their
impact on their surroundings. More specifically, we are
interested in studying bomb craters from World War II in
Central Europe. We note the scarcity of publicly accessi-
ble datasets that provide labeled bomb craters and subse-
quently introduce a novel, domain-expert-annotated dataset
comprised of 99 historical aerial images of Austria and
Germany. We divide said data into training, validation, and
test sets, and conduct training and evaluation using differ-
ent object detectors - both general-purpose and specifically
designed for remote sensing applications. This dataset thus
serves as a benchmark for developing and evaluating (sev-
eral) algorithms dedicated to the automated detection and
analysis of bomb craters in historical aerial images. We
underscore the uniqueness of this dataset as the first pub-
licly available resource containing annotated bomb craters,
thereby offering researchers a valueable and novel oppor-
tunity for future exploration. Lastly, we investigate possibil-
ities for extending and enriching our data to enhance future
studies, particularly within the context of preliminary risk
estimation for unexploded bombs.

1. Introduction
Historical images, including aerial ones, offer valuable

information that can provide insights into past events and
their impact on the environment. In particular, aerial im-
ages captured during World War II can help researchers
and explosive ordnance disposal services understand the ex-
tent of air strikes, damage to infrastructure and the natural
landscape, as well as the potential dangers in construction
projects [21]. The legacy of these air strikes during World
War II is still present today, as numerous unexploded bombs
are uncovered yearly in (Central) Europe [37]. Examining
aerial images from surveillance flights during World War
II makes it possible to make preliminary risk assessments
based on the presence of bomb craters.

Figure 1. Seven bomb craters in a historical aerial image marked
in dark blue and one unexploded bomb marked in yellow.

A practical example can be observed in Figure 1, dis-
playing seven bomb craters. From this, an expert can de-
duce two key points. First, they can create an ”explosive
ordnance map” featuring markings for each crater and out-
lining a 50m safety perimeter around each one. Construc-
tion endeavors within this radius typically demand added
safety measures. Second, considering the historical con-
text that bombers during that era commonly carried ei-
ther 8 or 16 bombs, the expert can reasonably infer the
presence of at least one unexploded bomb within the pre-
sented image, which was later found and diffused by the
local authorities. However, annotating each crater manu-
ally can be a difficult and time-consuming process. Here,
a (semi-)automated method, trained for this particular pur-
pose, could thus greatly aid in expediting this process. Ad-
ditionally, it could also be adapted for other regions around
the world, such as historical aerial images from Cambodia
following the Civil War (1967-1975) or the Vietnam War
(1955-1975) [19, 27]

However, creating automated detection methods for
identifying bomb craters in aerial images is challeng-
ing due to the absence of suitable and publicly available
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datasets. While datasets are available for Martian and moon
craters [11, 34, 43], the same cannot be said for historical
aerial images. Currently, to the author’s best knowledge,
only one dataset is available for historical aerial photos: the
EuroSDR TIME dataset [15], consisting of 941 unlabeled
images from Europe. However, of these 941 images, only
20 contain any craters and none feature any (expert) anno-
tation.

This limitation makes it difficult for researchers to de-
velop and test algorithms for the automated detection of
bomb craters in aerial images. In rural areas, LIDAR image
analysis can also be used for this purpose, as the morpho-
logical and morphometric characteristics of the crater are
still visible today [36]. However, using historical aerial im-
ages is the only feasible option in urban areas where such
characteristics have been lost owing to construction and de-
velopment.

To overcome this limitation, this study introduces a his-
torical aerial dataset of 99 aerial images taken in Austria and
Germany during World War II, containing manually anno-
tated bomb craters. Our industry partner provided these im-
ages and labels originating from their completed projects.
The original images were sourced from national archives.

To promote replicability across experiments, we have
made the raw images available in their original size, com-
plete with crater annotations, Region Of Interest (ROI) de-
lineations, and estimated Ground Sample Distance (GSD).
Additionally, we have created a dataset from the raw images
to facilitate ease of use in various experiments. The images
in our dataset have been divided into predefined training,
validation, and test sets. Furthermore, we have pre-tiled the
images into image patches measuring 960x960 pixels, with
a 20% overlap between adjacent patches.

We trained 15 object detectors on said training data and
the resulting performances demonstrate the challenging na-
ture of the given task, underscoring the importance of the
presented dataset. Overall, the historical aerial dataset rep-
resents a valuable asset for researchers seeking to explore
the consequences of air strikes during World War II on the
environment. Moreover, the dataset offers the opportunity
for domain adaptation, enabling the application of these al-
gorithms to modern satellite images to detect craters.

While this dataset is primarily designed for bomb crater
detection tasks, it can also be used for related tasks. One
example would be its utilization for environmental impact
studies that investigate long-term consequences of wartime
activities [27]. Another use case could be educational or
cultural heritage applications, where students or researchers
can visualize the scale and impact of historical events.

The main contributions of this paper are twofold. First,
the creation of a distinctive dataset featuring historical aerial
images from Austria and Germany between 1943 and 1945,
with a specific focus on identifying bomb craters. Second,

the training and evaluation of 15 object detectors on said
dataset, reveals its challenging nature, underscoring the im-
portance of the presented dataset.

The remainder of this paper is structured as follows.
First, in Section 2, the related work on datasets and object
detection in historical aerial images and associated domains
is presented, followed by the dataset proposed in this paper
in Section 3. In Section 4 the experiments and their results
are presented and in Section 5 the impact and the limitations
of the dataset are discussed.

2. Related Work
Datasets. While large datasets are nothing new to the vi-
sion community, they typically focus on common objects
in common areas using common cameras, like the COCO
dataset [29] or the PASCAL VOC dataset [13]. Similarly,
in remote sensing, there are large datasets available for ob-
ject detection, like XView [24], the FMOW dataset [9], the
DOTA dataset [39] or the DIOR dataset [25], which contain
common classes like passenger vehicle, truck or building.
This is likely because this imagery is comparatively easy to
collect and annotate. In contrast, however, only a limited
amount of training data is available for remotely sensed his-
torical images, as this data can almost only be exclusively
obtained from national archives. Furthermore, these images
cannot be annotated by laypersons and require an expert,
as the objects to find usually require special domain knowl-
edge. Additionally, interpreting historical aerial images can
be challenging due to factors like image quality, resolution,
obstructions or the lack of context. Another factor, in the
case of craters, is that precise localizations are required for
the “explosive ordnance maps” and laypersons may lack
the scientific background to reliably identify and measure
in historical aerial images.

Currently, to our knowledge, only one historical aerial
dataset is available containing craters, the EuroSDR TIME
benchmark [15]. However, the primary focus of this dataset
is to offer many historical aerial image blocks to test 2D and
3D image processing algorithms, specifically for aerial tri-
angulation, georeferencing, generating digital surface mod-
els, and orthoimage production. Of the 941 images in the
dataset, only 20 are captured during World War II, while
all other images are from 1950 or later. Furthermore, none
of the 20 images have crater annotations and are not usable
for training a supervised machine learning approach. They
could, however, be used for qualitative analysis or unsuper-
vised training.

An alternative to bomb craters on Earth could be impact
craters on Mars or Earth’s moon. There have been multiple
datasets proposed, like the Mars crater segmentation dataset
presented by DeLatte et al. [12], the DeepCraters dataset by
Yang and Guan [40], the Mars-Lunar crater dataset by Zhou
[43] or various other datasets [11, 34]. However, lunar and
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(a) Moon: Meteorite craters. (b) Earth: Bomb craters.

Figure 2. Comparison of meteorite and bomb craters.

Martian craters vary significantly in size, from less than 30
meters to more than 1.938 meters, and are also considerably
easier to detect, as there is no vegetation or human made
structures [17]. Additionally, Burges et al. [4] showed that
training with Moon images does not improve performance.
Examples of a moon and a historical earth image are pre-
sented in Figure 2.

Object Detection in Historical Aerial Images. There is
significant interest in historical aerial data. For instance,
Brenner et al. [2] introduced a fully automatic system for
detecting craters in historical aerial imagery. However, their
evaluation revealed that human expertise is still necessary
due to the low performance of their approach for fully auto-
mated deployment. Unfortunately, no dataset was released
by Brenner et al. for reproducibility. Barone [1] presented
a system that combined ground penetrating radar, a non-
destructive technique, with historical aerial images to map
potential unexploded bombs at archaeological sites. This
method aimed to minimize damage to archaeological her-
itage and reduce risks during excavations. Similarly, Cler-
mont et al. [10] developed a technique using convolutional
neural networks and blob detection to detect bomb craters
in aerial wartime images. However, Clermont et al. did
not release any dataset for reproducibility. In another study,
Kruse et al. [22] proposed using ellipses as object models
to represent bomb craters. They employed a probabilistic
algorithm based on marked point processes to determine
the most likely object configuration. In a subsequent study,
Kruse et al. [20] compared circles and ellipses as object
models in a stochastic approach for automatically detecting
bomb craters in aerial wartime images from World War II.
Their method incorporated a term requiring homogeneous
gray values within the object. In a follow-up paper, Kruse
et al. [21] further optimized their approach and compared
results obtained from single images with those from mul-
tiple photos of the same region. Utilizing multiple images
improved their approach’s F1-score from 39% to 67%. In
their latest paper [23], Kruse et al. evaluated their approach

on a larger dataset of 74 images. They compared it with
a state-of-the-art convolutional neural network trained on
a subset of their dataset. They found that the CNN outper-
formed their approach, but only with sufficient training data,
highlighting the need for a large public dataset. However,
no dataset was released by Kruse et al. for reproducibil-
ity. Taking a different approach, Waga et al. [37] employed
digital elevation models to detect and evaluate morphomet-
ric parameters of craters in the Kedzierzyn-Kozle region. In
contrast to the abovementioned methods, Geiger et al. [19]
proposed a domain adaptation method for detecting bomb
craters in aerial images. They highlighted the expensive and
time-consuming nature of the current manual process and
suggested that deep learning could offer a promising solu-
tion. However, they acknowledged the lack of a large la-
beled dataset for this task. To overcome this challenge, they
proposed leveraging labeled moon surface images and a
novel domain adaptation method to generate synthetic data
by combining moon surface images with authentic aerial
images captured during surveillance flights after allied air
raids in World War II, using a CycleGAN. Unfortunately,
no dataset was released by Geiger et al. for reproducibility.

Although Brenner et al. and Clermont et al. utilize deep
learning techniques in their respective approaches, compar-
ing them proves to be challenging due to the lack of pub-
licly available datasets required for effective training. Con-
versely, Kruse et al. propose a non-deep learning-based
method that eliminates the need for large datasets. How-
ever, it is essential to acknowledge that this approach falls
short compared to the performance of the learned tech-
niques with access to much training data. Moreover, Geiger
et al. stress the importance of incorporating high-quality,
real-world images in the training data and highlight the
complementary role of synthetic data in the training pro-
cess. Nevertheless, relying solely on synthetic data cannot
fully replace the necessity for authentic, high-quality, real-
world images.

Unfortunately, due to the absence of publicly available
data and code from existing approaches, a direct and pre-
cise comparison is challenging. As a solution, we release
our unique dataset to the public, aiming to facilitate future
research by providing a standardized benchmark for eval-
uating algorithms in the context of historical aerial image
analysis and crater detection. With this dataset, researchers
will be able to develop, implement, and compare their ap-
proaches effectively.

3. CHAI Dataset
Data. Our proposed CHAI dataset consists of 99 images
from 1943 to 1945. We obtained the images with the anno-
tations from finished projects of our industry partner, cov-
ering both urban and rural areas. An overview of the differ-
ent locations, the number of images per location, as well as
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Location Images Split GSD Craters
mean min. max.

DE, Various 15 Test 0.27 0.17 0.38 2,923
AT, Graz Area 50 Train 0.21 0.16 0.31 15,315
AT, Linz 3 Val 0.22 0.19 0.24 138
AT, Vienna Area 31 Val 0.23 0.16 0.64 1,242
Combined 99 - 0.23 0.17 0.39 19,618

Table 1. General statistics of the images contained in the dataset.
DE refers to Germany and AT for Austria. Craters refers to the
annotations extracted from the industry partners projects, includes
duplicate craters due to the overlap of images from the same flight
and is not adjusted for the removed inconsistent annotations. De-
tailed information can be found in the supplementary material.

the approximate GSD and the total bombload per project,
is presented in Table 1. Historical aerial images have been
selected for these locations, and experts have mapped the
bomb crater. In their workflow, the experts first survey all
available photos that cover the ROI and then select a subset
for the georeferencing and annotation. This subset consists
of high-quality images with sufficient resolution and clarity
and discards any image with, for example, excessive cloud
coverage or bad lighting conditions. By carefully curating
this subset of high-quality photos, they can streamline the
subsequent georeferencing and annotation processes, mini-
mizing potential errors and optimizing the overall efficiency
of their workflow. Only in edge cases do they also annotate
images of lower quality, but only if no higher quality image
is available for the defined ROI. During the annotation pro-
cess, multiple images from a similar time period and area
may be accessible. However, due to cost-effectiveness, only
one image is typically referenced and annotated, while the
additional photos are usually reserved for addressing edge
cases that may require additional information. This results
in a dataset consisting of images with reasonable image
quality and accurate annotations in the world coordinates,
but the overlap of the referenced and annotated images is
minimal.

Annotator Expertise and Quality Control Measures.
Our industry partner possesses 12 years of experience and
has completed approximately 2,000 projects in collabora-
tion with various institutions in Central Europe. The task of
annotation was undertaken by their team of experts, com-
prising historians and remote sensing specialists with a deep
understanding of Central European history and expertise in
analyzing aerial imagery. These annotators utilize special-
ized software designed for accurately pinpointing the exact
locations of each bomb crater.

Each image undergoes annotation by a single annotator,
and subsequently, the annotations are subjected to review by
another expert. In instances where intricate situations arise,

additional specialists are consulted. Moreover, additional
images of the same geographical area are employed to eval-
uate challenging cases where the identification of craters is
not straightforward. These additional images also aid in de-
termining the specific type of bomb used in an attack, con-
sidering its distinctive blast radius, or in verifying whether
an unexploded bomb that was initially detected has deto-
nated in a subsequent image.

(a) Images with annotations on re-
filled craters.

(b) Images with a slight shift of the
annotations.

(c) Loose annotations around a
crater

(d) Too tight annotations around a
crater.

Figure 3. Challenges from the annotation process.

Inconsistent Annotations. We encountered difficulties
with the bounding boxes stemming from the annotation pro-
cess and the inherent variability among human annotators.
The annotation style of our industry partner aims to obtain a
”explosive ordnance map” efficiently, with minimal individ-
ual image labeling. Annotations relate to multiple georefer-
enced images, not just one. This leads to two main issues.
First, with overlapping images or images from the same re-
gion but at a different time, it is unclear in which one a crater
was annotated. To address this, we assumed that craters vis-
ible in earlier images also appear in later ones. While this
is mostly true, some craters are re-filled. After manually in-
vestigating the whole dataset, we found that around 5% of
annotations lacked visible craters, an example of this is pre-
sented in Figure 3a. As a result, we manually removed any
annotations, under the supervision of our industry partner,
that did not contain any visible crater residue, while keeping

8259



any annotations where traces of re-filled craters are visible.
On the other hand, georeferencing historical aerial im-

ages is not trivial. Even when done by experts, there might
be slight inaccuracies in a small subset of the data, espe-
cially in rural areas, where reference points between histor-
ical aerial images and modern-day satellite images are hard
to find. This, combined with the 1-to-many relationship,
can lead to a slight shift in the annotations in these images.
Figure 3b shows an example of this. A further challenge is
the inherent variability of human annotators. Multiple ex-
perts have annotated the projects, and everyone might have
a slightly different way of annotating a crater. For example,
some might include ejecta rays (Figure 3c), while others
annotate the crater too tightly (Figure 3d). We found, that
of the 99 images in the dataset, six exhibit bounding box
shifts in parts of the image, two contain loose annotations
and three overly tight ones. We manually adjusted all in-
consistent bounding boxes for the derived datasets.

Out of the 19,618 annotations for craters, we eliminated
497 because they lacked any indication of the presence of
a crater. Additionally, we adjusted the size and position of
2,621 bounding boxes. The bounding boxes were removed
or modified by the authors under the supervision of an in-
dustry expert. Both annotation sets will be released, with
further details about the manual correction of the bounding
boxes in the supplementary material.

Figure 4. The patch extraction technique used to extract patches
from the historical aerial images involves several steps. First, the
area outside of the Region of Interest is made black to eliminate
any unannotated craters that might be present. Next, the image is
divided into overlapping patches, and patches located outside of
the region of interest are subsequently eliminated.

Dataset Extraction. The analysis is only performed
within the defined ROI. Areas outside of the ROI are black-
ened, as these can contain unannotated craters. We also re-
sized all images to the same, minimal GSD found in the data
(0.16m per pixel), as we found that this does improve per-
formance, compared to training on unnormalized images.
In total, the provided projects contain 19,121 bomb craters
in image coordinates (after the manual correction). We split
all the images, using a custom script, into 960×960 patches
with an overlap of 20%, a size typical in remotely sensed
datasets. An overview of this pipeline is presented in Fig-
ure 4. We decided to derive two datasets from the data.

Full dataset Light dataset

Train Val Test Train Val Test

Craters 22,798 1,933 4,458 22,798 1,933 4,458
Patches 12,145 1,173 2,161 3,748 461 990

Table 2. Patches and annotations per dataset split for the full
dataset and light dataset. The total number of crater annotations
increased from 19,121 to 29,189, due to the 20% overlap.

In the first, we kept all patches inside of the ROI, and in
the second, we additionally removed all patches that do not
contain at least one crater annotation. A complete list of
the available information for each image is presented in the
supplementary material. The number of images and anno-
tations for each dataset variant and split are presented in
Table 2. Several randomly selected patches are visualized
with bounding boxes in the supplementary material.

It is crucial to highlight that, while images within one lo-
cation may overlap, images between location have no over-
lap. We therefore chose, that the greater area of Graz will be
utilized as training dataset, the remaining locations in Aus-
tria (Vienna and Linz) will serve as the validation set and
images obtained from German cities will be used for test-
ing (a map is presented in the supplementary material). The
data and the derived datasets will be available for download
via Zenodo [3].

Coloring the Dataset. In addition, we conducted an ex-
periment involving the application of deep learning for col-
orizing grayscale images, utilizing the Hyper-U-Net method
proposed by Farella et al. [14]. We employed the model
provided on their GitHub page along with the pre-trained
weights provided by them, to color our light dataset. An
example of an original and a colorized image are presented
in Figure 5.

(a) Grey scale image. (b) Colored image.

Figure 5. Grey scale image before and after the colorization using
Hyper-U-Net.
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4. Dataset Evaluation
In Section 4.1, we first explain the experimental setup of

how we evaluated the dataset on 15 detectors. These meth-
ods encompass a wide spectrum, including renowned de-
tectors such as Faster-RCNN [33], cutting-edge approaches
like DINO [42], and specialized methods like oriented Rep-
Points [26] developed specifically for remote sensing. Fol-
lowed by the results on the light dataset, full dataset and
the colored light dataset in Sections 4.2, 4.3 and 4.4, re-
spectively. Finally, in Section 4.5 we present three images
predicted by the best-performing model DINO, highlighting
the potential challenges of our dataset.

4.1. Experimental Setup

Models. The detailed information regarding the selected
models for this analysis is presented in Table 3. Our se-
lection comprises object detectors that have demonstrated
state-of-the-art performance on widely used datasets such
as COCO [29]. These models include DETR [5] and
its variants [30, 32, 45], Dino [42], Sparse-RCNN [35],
YoloX [18], and YoloF [7]. Additionally, we consid-
ered well-established object detectors like SSD [31], Reti-
naNet [28], and Faster-RCNN [33]. We also incorporated
object detectors specifically designed for remotely sensed
images or detecting small objects. QueryDet [41] is an
object detector specifically designed for the detection of
(accelerating) small objects, while oriented RepPoints is
specifically designed for aerial object detection. It is worth
noting that oriented RepPoints predicts Oriented Bound-

Model Year Backbone Prop. Param. Pret.

Faster-RCNN [33] 2015 ResNet50 HBB 42M COCO
SSD [31] 2016 SSDVGG HBB 24M COCO
RetinaNet [28] 2017 ResNet50 HBB 36M COCO

DETR [5] 2020 ResNet50 HBB 42M COCO
Cond. DETR [32] 2021 ResNet50 HBB 43M COCO
Def. DETR [45] 2021 ResNet50 HBB 40M COCO
Sparse-RCNN [35] 2021 ResNet50 HBB 106M COCO
YoloX-l [18] 2021 CSPDarknet HBB 54M COCO
YoloF [7] 2021 ResNet50 HBB 42M COCO
TOOD [16] 2021 ResNet50 HBB 32M COCO
DDOD [8] 2021 ResNet50 HBB 32M COCO
DAB-DETR [30] 2022 ResNet50 HBB 44M COCO
DINO [42] 2023 Swin-l HBB 85M COCO

QueryDet [41] 2022 ResNet50 HBB 39M COCO
Ori. RepPoints [26] 2022 ResNet50 OBB 37M DOTA

Table 3. Summary of object detection models. Models with Hor-
izontal Bounding Box (HBB) proposals trained in mmdetection,
with the exception of QueryDet trained using Detectron2 and Ori.
RepPoints trained in mmrotate. All models have been pretrained
on either the COCO or the DOTA dataset.

Size Minimum Maximum

Small 0 32
Medium 33 48
Large 49 ∞

Table 4. Average diameter of the crater, and correspondingly the
height and width of the bounding box, in pixels.

ing Boxes (OBB), instead of the commonly used Horizon-
tal Bounding Boxes (HBB). While this is not advantageous
for crater detection, we still chose oriented RepPoints due
to their State-Of-The-Art performance on DOTA, a dataset
that contains several small object classes.
Metrics. For the experiments performed in this section,
we are using the CocoAPI [29], with a modified definition
for small, medium, and large bounding boxes, presented in
Table 4. The evaluation metrics used include Average Preci-
sion (AP) for small (APs), medium (APm), and large (APl)
craters, as well as AP with Intersection-Over-Union (IOU)
thresholds of 25%, 50%, and 75%. The APs, APm, APl

metric are calculated for IoU = 0.25 : 0.95 instead of the
common IoU = 0.5 : 0.95. The exception is oriented Rep-
Points, which is trained using the DOTA dataset format,
here we only report AP25, AP50 and AP75. For this, we
converted the dataset from the COCO format to the DOTA
format, utilizing eight (x1, y1, ..., x4, y4) bounding box co-
ordinates instead of the usual four (XYXY or XYHW )
coordinates. It is important to note that we did not rotate
the bounding boxes during this conversion process.
Data Augmentation and Training. All models were
trained using a consistent data augmentation pipeline. This
pipeline involves random cropping, resizing images, ran-
dom rotation up to 90 degrees, and random flipping, fol-
lowed by normalization. The mmdetection [6], mmro-
tate [44] or the Detectron2 [38] frameworks were employed
for training, and the configurations and details about the
models and augmentations used can be found in our GitHub
repository. Fine-tuning was performed using DOTA pre-
trained weights for Oriented RepPoints and COCO pre-
trained weights for other models, as this approach led to
faster convergence. Specific details about the training of
each model is available in the supplementary material.

4.2. Light Dataset

In Table 5, we provide a comprehensive overview of
the results obtained from each model on the light dataset.
Among the models, DINO achieves the highest overall per-
formance in all tested metrics. Condi. DETR performed
second best in the AP25 metric, while YoloX-l performed
second best in the APs metric. The overall performance of
TOOD, DDOD and DAB-DETR was close to the perfor-
mance of DINO, with TOOD performing the second best in
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the APm and APl metric, DDOD second best in the AP75

metric and DAB-DETR second best in the APm and AP50

metric. The discrepancy regarding Ori. RepPoints can be
attributed to the inherent challenges associated with learn-
ing from OBBs, which introduce complexities that are not
necessarily required for accurately detecting craters. It is
also surprising to observe that the results for QueryDet are
comparatively poor, considering that it is based on Reti-
naNet, which generally exhibits better performance. One
potential reason for this behavior could be its specific focus
on detecting rapidly moving small objects. Nevertheless,
additional testing is essential to provide a more definitive
explanation.

In conclusion, the evaluation results from Table 5
demonstrate the varying performance levels of different
object detection models when applied to crater detection.
While some models excel in specific metrics, the DINO de-
tector emerges as the best across all evaluation criteria.

APs APm APl AP25 AP50 AP75

Faster-RCNN 0.417 0.312 0.265 0.741 0.660 0.170
SSD 0.420 0.327 0.269 0.699 0.631 0.226
RetinaNet 0.440 0.338 0.293 0.800 0.731 0.188
DETR 0.430 0.357 0.307 0.778 0.702 0.191
Condi. DETR 0.425 0.359 0.324 0.804 0.722 0.167
Def. DETR 0.410 0.334 0.301 0.775 0.711 0.153
Sparse-RCNN 0.382 0.250 0.241 0.726 0.648 0.116
YoloX-l 0.456 0.318 0.272 0.769 0.619 0.229
YoloF 0.444 0.336 0.309 0.794 0.719 0.194
TOOD 0.440 0.364 0.328 0.774 0.714 0.231
DDOD 0.434 0.343 0.304 0.775 0.710 0.233
DAB-DETR 0.442 0.364 0.326 0.800 0.739 0.202
DINO 0.474 0.393 0.333 0.828 0.759 0.273

QueryDet 0.008 0.166 0.257 0.442 0.352 0.075
Ori. RepPoints - - - 0.225 0.177 0.059

Table 5. Results: Trained object detection models on different av-
erage precision (AP) metrics, averaged over five runs. The best
result bold and second best underlined. All models have been
trained and tested on the light dataset. Extended table with STD in
the supplementary material.

4.3. Full Dataset

We also evaluated the full dataset, which contains all
patches within the ROI, and compared it to just training
on the light dataset, where each patch extracted contains
at least one annotation. This is a more realistic experi-
ment, as the selected ROI rarely contains craters every-
where. For this experiment, we used DINO, as it showed the
best performance in the previous experiment, and trained it
on each dataset, additionally, we pre-trained DINO on the
light dataset and then finetuned it on the full dataset. We
evaluated all DINO weights obtained on the full test set.
The results are presented in Table 6. It is evident that when
DINO is trained on the light dataset, its performance on the
full test set surpasses that achieved by training solely on the

full dataset or the combination of both datasets, across all
metrics. As a result, we conclude that additional empty
patches in the training data do not enhance the model’s
training, and that training exclusively on the light dataset
proves to be sufficient. An additional benefit of exclusively
training on the light dataset is the time saved. Training on
the light dataset takes approximately 48 minutes per epoch
on average, with on average 10 epochs required, whereas
using the full dataset necessitates around 204 minutes per
epoch on average, with an average requirement of 4 epochs,
leading to a reduction by approximately 59% in training
time required (Light: 480; Full: 816 minutes). However,
when comparing DINO in Table 5 and 6 one can see that
testing on the light dataset overestimates the models perfor-
mance by about 14% on the AP50 metric, while the AP75

does not change significantly. A table of all models trained
on the light dataset, but tested on the full, can be found in
the supplementary material.

APs APm APl AP50 AP75

Light 0.484 0.408 0.341 0.659 ± .025 0.274 ± .034
Full 0.458 0.374 0.302 0.653± .015 0.216± .036
FT-1 0.468 0.392 0.320 0.622± .030 0.225± .007
FT-3 0.450 0.372 0.294 0.618± .031 0.183± .049
FT-6 0.452 0.366 0.275 0.595± .038 0.182± .029

Table 6. Results: DINO, trained on the full, and light dataset, and
pre-trained on the light and then FineTuned (FT) for 1, 3, 6 epochs
on the full dataset. Best result in black, values averaged over five
runs. Extended table with STD in the supplementary material.

4.4. Colored Light Dataset

We then trained DINO on the resulting dataset and com-
pared it to its performance on the grayscale version. The
result can be seen in Table 7. It is visible that the colorized
images produced using the Hyper-U-Net method only min-
imally affect the performance of the DINO model, with
the exception of the AP75, where the colorization improved
performance by about 30%. These results show, that col-
orizing greyscale images can improve performance, how-
ever, at the cost of a reduced inference speed. DINO alone
took about 24ms per image, while colorizing the image took
about 100ms per image, measured on an Nvidia RTX 3090.

APs APm APl AP50 AP75

Grey 0.474 0.393 0.333 0.759 ± .015 0.273± .044
RGB 0.490 0.396 0.318 0.741± .012 0.356 ± .063

Table 7. Results: DINO, trained on the grayscale and the RGB
dataset. Best result in black, averaged over five runs. Extended
table with STD in the supplementary material.
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(a) Rural area. (b) Urban area. (c) New domain.

Figure 6. Predictions of the DINO model on the test set with a fixed threshold of 0.4.

4.5. Visual Analysis

We present three predictions on the test set in Figure 6,
all predictions are obtained from DINO with a fixed thresh-
old of 0.4. This threshold was established through an itera-
tive process of trial and error on the validation set. Figure 6a
depicts an urban example and it is visible that all craters
have been found correctly. In Figure 6b, a complex scene of
a bombed factory is depicted. In this scenario, DINO strug-
gles to identify any craters correctly. Instead, it erroneously
identifies storage tanks as craters. An evident shift in do-
main is illustrated in Figure 6c, where the craters are only
faintly visible due to a fresh layer of snow covering them.
Here, DINO accurately detects only two out of four craters
while mistakenly flagging a crater at the image periphery.

5. Discussion

We have introduced a novel dataset comprising historical
aerial images taken in Austria and Germany between 1943
and 1945, with the primary objective of identifying craters.
In total, 99 images were carefully selected, and domain ex-
perts diligently annotated 19,618 bomb craters. This dataset
is specifically designed to propel the advancement of object
detection algorithms tailored for analyzing historical aerial
imagery. While computer vision has seen the emergence of
extensive datasets, we discovered a remarkable absence of
a large-scale dataset for this particular task.

It is important to also acknowledge the inherent limita-
tions of this dataset, particularly regarding significant do-
main gaps, as seen in the image with snow coverage or
in urban areas. We are aware that the generalizability of
the trained algorithms may be compromised under such cir-
cumstances. Nevertheless, we anticipate that the release of
this dataset will encourage other researchers to contribute
to the research community by openly sharing their code and

presenting their findings using our dataset. This collabora-
tive approach will undoubtedly enhance overall comprehen-
sion and progress in the field.

Furthermore, it is vital to acknowledge that every in-
stance of a missed crater detection within the dataset rep-
resents a potential unexploded bomb during construction
activities. This underscores the significance of employing
responsible and explainable approaches in the development
of detection algorithms. Addressing these aspects and de-
vising methods to interpret and elucidate the algorithm’s
decision-making process represent promising avenues for
future research endeavors.
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