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Abstract

The failures of Deep Networks can sometimes be ascribed
to biases in the data or algorithmic choices. Existing debias-
ing approaches exploit prior knowledge to avoid unintended
solutions; we acknowledge that, in real-world settings, it
could be unfeasible to gather enough prior information to
characterize the bias, or it could even raise ethical considera-
tions. We hence propose a novel debiasing approach, termed
ClusterFix, which does not require any external hint about
the nature of biases. Such an approach alters the standard
empirical risk minimization and introduces a per-example
weight, encoding how critical and far from the majority an
example is. Notably, the weights consider how difficult it
is for the model to infer the correct pseudo-label, which is
obtained in a self-supervised manner by dividing examples
into multiple clusters. Extensive experiments show that the
misclassification error incurred in identifying the correct
cluster allows for identifying examples prone to bias-related
issues. As a result, our approach outperforms existing meth-
ods on standard benchmarks for bias removal and fairness.

1. Introduction

Artificial intelligence systems may suffer inductive bias

from data (data bias), but even algorithmic design choices

can expedite wrong decisions during training (algorithm
bias) [17,20,30]. Therefore, enhancing their trustworthiness

requires considering more than just performance [3,18,19,25,

45]. More in general, learning systems exhibit the Principle
of Least Effort [17]: small input changes or different contexts

can cause significant deviations in object recognition [2, 35,

43]; minorities or underrepresented groups can suffer high

error rates [4, 12, 40].

To address these challenges, there has been widespread

interest in debiasing methods that aim to mitigate unintended

solutions. Debiasing interventions can occur before the

learning procedure (pre-processing), during model training

(in-processing), or after training (post-processing) [24]. In

particular, in-processing approaches act directly on the al-

gorithm design and effectively mitigate biases. Proposed

methods directly debias the model adjusting sample impor-

tance [23,36,42] and using adversarial learning [7,26]. Other

techniques employ quantitative fairness metrics as regular-

ization [6] and optimization constraints [21]. Although these

works address the problem, they require prior knowledge of

protected groups, achieved by grouping samples according

to their target and bias attribute values, such as gender. Ac-

cessing such information is often infeasible due to privacy

and ethical constraints. Furthermore, identifying and quanti-

fying bias attributes a priori can pose challenges in complex

systems (e.g., organism, climate, and cognition).

So, what if the protected groups are missing during the
learning phase?

Our goal is to train a model to mitigate performance

disparities among protected groups without exploiting such

information during training. We aim to achieve this objective

while ensuring satisfactory average performance. These qual-

ities are particularly essential for practical decision-making

algorithms. As an example, in healthcare and forensic ge-

netics inaccurate outcomes can pose significant risks to un-

derrepresented communities, claiming for fair and robust

solutions [9, 28, 32, 33]. An approximation is needed when-

ever the system does not access protected groups directly.

Our hypothesis posits that the classification of cluster as-

signments can leverage shared features between bias-aligned

and unbiased samples, presenting an opportunity for an ef-

fective mitigation of spurious correlations. Similarly to the

works of George [41] and BPA [39], our objective is to

address this issue estimating protected groups by clustering.

Existing approaches often encounter a common challenge

in the presence of dataset bias: it arises from overfitting

noisy and densely populated clusters identified during Em-
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Figure 1. An illustrative scenario depicting dataset partitions biased towards gender attributes. We propose that challenging clusters for

classification may leverage significant samples that do not possess the same protected attribute. We emphasize the need to pay closer

attention to such distributions in order to address and mitigate model shortcuts.

pirical Risk Minimization (ERM) pre-training, where the

focus is solely on minimizing the training loss for the target

variable y [39]. Furthermore, these methods rest heavily on

the assumption that critical samples can be easily identified

through cluster assignments within the ERM feature space.

However, real-world scenarios do not guarantee the validity

of such an assumption, as critical samples may be dispersed

across clusters rather than concentrated in specific ones.

In contrast, our approach takes a different standpoint by

acknowledging the dispersed distribution of critical samples

within the feature space. Our method involves clustering a

self-supervised feature space that operates independently of

the label y; in addition to optimizing the target objective,

we seek to minimize the cluster classification error. Con-

sequently, we define our weighting mechanism policy by

incorporating the auxiliary clustering loss with the target ob-

jective. To demonstrate the effectiveness of our approach, we

provide a compelling illustration in Fig. 1 with an example.

Identifying Bias. As illustrated in Fig. 1, we consider a

dataset partitioned on a target label, such as “Wearing Neck-

lace”, where each partition is biased towards a protected

attribute like gender. Following the clustering process and

assuming these assignments as ground truth, a classifier may

encounter challenges within a cluster where the majority of

individuals x do not possess the same protected attribute

(highlighted in Fig. 1 as critical samples within the grey clus-

ters). To address this challenge, we aim to learn new features

that can identify a common per-cluster attribute and achieve

satisfactory performance. This means looking for features

that are consistent with the original cluster assignment, but

different from the protected attribute. We believe that up-

weighting samples belonging to clusters with high cluster

classification loss can aid in identifying data distributions

that enhance model robustness and mitigate bias.

Observation. To val-

idate our intuitions, we

conducted an experiment

on the CelebA dataset (de-

noted as D) with the target

attribute y representing

“Wearing Necklace” and

the protected attribute a representing gender (female = 0 and

male = 1). In addition, we define a group g as g = (y, a).
The target label exhibits a strong correlation with female

individuals: within the training set Dt, comprising a total

of 162, 770 samples, Dy=1 consists of 18, 525 females and

only 1, 239 males. As aforementioned, we defined critical

groups as g0 : (y = 0, a = 0) and g1 : (y = 1, a = 1).
Consequently, the label z define if x ∈ {g0, g1} or not.

When training an ERM classifier on y, we observed that the

accuracy for the group g1 (male with necklace) was only

2.72%. Subsequently, based on self-supervised features, we

obtained cluster assignments for each partition Dy using

k-means with k = 8. Afterward, we trained an ERM cluster

classifier using these assignments. The inset figure presents

the ROC curve for partition Da=1 (blue) and partition

Dy=1 (orange), which quantifies the correlation between the

critical label z and the ERM cluster-objective. Interestingly,

we observed a correlation between cluster errors and critical

samples in these partitions, indicating the former can be

adopted profitably to design an ad-hoc weighting strategy

which is the main proposal of our work. In Sec. 3.3, we will
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formally define how our policy detects critical distributions

during the learning phase.

ClusterFix. This paper presents ClusterFix (CFix), a prac-

tical in-processing debiasing framework aiming to jointly

optimize a classification task and an auxiliary one to gener-

alize over groups without their supervision. Our evaluation

demonstrates that the proposed solution outperformed the

previous state-of-the-art unsupervised debiasing approaches.

Moreover, despite not having group annotations during

training, ClusterFix outperformed the supervised approach

GDRO [36], even without explicit bias information.

Our contributions can be summarized as follow: (1)

We propose an effective debiasing method to mitigate in-

ductive bias in real datasets, which does not rely on prior

knowledge on protected groups; (2) We show how cluster

assignment classification is a practical auxiliary task that

improves worst-case robustness and generalization; (3) Our

approach reaches state-of-the-art performances in standard

bias-removal benchmarks, even w.r.t. supervised methods.

2. Background
2.1. Related Work

Domain Adaptation and Generalization. In the literature,

many works focused on achieving generalized models that

can handle worst-case scenarios [48,54]. In this setting, mod-

els run into multiple distributions during the learning phase,

designed to generalize well on unseen distributions during

testing. In robotics, domain randomization has proven to

be an effective technique for dealing with real-world situa-

tions [44]. Meanwhile, meta-learning aims to acquire the

ability to quickly adapt to new conditions by learning how

to learn new representations [16, 46]. Adversarial training

can also be a valuable tool for achieving model robustness

and analyzing worst-case scenarios [43, 52]. Adversarial

objectives have shown promising generalization abilities and

are more aligned with human understanding [37]. On the

other hand, they cannot provide a theoretical guarantee of

reliable performance [25].

Distributionally Robust Optimization. There has been

growing interest in fairness and robustness in recent years.

Distributionally Robust Optimization (DRO) proposes to

guarantee the best outcomes in cases where there is a change

in data distribution by controlling the worst-case perfor-

mance over subsets [14, 42]. However, since worst-case sce-

narios may be too pessimistic, others investigate group DRO

(GDRO) [36], which optimizes worst-case performance over

a known set of groups. However, this algorithm requires

sensitive-attribute annotation, which is usually unknown in

real datasets; we tackle this issue by estimating partitions

through clustering.

Fairness without Demographics. Recently, some re-

searchers have explored more challenging scenarios where

they have no access to protected-group labels (so-called un-

supervised methods). Our framework aims to tackle this

issue by replacing sensitive supervision with clustering as-

signments. Other methods try to achieve sub-population fair-

ness and worst-case generalization without sensitive prior

knowledge by estimating different training data distributions.

Our work resembles two cluster-based debiasing strategies,

George [41] and BPA [39]. Although both methods employ

pseudo-labels to partition the dataset into clusters, George

has been found vulnerable to outliers overfitting, resulting

in suboptimal performance on practical datasets such as

CelebA [39].

Deep Clustering and Representation Learning. Our ap-

proach leverages clustering to estimate groups and enhance

structure-cluster information. In unsupervised settings, clus-

tering serves as a practical training objective for generat-

ing improved feature representations. For instance, [5, 11]

proposed using cluster assignments as the main training

objective to mitigate bias stemming from proxy objectives.

In [50], Yan et al. enhanced generalization by pre-training

a network for clustering in the original feature space and

fine-tuning a new model based on cluster assignments. Other

approaches have employed deep clustering to jointly learn

cluster assignments and representations, preventing feature

space collapse [15], or minimizing KL divergence between

a centroid-based probability distribution and an auxiliary

target distribution [49]. Several clustering methods have

recently proposed simultaneously learning fair representa-

tions and clustering to conceal sensitive attributes, leveraging

protected-group knowledge [1, 10, 26].

2.2. Problem Setup

We are given a set of n datapoints x1, ..., xn ∈ X asso-

ciated with a binary label yi ∈
{
0, 1

}
. In addition, each

datapoint is associated with a label ci ∈
{
1...C

}
defined

by cluster assignment. We train a deep neural network

composed of a feature extractor F : X → Rd, a binary

classifier T : Rd → R2, and a set of auxiliary classifiers

Cy : Rd → RC , one for each task label y. The classification

performance of y is evaluated on pre-defined groups G based

on the average and worst-group accuracy as in [36]. The

group label g ∈ G is only used for metric evaluation and

is not accessible during optimization. The objective is to

achieve good average and worst-group accuracy at test time

without training group annotations.

2.3. Relevant Objective Functions

In this section, we describe in detail four training ap-

proaches to introduce our work in the next section.
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Empirical Risk Minimization. Typically, a model defined

by a feature extractor F and a target classifier T try to solve

the following optimization problem:

argmin
F,T

1

N

N∑
i=1

�(T ◦ F(xi), yi) (1)

where � represents a loss function, y is the target, and x is

the input. In other words, ERM minimizes the average loss

across data points. In general, this kind of procedure needs

better generalization in some groups during inference.

Group Distributionally Robust Optimization [36]. The

Group DRO approach utilizes training group annotations to

reduce the maximum group error within the training set. As-

suming the availability of group annotations for the training

data, the objective function for Group DRO can be expressed

as:

argmin
F,T

max
g∈G

{
1

Ng

Ng∑
i=1

1(gi = g)�(T ◦ F(xi), yi)

}
(2)

George [41]. Since g is often not available in real sce-

narios, George approximates protected groups with cluster

assignments. More specifically, this method is organized as

follows: (i) train a model via ERM, (ii) cluster the feature

space, (iii) train the final model from scratch with clustering

information as in Eq. (3). The central empirical hypothesis

here is that the feature space of deep neural networks trained

via ERM carries information about group labels.

argmin
F,T

max
c∈C

{
1

Nc

Nc∑
i=1

1(ci = c)�(T ◦ F(xi), yi)

}
(3)

BPA [39]. BPA takes advantage of the same hypothesis of

George: protected groups are approximated by clustering

after ERM pretraining. On the other hand, the optimiza-

tion process is guided by dynamically reweighting sample

importance.

argmin
F,T

1

N

N∑
i=1

wci�(T ◦ F(xi), yi) (4)

where the sample weight wci is given by the following equa-

tion:

wc =
1

Nc
E(x,y)∼Pc

[�(T ◦ F(xi), yi)] (5)

3. Proposed Method: ClusterFix
3.1. Overview

ClusterFix (CFix) is a two-stage debiasing approach that

does not require protected-group supervision. Similarly to

previous works, CFix weighs the contribution of each exam-

ple to the overall classification loss as in Eq. (4); differently,

the importance of each example does not depend only on the

mismatch between the prediction and ground-truth label y,

but also on an additional term that considers how examples

cluster in latent space. Briefly, our approach divides into two

subsequent steps, as follows.

Cluster Assignment. The first stage regards preparing a

pretext task, which will be optimized in the second stage. In

particular, the idea is to cluster the latent space of a deep neu-

ral network into several groups, thus yielding novel pseudo-

labels c from the computed assignments to the clusters. In

doing so, CFix leverages self-supervised pre-training (car-

ried out through Barlow Twins [51]), whose latent space is

afterward clustered through the k-means algorithm. Such a

preliminary stage favorably lowers the risk of biased repre-

sentation during the downstream task. Indeed, the pseudo-

labels produced as such are opaque w.r.t. the target bias-

prone task, as they only rely on the self-extracted features.

x

F

C1

yc

L L

TC0

Figure 2. ClusterFix Architecture.

Debiasing Training. In

the second stage, we ask

the model to pursue a

twofold objective: not

only it has to learn the tar-

get task embodied by y,

but there is a tailored ob-

jective that constrains the

feature space. In partic-

ular, it seeks the model

to remain consistent with

the original cluster assign-

ments c.Eventually, to pre-

serve minority groups, we

weight the importance of

each example proportion-

ally to the average error
of its cluster, where the concept of error considers both

original and pseudo labels y and c. In this respect, what

differentiates CFix from existing approaches is that the clus-

tering membership has an active and direct contribution to

the total learning objective.

As an example, George [41] as well performs a prelim-

inary clustering step; however, while its authors exploited

clustering to compute the classification loss w.r.t. an inde-

pendent sample grouping (represented by c), we instead use

a metric related to c to weight examples.

To provide an intuition, we refer to the observation

in Sec. 1 in which a clear dependence arises between an

independent clusters’ assignment metric (e.g., an ERM pre-

trained classifier) and the presence of protected features. For

this purpose, this suggests that the empirical risk paid by a
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wrong cluster assignment can be exploited as a proxy of the

importance that should be given to an element in terms of

contribution to the task loss on y.

3.2. Step 1: Cluster Assignment

First, the dataset was divided by label, from which fea-

tures were extracted from a pre-trained model. Next, k-

means was applied to obtain cluster assignments c, which

were used as categorical labels for the next stage. Specif-

ically, a self-supervised trained model F : X → Rd was

used for feature extraction.

3.3. Step 2: Debiased Training

Let F : X → Rd, T : Rd → R2, and Cy : Rd →
RC represent the functions of the pre-trained encoder, task

classifier, and cluster classifier respectively, Fig. 2. Then, the

objective function of the proposed method consists of two

parts: weighted-classification loss and cluster-structural loss.

In the following, we provide details on these two separate

terms and the re-weighting strategy for the proposed model.

Clustering-Structural Loss. Achieving smoothness in

the feature space through cluster classification can prevent

model shortcuts in y classification and mitigate inductive

bias. This method is also valuable for identifying problem-

atic clusters with high average entropy and small size. We

hypothesize that there is a correlation between high-entropy

clusters and out-of-distribution elements, which can assist

the model in generalizing better in worst-case scenarios.

This approach’s benefits are underpinned by information

theory [50], as the structural loss creates an information

bottleneck that facilitates the identification of proxy objec-

tive bias and improves model generalization. Formally, the

clustering-structural loss is defined as follows:

Ls =

N∑
i=1

�(C ◦ F(xi), ci) (6)

Task-Weighted Classification Loss. The main objective

of the optimization process is to learn how to classify y,

which is achieved through task-weighted classification loss.

Each sample’s classification loss is weighted by a factor wk,

which reflects the significance of the cluster to which the

sample belongs. The weight is determined based on the

average loss concerning y and the structural loss concerning

the clusters. The task-weighted classification loss is defined

as follows:

Lt = wci�(T ◦ F(xi), yi) (7)

where wc is:

wc =
1

Nc
E(x,y)∼Pc

[�(T ◦F(xi), yi)+ γ�(Cyi
◦F(xi), ci)]

(8)

ClusterFix Objective. In summary, the proposed debias-

ing method’s overall objective function can be expressed

as the following optimization problem, the trade-off hyper-

parameter is denoted by γ:

minLt + γLs (9)

4. Experiments
In this section, we present the experiments to evaluate

the proposed debiasing method and compare it with several

state-of-the-art debiasing techniques. We used the same ex-

perimental settings as BPA [39] to ensure a fair comparison

among different debiasing methods. Specifically, we trained

the proposed method using a ResNet-18 as the backbone

architecture with the Adam optimizer, a learning rate of

1 × 10−4, a batch size of 256 images, and a weight decay

rate of 0.01 for 100 epochs. The learning rate was scheduled

with cosine annealing. For all experiments, we performed

k-means clustering with K = 8 and the cluster weight of

the cth cluster, ωc, was updated with a momentum m = 0.3
as in [39]. Additional experiments on hyperparameters and

datasets can be found in the supplementary material.

4.1. Benchmarks

CelebA. CelebA [27] is a dataset comprising 202, 599
celebrity face images with 40 binary attribute annotations

for each image. Moreover, in our experiments, the gender

attribute has been used as the bias attribute to evaluate the

robustness of the proposed method, as in [39]. We initialized

the feature extractor F parameters by using a self-supervised

pre-trained network with Barlow Twins [51]. In particular,

for the self-supervised training, we used an output dimension

of 1 024, a batch size of 256, and an SGD optimizer with a

fixed learning rate of 0.6. We set the λ parameter to 0.5.

Following [39], we focused on gender as the fixed bias

attribute and excluded 8 out of 40 attributes due to limited

samples in the test set. Among the remaining 32 attributes,

26 exhibited a significant correlation with gender, showing a

classification accuracy gap of over 5% compared to unbiased

accuracy [36]. To explore diverse scenarios, we selected

the top 5 attributes with the highest gap and the bottom 5

attributes with the lowest gap, as identified in [39].

Waterbirds. The Waterbirds dataset [36] is designed to

evaluate the robustness of deep networks w.r.t. spurious cor-

relations and distribution shifts. It has been created by select-

ing images of birds from the Caltech-UCSD Birds-200-2011

dataset [47] and overlaying them on backgrounds obtained

from the Places dataset [53]. This dataset includes two at-

tributes: the type of bird, which can be either a waterbird

or landbird, and the background place, which can be either

water or land. The training set comprises 4, 791 samples, 56
out of the 1, 113 waterbird samples have a land background,
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Table 1. Unbiased accuracy (%) on CelebA dataset.

Unsupervised Supervised

Target ERM LfF [31] George [41] BPA [39] Ours GDRO [36]

Double Chin 64.61 ± 0.82 68.47 ± 0.22 76.23 ± 0.11 82.92 ± 0.54 85.13 ± 0.30 83.19 ± 1.11

Pale Skin 71.50 ± 1.60 75.23 ± 0.74 78.22 ± 3.75 90.06 ± 0.75 91.17 ± 0.04 90.55 ± 0.84

Chubby 67.42 ± 0.95 71.56 ± 0.52 74.88 ± 1.91 83.88 ± 0.36 84.16 ± 0.22 81.90 ± 0.20

Wearing Necklace 55.04 ± 0.59 57.21 ± 0.76 58.79 ± 0.10 68.96 ± 0.12 68.99 ± 1.19 62.89 ± 3.69

Wearing Hat 93.53 ± 0.37 94.81 ± 0.15 95.72 ± 0.71 96.80 ± 0.26 97.88 ± 0.09 96.84 ± 0.46

Big Lips 60.87 ± 0.58 62.15 ± 0.06 64.99 ± 0.13 66.50 ± 0.24 65.40 ± 0.48 63.70 ± 0.44

Bangs 89.04 ± 0.47 89.04 ± 0.50 92.62 ± 0.12 93.94 ± 0.57 94.67 ± 0.16 94.45 ± 0.17

Receding Hairline 69.72 ± 0.78 74.58 ± 0.21 78.86 ± 0.40 84.95 ± 0.49 87.00 ± 0.12 85.15 ± 1.31

Wavy Hair 73.10 ± 0.56 74.53 ± 0.17 77.39 ± 0.15 79.89 ± 0.71 79.42 ± 0.12 79.65 ± 0.63

Brown Hair 78.07 ± 0.87 78.93 ± 1.24 83.07 ± 0.07 83.83 ± 0.66 85.30 ± 0.47 84.87 ± 0.07

Average 72.29 74.65 78.07 83.17 83.91 82.31

Table 2. Worst-Group accuracy (%) on CelebA dataset.

Unsupervised Supervised

Target ERM LfF [31] George [41] BPA [39] Ours GDRO [36]

Double Chin 21.33 ± 2.24 28.24 ± 0.46 50.00 ± 0.41 67.78 ± 0.91 74.26 ± 3.94 72.94 ± 1.14

Pale Skin 36.64 ± 3.53 43.26 ± 1.40 62.03 ± 16.50 88.60 ± 1.48 87.01 ± 1.46 87.68 ± 2.37

Chubby 24.30 ± 3.73 34.09 ± 0.90 58.01 ± 11.04 72.32 ± 0.93 71.01 ± 1.17 72.64 ± 1.70
Wearing Necklace 2.72 ± 0.83 6.67 ± 2.07 13.82 ± 0.41 41.93 ± 2.47 55.56 ± 0.38 24.34 ± 7.81

Wearing Hat 85.12 ± 0.31 88.31 ± 0.12 92.93 ± 0.76 94.94 ± 0.19 96.58 ± 0.63 94.67 ± 0.41

Big Lips 30.85 ± 0.62 38.54 ± 0.18 44.51 ± 0.83 56.99 ± 3.05 57.27 ± 0.58 47.55 ± 1.03

Bangs 76.91 ± 3.27 82.37 ± 0.52 85.90 ± 0.24 92.21 ± 1.24 93.01 ± 0.36 92.12 ± 1.03

Receding Hairline 35.69 ± 0.35 45.53 ± 0.55 57.30 ± 0.90 79.11 ± 1.91 84.15 ± 0.82 79.12 ± 2.11

Wavy Hair 38.01 ± 0.85 45.24 ± 0.83 53.17 ± 0.43 65.74 ± 1.13 69.92 ± 0.38 66.79 ± 1.62

Brown Hair 59.58 ± 2.55 60.68 ± 3.62 73.20 ± 0.88 71.50 ± 0.97 79.18 ± 0.50 78.92 ± 1.61

Average 41.11 47.29 59.09 73.11 76.80 71.67

while 180 out of 3, 678 landbird samples have a water back-

ground. To assess model robustness, the validation and test

sets evenly distribute landbirds and waterbirds across land

and water backgrounds. We initialized F with ResNet18

pre-trained on ImageNet and set the λ parameter to 0.01.

Evaluation Protocol. In order to evaluate the proposed

method, we calculate the accuracy of every group g = (y, b),
defined as a combination of target and bias attribute values.

The bias attribute b ∈
{
1...B

}
is an external annotation

unused during optimization (e.g., gender, background). We

report results in terms of average-group accuracy (unbiased
accuracy) and worst-group accuracy [36, 39]. All reported

results are the average of three runs.

4.2. Comparisons with Other Debiasing Ap-
proaches

The proposed method is compared with several state-of-

the-art debiasing techniques:

• Empirical Risk Minimization (ERM): our vanilla base-

line. It trains a model on a dataset that may be biased,

leading to a biased model;

• Learning from Failure (LfF) [31]: it trains a debiased

classifier using the misclassification information of the

biased classifier adopting an adversarial training objective;

• George [41]: a debiasing method that approximates bias

attributes with cluster assignment and weights the objec-

tive function to maximize the worst-case group accuracy;
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Table 3. Unbiased and Worst-Group results obtained on the Waterbirds dataset.

Unbiased Accuracy (%) Worst-Group Accuracy (%)

Unsupervised Sup. Unsupervised Sup.

Target Bias ERM LfF BPA Ours GDRO ERM LfF BPA Ours GDRO

Object Place 84.63 84.57 87.05 86.29 88.99 62.39 61.68 71.39 74.03 80.82
Place Object 87.99 85.05 88.44 92.17 89.20 73.34 60.00 79.16 86.61 85.27

(a) (b) (c) (d)

Figure 3. Robustness evaluation of models trained without critical samples (a) and the effectiveness of CFix backbone pre-training on

unbiased accuracy measurement (b). (c) and (d) are UMAP projections visualizing CFix feature space (Wearing Necklace = false) at the

initial and final epoch. Blue and orange colors represent male and female gender values, respectively.

• Debiased Representations with Pseudo-Attributes
(BPA) [39]: a debiased representation is learned by in-

troducing cluster-generated pseudo-attributes;

• Group Distributionally Robust Optimization
(GDRO) [36]: this method optimizes the worst-case

performance over a distributionally robust uncertainty set

using explicit bias supervision.

Main Results. The results of our evaluation on CelebA

are presented in Tab. 1 and Tab. 2. We show how CFix

outperforms all competitors across all evaluated scenarios,

achieving higher unbiased and worst-group accuracy metrics.

Specifically, our method outperforms the bias-supervised ap-

proach Group DRO and state-of-the-art BPA in both metrics.

Additionally, our optimization process demonstrates greater

stability across different runs. The worst-group accuracy im-

provement is noteworthy, given that other approaches, such

as George and Group DRO, prioritize maximizing worst-

case group accuracy, which is not the focus of our approach.

In more detail, our method achieves an average improvement

of +0.74% in average accuracy and +3.27% in worst accu-

racy (+13.63% for Wearing Necklace target) compared to

the previous unsupervised state-of-the-art. Additionally, ex-

periments on Waterbirds confirm the effectiveness of our ap-

proach even in a controlled environment, as shown in Tab. 3.

We observed improvements in the worst-case performance

for Object (bird) and Place (backgorund) classification, with

gains of +2.64% and +7.45%, respectively.

5. Model Analysis
Ratio of the Bias-Aligned Samples. To showcase the re-

silience of different approaches to distribution shift, we have

designed an experiment where we selectively remove bias-

aligned samples from the training dataset while keeping the

test set unchanged. Our study focuses on the Waterbirds

dataset, where we remove minority groups from the train-

ing set (all waterbirds in a land background and vice versa).

The worst-group accuracy on the test set is reported across

epochs in Fig.3a. Our results indicate that CFix outperforms

BPA on minority groups not present in the training distribu-

tion. This provides evidence that the proposed structural loss

enhances the overall worst-case generalization performance.

On the Effects of Pre-Training. The feature extractor F ,

used for clustering and backbone initialization, is a crucial

component in our pipeline. To verify the effectiveness of our

approach on CelebA while altering the backbone, ResNet-

18 pre-trained on ImageNet has been employed to initialize

F . We conducted identical experiments for the best and

worst target attributes as specified in Tab. 1. The outcomes

illustrated in Fig. 3b indicate minimal changes in the over-

all performance with a slight improvement when utilizing

the latter setting. These results suggest that it is possible to

leverage bias-aligned signals without requiring an Empirical
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Figure 4. Visualization of the class activation maps generated by Grad-CAM [38], Grad-CAM++ [8], Ablation-CAM [34], HiResCAM [13],

and LayerCam [22] for the ERM and the proposed debiased approach targeting the Wearing Necklace attribute.

Risk Minimization (ERM) model for each target. Notably,

we employed the same self-supervised encoder F to per-

form clustering for all CelebA experiments, while others

trained a separate ERM model for each target. Refer to the

supplementary material for ERM pre-training experiments.

Feature Space Visualization. In Fig. 3c and Fig. 3d, we

present visualizations of UMAP [29] projections on the

CelebA dataset for the “Wearing Necklace” classification.

Specifically, we visualize only negative examples (Wearing
Necklace = false) to effectively show the feature space at the

initial and final epoch using CFix. Our observations suggest

that our proposed model successfully achieves a smoother

feature space within the same class, mitigating the presence

of large clusters caused by shortcuts solutions. Other meth-

ods aim to mix the bias attributes in the feature space to

improve worst-case generalization. In contrast, our findings

advocate that good worst-group and average generalization

properties can be achieved even when the bias attributes are

separable in the feature space. Therefore, unlearning the

bias attribute is not always necessary to avoid shortcuts and

achieve good model performance.

Model Explainability. The experiments conducted in Fig. 4

explore the interpretability of the proposed debiased ap-

proach in contrast to the classical Empirical Risk Minimiza-

tion (ERM) method. Specifically, we utilize several explain-

ability techniques to visualize the class activation maps of

Wearing Necklace target on CelebA. For instance, the ERM

method emphasizes features not correlated with the target at-

tribute, while CFix prioritizes the regions more indicative of

the regions of interest. These results suggest that our method

mitigates unintended solutions, providing more meaningful

explanations of the decision-making process.

6. Conclusion
Mitigating model shortcuts without directly observing

bias attributes is a challenging and relatively unexplored

task in achieving bias removal in deep networks. Previous

research has attempted to address this problem by modifying

the target objective using pseudo-groups identified through

ERM pre-training. However, our empirical findings indi-

cate that this approach could be suboptimal in real-world

scenarios. Our key contribution is the recognition that em-

pirical cluster error can serve as a proxy for identifying

samples likely to be affected by the inductive bias of deep

networks. By leveraging this insight, CFix effectively up-

weights such samples, improving the worst-case and average

generalization for protected groups across multiple standard

benchmarks. Our study demonstrates that ClusterFix and

the insights gained from experimental results offer a robust

foundation for advancing worst-case generalization and al-

gorithmic fairness without relying on demographic data.

7. Broader Impact and Limitations

It is crucial to prioritize fairness above performance and

always be aware of potential bias, especially in fields such

as healthcare and facial recognition. Our novel training

approach enhance the worst-case performance for underrep-

resented groups without relying on their information. Further

research should validate whether the proposed approach is

valid in various real-world applications beyond the datasets

considered in our paper.
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