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Abstract

Pixel-level labels are particularly expensive to acquire.
Hence, pretraining is a critical step to improve models on
a task like semantic segmentation. However, prominent al-
gorithms for pretraining neural networks use image-level
objectives, e.g. image classification, image-text alignment
a la CLIP, or self-supervised contrastive learning. These
objectives do not model spatial information, which might
be sub-optimal when finetuning on downstream tasks with
spatial reasoning. In this work, we pretrain networks with a
location-aware (LOCA) self-supervised method which fos-
ters the emergence of strong dense features. Specifically,
we use both a patch-level clustering scheme to mine dense
pseudo-labels and a relative location prediction task to en-
courage learning about object parts and their spatial ar-
rangement. Our experiments show that LOCA pretraining
leads to representations that transfer competitively to chal-
lenging and diverse semantic segmentation datasets.

1. Introduction

The spatial annotations required for training semantic
segmentation models are extremely time consuming and
costly to acquire [72]. Therefore, pretraining is commonly
used to improve performance and label-efficiency of these
models [54]. The dominant method for pretraining neu-
ral networks uses image-level tasks on massive amounts
of supervised data [11,46,49,67,70]. For example, pow-
erful foundation models such as Flamingo [1], CoCa [66]
or PaLl [13], build upon a visual encoder pretrained by
matching aligned image and text pairs with a contrastive
loss [46], or by classifying images into a predefined set of
categories [70]. These two standard supervised pretraining
objectives operate at the global (whole image) level, with-
out explicitly encouraging spatial reasoning.

However, it is unclear whether image-level pretraining is
the optimal strategy when targeting recognition tasks with
spatial understanding such as semantic segmentation. In
fact, a recent study by Minderer et al. [40] shows that some
models pretrained with image classification, while being ex-
cellent at image-level downstream tasks, transfer poorly to
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Figure 1. LOCA is a self-supervised pretraining method which
combines relative position and patch-level cluster prediction. This
achieves improved transfer on semantic segmentation datasets.

object detection, a task also requiring spatial reasoning. We
argue that the main reason why pretraining is usually done
with global objectives is because annotations are much eas-
ier to collect at the image level rather than at the pixel level.
Indeed, the image classification or image-text datasets typi-
cally used in state-of-the-art systems [13,46,51,70] are or-
ders of magnitude bigger and cover more categories than
densely annotated datasets [24, 34, 36, 72]. For example,
while being much larger than previous densely annotated
datasets, the recent Segment Anything dataset [34] remains
relatively small (11M images with category-agnostic seg-
mentation masks) compared to standard datasets used for
visual pretraining like LAION-{400M, 5B} [51] or We-
bLI [13]. Therefore, one approach to unlock the poten-
tial of dense, spatially-aware pretraining at scale might be
to move away from annotations altogether, as proposed
by self-supervised learning (SSL) approaches. A success-
ful branch of SSL, often coined as “contrastive learning”,
works by matching the representation of different views
obtained from a same image by means of data augmen-
tation [9, 12,27, 30]. Interestingly, Caron et al. [10] have
shown that segmentation masks emerge from the attention
maps of Vision Transformers (ViT) [22] trained with these
contrastive methods and several works have built on this
observation to generate completely unsupervised segmen-
tations [28, 52, 74]. However, we found in our prelimi-
nary experiments that salient attention maps do not corre-
late with superior performance after finetuning to the se-
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mantic segmentation task [74]. We hypothesize that this
is because contrastive methods operate at the global level
without explicitly encouraging spatial relationships. Worse,
some works [3, 15] have analyzed that due to the inten-
sive use of spatial data augmentation (cropping, rescaling,
etc) of these methods, they tend to produce localization-
invariant features, discarding spatial information.

Hence, in order to foster the emergence of strong dense
representations, our goal is to design a patch-level pretext
task encouraging spatial localization reasoning. Recently,
patch-level SSL pretrainings have attracted more and more
attention in the community [4, 5,20, 29,60, 64, 69]. For ex-
ample, dense contrastive approaches adapt the popular con-
trastive SSL paradigm to the patch level [45,48, 58,62, 63]
while masked autoencoders propose to reconstruct masked
patches [5,29]. Of particular interest, Zhai et al. [69] pro-
pose a pure localization method, that of predicting the posi-
tion of the patches of an image. Intuitively, position predic-
tion should inherently require a strong spatial and semantic
understanding and has been the core motivation of the pi-
oneering SSL branch of “jigsaw puzzle” [21,42]. In this
work, we propose to revisit this strategy and introduce a
relative position prediction task. Specifically, our method
works by predicting the location of a query view relatively
to another, reference, view. To be able to locate themselves
in the reference, the query patch features “look™ at those
of the reference through shallow cross-attention. We con-
trol the difficulty of the task and properties of the result-
ing features by masking reference patch features visible to
the query. Our experiments show that this query-reference
mechanism improves greatly over the single-view design of
Zhai et al. [69] when transferring to semantic segmentation.

Since semantic segmentation is a per-patch classifica-
tion problem, we also propose to prepare the ViT fea-
tures for this task by means of clustering-based pseudo-
labeling [2, 8, 65] done at the patch level [74]. Overall,
we present in this work a location-aware (LOCA) self-
supervised pretraining approach for semantic segmentation,
which combines a straightforward patch-level SSL cluster-
ing method and relative position pretraining, as illustrated
in Fig. 1. We show that LOCA yields improved perfor-
mance over state-of-the-art supervised [46, 53, 56] and un-
supervised [10, 14, 29, 73] representation learning meth-
ods for ViTs when transferred to 11 diverse semantic seg-
mentation benchmarks. We summarize our main contribu-
tions: (i) novel location-aware SSL methodology; (ii) per-
formance lifts in several downstream semantic segmenta-
tion (and depth estimation) tasks; (iii) promising scaling ca-
pabilities in model and data axes; (iv) comprehensive abla-
tions studies of our relative position prediction framework.

2. Related Work

SSL with location prediction. Pioneering works in
SSL proposed to exploit spatial cues to generate pretext
tasks [21, 26, 33, 35, 41, 42, 50].  Notably, inspired by
word2vec [39], Doersch et al. [21] train a network to pre-
dict the relative position of a pair of patches from the same
image while Noroozi and Favaro [42] extend this approach
to solving “jigsaw puzzles” by rearranging a set of shuffled
crops of an image. These approaches were developed with
Convnets and only very little work [69] has revisited them in
the scope of Transformers. Zhai et al. [69] propose to pre-
train a ViT to predict the position of its input patches given
their visual appearance only, i.e. by discarding positional
embeddings. We compare this strategy to the LOCA rela-
tive position mechanism in Fig. 2 and Sec. 4.1. Also using
localization, UP-DETR [ 18] propose to pretrain the entire
object detection DETR architecture [7] (with a transformer
encoder-decoder, backbone, object queries, etc...) by local-
izing random boxes in a reference image. Two key method-
ological differences in the position prediction tasks of UP-
DETR and LOCA are: we use (i) masking to increase the
difficulty of the task and (ii) a different localization loss. We
evaluate the impact of these two components in Sec. 4.1.
Context and masked auto-encoders. Also exploiting spa-
tial cues for SSL, Pathak et al. [44] propose context auto-
encoders to train Convnets to generate the content of a
masked region based on its surrounding. Masked auto-
encoders have revisited this “inpainting” approach to pre-
training ViTs [5, 29, 59]. Specifically, the task is to recon-
struct masked [5] or dropped [29] patches from the input
sequence tokens, either directly in pixel space [29] or in
feature space [5,59,73]. Similar to LOCA, masked auto-
encoders are trained with patch-based objectives with a task
encouraging learning local representations. We compare the
performance of these two paradigms in semantic segmenta-
tion transfer in Sec. 5.

Clustering-based SSL uses clustering while training to
mine pseudo-labels in a dataset without annotations [8,65].
This pseudo-assignment strategy is usually done at the im-
age level [2,3,8,9,65] but recent works such as Leopart [74]
propose to cluster patch-level representations instead to pro-
duce dense semantic features [16]. The clustering pipeline
of LOCA is simplified compared to Leopart since we em-
pirically find that design choices such as ROI align or fore-
ground focusing are not useful in our setup while complex-
ifying the implementation. Another difference of LOCA
with Leopart is that we find that we can train from scratch
without the need for initialization from an external pre-
trained checkpoint [10]. Finally, unlike Leopart, our work
leverages an explicit position-based pretraining. Quantita-
tive comparisons with Leopart are in Sec. 5 (see Tab. 3).
Dense contrastive SSL. A prominent line of SSL, often re-
ferred to as “contrastive” or “siamese” approaches, trains
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networks by matching the representation of different views
obtained from a same image by means of data augmenta-
tion [3,9,12,23,27,30,61]. These approaches have pri-
marily been developed with global (image-level) objectives
but several recent works have adapted them to learn local
features [20,32,45,48,58,62,63,68]. Specifically, instead
of matching representations from global descriptors, they
match features that come from the same location in the orig-
inal image but seen from different views [45]. We borrow
the strategy of tracking the data augmentation process of
two views to find their intersection [45]. LOCA differs from
this body of work by exploring a different task, that of pre-
dicting relative positions. Another difference is the use of a
patch-level loss based on clustering rather than contrastive
self-supervision, which recent work Leopart [74] has shown
to be more effective.

Unsupervised semantic segmentation. While our goal
is to improve pretraining for semantic segmentation, some
parallel works to ours directly target semantic segmentation
without using any supervision at all [16,57]. Indeed, [10]
have shown that unsupervised segmentation masks emerge
from the attention module of ViTs trained with image-level
contrastive objectives such as DINO. Several works build
on this observation and enhance SSL features to produce
completely unsupervised segmentations [28, 52, 74].

3. Methodology

In order to foster the emergence of strong dense repre-
sentations for semantic segmentation downstream tasks, we
design LOCA, a patch-level SSL pretraining task that re-
quires to reason about spatial localization. It works as a
query-reference scheme where patches of a query view pre-
dict both their position and their cluster assignment rela-
tively to a reference view, as illustrated in Fig 1.
Generating query and reference views. From an im-
age x of a dataset, we form a reference view (denoted by
Zrey) and a query view (denoted by x4) using a randomized
data augmentation routine composed of flipping, cropping,
rescaling and color jittering. Because query and reference
are generated by two independent augmentation draws, they
usually have different image statistics (i.e. different scale,
region or color histogram). This forces the network to
rely less on low-level cues (chromatic aberration, color, and
edge consistency) to solve the self-supervised task and more
on recognizing object parts and their organization.

The query’s predictions are supervised by the reference
view and therefore our loss is defined only at the intersec-
tion of the two views. Hence, we want the query and ref-
erence to intersect often. Also, we wish to constrain the
spatial extent of the queries in order to favor the emergence
of image-part representations. A natural choice then is to
sample the reference view so that it covers a large area of
the original image and the query views so that they cover

a small portion of the original image. In practice we use
random resize-cropping and patch-dropping (following the
input pipeline of MSN [3]) for generating different query
views per reference. We describe the method for a single
query for simplicity but use ten in our experiments.

Correspondences between query and reference. Follow-
ing the standard protocol of ViTs [22], query and reference
views are divided into non overlapping patches of resolution
P x P. More precisely, the reference view is flattened into
Nref = LHref/PJ X LWch/PJ (with H’ref X Wraf the
resolution of z.. y) separate patches xief, ie{l,..., Nyes}
Default values are H,.; = W,y = 224, P = 16 and
Nyey = 196. A similar “patchification” process is applied
on the query view, resulting in a sequence of N, patches
azg,j € {1, ..., Ny}, where we typically use N, = 36. By
tracking the data augmentation draws that generated x,.
and x4, we can identify the patch-level correspondences be-
tween these two views. In particular, we know a function
h that, given any patch position j in the query view, returns

the position ¢ = h(j) of the patch in the reference, x%?,

that has the greatest overlap with the query patch 1731" We
implement the function h with successive nearest interpola-
tions and because the patchification grids of x, and .y are
usually not exactly aligned, a pair of matching patches, z7

q
and J;ﬁe(‘;), have similar content but do not generally match
perfectly. For example, we can see in Fig. | that the bottom
left patches of both the query and references are in corre-
spondence but do not cover exactly the same content.
Patch-level encoding with ViT. We process both the refer-
ence and query views with a ViT [22] denoted by f of inter-
nal dimension d (d = 768 for ViT-B). We note Z, € R4*Nq
(resp. Zpep € R4*Nrer), the output patch-level representa-
tion matrix of the query (resp. reference) view.

Patch position prediction. To encourage the network to
learn about different object parts and their spatial arrange-
ment, we predict relative patch positions. We implement
a query localization problem as a N,.¢-way classification
task where each query patch representation has to predict
the position of its corresponding patch in the reference view,
as given by h. To that end, the patch representation of the
query needs to “look™ at those of the reference. We imple-
ment this query-reference interaction with a single cross-
attention transformer block, denoted by g, whose queries
are computed from Z, and keys and values are obtained
from Z,.y. We denote the query representations after they
have looked at the reference as G = g(Zy, Zycy) € R Na
and by W € R¥*Nres the final position classification layer.
Note that V... s is the total number of positions in the refer-
ence. We minimize the position classification loss:

a7 2 AVTG),. 1) 1)

JEQ

where (2 is the set of patch position in the query that has an

119



intersection with the reference (i.e. where h is defined) and
£ is the softmax cross-entropy loss.

Masking reference patch features visible to the query.
In practice, we find that problem | can be solved near per-
fectly by the network (see the validation accuracy in Fig. 3).
As empirically shown in Sec. 4.1, one strategy to make
the task more challenging is to restrict what the query can
see from the reference. We implement this mechanism
by randomly masking a ratio 7 of the patch features in-
put to the cross-attention block g. Specifically, we redefine
G = g9(Z4,m(Zyes,n)) where m is a random process that
drops |7 Nye ¢] columns of Z,.;. We use structured drop-
ping (i.e. we keep a consecutive subset of patch tokens) as
we find in our experiments that it leads to superior perfor-
mance than unstructured dropping (+0.8 mloU).
Patch-level clustering. Training for semantic segmentation
in a supervised setting is typically cast as a per-patch clas-
sification problem over K predefined categories:

N
1 q

N, ZE((QTZq)jayj)
q j=1

where @ is a matrix in R?*X of learnable category proto-
types and ¢ is the softmax cross-entropy loss. This problem
is supervised by patch-level annotations y;. However, be-
cause we do not have access to such annotations, we resort
to clustering for pseudo-supervision [8, 9]. In particular,
to supervise the patch j in the query, we cluster the patch
representations of the corresponding reference view into K
clusters, playing the role of pseudo-categories. We obtain a
soft cluster assignment (or pseudo-label) based on the sim-
ilarity between the prototypes and the patch representation
at the corresponding localization in the reference view:

yf;ef = softmax(Zf,ef.Q/T)

with i = h(j) and 7 a temperature parameter controlling the
sharpness of the distribution. Note that, as commonly done
in SSL [9, 12,27], we have projected the representations Z,
and Z,.; with a 2-layer multilayer perceptron (MLP), re-
sultlng in features Z € R¥Na and Z,ef € RI*Nres with
d = 256. We further adjust the cluster assignment distri-
bution with Sinkhorn-Knopp [17] to avoid the collapsing
trivial solution [2, 9]. Since we have replaced expensive
per-patch label supervision with cluster pseudo-labels we
can minimize the following objective:

S QT 2,),4"D) 2)

1] &

where € is defined as in Eq. 1. We regularize this loss func-
tion with the mean entropy maximization (me-max) pro-
tocol [3] to encourage the network to use the full set of
pseudo-label prototypes ) (see Tab. 2a)).

Optimization. We train LOCA by minimizing the sum
of the objectives in Eq | and Eq 2, with equal weighting

targets targets
1]2]3 44
4|56 717
71819 1l
masking
| ViTencodr | | | ViTencoder | | ViTencoder |

——
EsT |

reference

(a) Single

(b) LOCA query-reference (Ours)
Figure 2. Conceptual comparison of single vs query-reference
patch position prediction mechanisms: (a) in a single view as in
Zhai et al. [69]; (b) in a query view relatively to a reference view
as in LOCA (Ours). Quantitative comparison is in Fig. 3. Masking
not illustrated for single.

and averaged both over the different query views and the
minibatch. We learn the parameters of f, g, @, and W by
back-propagating in the branch processing the query views.
The parameters used in the branch processing the reference
views are updated via an exponential moving average of the
encoder parameters processing the query views [10,27,30].
We find that this asymmetry does not have any effect on the
position prediction but improves performance and stability
for the cluster prediction task.

Implementation and evaluation. We train LOCA on Im-
ageNet datasets without labels with learning rate of 0.001
(cosine schedule), batch size of 1024 and weight decay of
0.1 with adamw [37]. Models in Sec. 5 are trained for 600
epochs and those for analyses (Sec. 4) for 100 epochs. We
evaluate by end-to-end finetuning on 11 semantic segmenta-
tion benchmarks [38], detailed in the Appendix. We follow
and reproduce the linear decoder protocol of [54]. It uses
a minimal amount of adapter layers to prevent the effect of
pretraining of being washed out by heavy decoders [43]. We
report results for other methods if available and run evalu-
ation from publicly released checkpoints if not. We run a
hyperparameter search with the same budget for all meth-
ods. We report results in single scale, averaged over 5 runs.
All implementation details are in the Appendix and code
will be released.

4. Design Choices Analyses

In this section, we detail various design choices for
LOCA. First, we make an in-depth study of the position
prediction. Second, we present an ablation study focused
on the pseudo-labeling clustering technique.
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Figure 3. Single vs query-reference patch position prediction
mechanisms. For both mechanisms, we report the position predic-
tion accuracy (left) and the performance after transfer to semantic
segmentation on ADE20k (right) for different patch masking ra-
tios 1. Query-reference makes for a more challenging pre-training
objective (lower accuracy on the position prediction task) due to
different image statistics between query and reference and con-
strained patch interactions. Conceptual differences are illustrated
in Fig. 2. Varying the masking ratio controls the difficulty of the
task and improves transfer performance.

4.1. Position prediction framework

To encourage the network to learn about the spatial ar-
rangement of different object parts, we propose to predict
relative positions. We detail here different components of
our framework: the query-reference mechanism, the effect
of masking reference patches and the loss function. Unless
specified otherwise, models are trained solely with loss (1)
in this section to isolate the effect of position-based training.
Query-reference. ~We compare the two mechanisms il-
lustrated in Fig. 2. The “single” strategy is akin to Zhai et
al. [69]. We vary 7 the proportion of masked patch tokens.
In “single”, masking patch tokens means that patches can
only attend to the unmasked ones, i.e. only the unmasked
patches take part in the computation of attention keys and
values [69]. Results are in Fig. 3. On the left, we report the
validation accuracy for the position prediction task, which
measures the difficulty of this task. On the right, we show
transfer performance.

We see in Fig. 3 that the query-reference mechanism of
LOCA is a more challenging pretraining framework than
Zhai et al. [69] and subsequently leads to better represen-
tations for semantic segmentation (47.6 mloU). This can
intuitively be explained by several conceptual differences.
First, in [69], the network can almost perfectly solve the
task by leveraging low-level non-semantic cues such as
chromatic aberration, color or edges consistency between
patches. This is partly prevented in the query-reference
mechanism due to different image statistics between query
and reference, thanks to cropping, rescaling and color jit-
tering. We evaluate the effect of color jittering alone in the
Appendix. Second, the way query (i.e. patches that pre-
dict a position) and reference (i.e. context patches) can in-

Figure 4. Masking reference
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392 b——7———287
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teract is in stark contrast in the two mechanisms. In [69],
query and reference interact in an unconstrained manner at
all stages of the computation since they are the same en-
tity. With masking, this design is party modified by pro-
cessing each query patch independently but still allowing
them to fully attend to the reference patches at each block.
By contrast, in LOCA, query patches can attend freely to
each other but cannot look at the reference patches until the
last stage of the network. Intuitively, this more constrained
interaction encourages both query and reference patches to
develop stronger final localization features.

Masking reference patches. In Fig. 3, we observe that the
localization pretraining task can be solved near perfectly
when all the patches in the reference are visible to the query
(see validation accuracy in Fig. 3 left for n = 0 and first
column of Fig. 5 for visual examples). Masking patches to
the query makes the pretraining objective more challenging
and leads to better representations. In Fig. 4, we analyze this
effect further. We consider different masking ratios and re-
port for the same downstream dataset both the transfer per-
formance on semantic segmentation and multi-label clas-
sification (with frozen backbone) by turning the semantic
segmentation annotations into classification labels. We ob-
serve in Fig. 4 that masking improves both localization and
classification. Intuitively this is because masking reference
patches forces the query to rely less on finding matching
salient points between the two views and more on recogniz-
ing objects and their parts as illustrated in Fig 5.

However, when masking is too aggressive, we observe
that the query does not see enough of the reference to solve
its task by relative localization and resorts to other cues. To
understand this phenomenon, we push masking to extreme
rates and even report performance when the reference is not
visible at all (n = 1). Surprisingly, we find that the query
still manages to solve the localization pretraining task to
some extent with a localization accuracy of 3.7% (random
guessing achieves 0.5%). We hypothesize that two ways of
solving the task without looking at the reference are to (i)
learn where things are typically located in images and (ii)
memorize all the dataset images. We argue that the “mem-
orization” regime is akin to an implicit formulation of the
“exemplar” instance discrimination approach of Dosovit-
skiy et al. [23] where the network learns to recognize each
individual instance of a dataset (but without a classifier of
the size of the dataset as in [23]). Overall, both learning bi-
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Output Predicts spatial extent Loss ADE20k
All patch positions v Classif. 42.5
Central patch position Classif.  38.6
Box coord. (UP-DETR [18]) v Regress. 39.0

Table 1. Localization loss. We report mloU on ADE20k for dif-
ferent loss variants. Predicting the position of all patches vs the
position of the central patch only is better, likely because it in-
volves reasoning about the spatial extent of the query.

n=0

n=0.8 n=1

¥yl
mO &0
T~ 0 W

Query Reference

Figure 5. Visualizing LOCA’s predictions. The query location is
shown in blue in the reference and LOCA predictions are shown
in red. Columns correspond to different reference masking rates
and we show only patches visible to the query. More examples in
Appendix. Displayed images are not seen during training.

ases of general dataset statistics and instance discrimination
have been shown to improve transfer performance on clas-
sification downstream tasks [23, 25, 61] which is consistent
with the boost in classification observed for n = 1.

Overall, this experiment shows that an optimal masking
ratio for semantic segmentation features is high, but not too
high either so that the network can still solve the task by
relative localization. In practice, we use = 0.8.

Choice of localization loss. First, we compare predicting
the position of all patches versus the position of the cen-
tral patch only. We see in Tab. | that all patches is better.
We hypothesize that this is because it requires to predict the
spatial extent of the query and not just an anchor point. Sec-
ond, we compare solving a per-patch position classification
problem versus regressing the coordinates of the query box
in the reference. For box prediction, we use a linear com-
bination of ¢; loss and the generalized IoU loss, following
UP-DETR [7, 18]. Because query and reference patchifica-
tion grids are usually not aligned, matching patches in query
and reference do not have exactly the same content. This

a) SK and me-max encourage
use of all prototypes. H: aver-
age prediction entropy.

b) Patch-level clustering is
better for transfer on seman-
tic segmentation.

SK me-max H ADE20k classif. semseg.
v /828 462 Cluster Im1k-10s ADE20k
v 827 46.1 Patch 40.9 46.2

v 814 457 Image (CLS) 48.6 43.8
0 collapse  Image (GAP) 48.5 43.8

c) Effect of the number of
cluster prototypes.

d) Number of queries.

# queries 10 5 2 1

4 o8 12 ol4
K 2 7 . ADE20k 46.2 45.5 43.4 41.1

Speedup - x1.5x2.1 x3.0

ADE20k 45.346.2 46.2 45.8

Table 2. Ablation study of different design choices.

does not affect the box regression formulation, which might
give it an advantage over per-patch classification. However,
we surprisingly find in Tab. | that box regression leads to
poorer performance than per-patch classification. Our hy-
pothesis is that the jittering induced by the grid misalign-
ment regularizes the training while exact box regression en-
courages to focus on precise but low-level cues.
Visualizing LOCA’s predictions. In Fig. 5, we visualize
the output of location prediction models trained with differ-
ent masking rates: 7 = 0 (no masking), n = 0.8 (default)
and n = 1 (invisible reference). The first row shows a sit-
uation where the network can make a valid guess about the
query’s location solely based on the query visual appear-
ance, i.e. without looking at the reference. In the second
row, we see that LOCA successfully locates the snout of the
dog based on the reference ear patches. This suggests that
it has learned about spatial arrangement of different parts of
a dog. Third row depicts the case where the network can
leverage low-level cues such as edge consistency to locate
the query. The masked variants are restrained in their use of
such cues and hence fail to locate the query. Finally, in last
row, there is no visible cue in the query that allows its local-
ization. The prediction is degenerated for all the variants.
Combining with patch clustering. In the previous exper-
iments, we have validated our position prediction scheme
and showed that it improves by +7.6mlIoU over the position
prediction method of Zhai et al. [69]. While we find that
predicting position only is performing less well than pre-
dicting patch-level cluster assignments only (—3.3mloU)
the best performance is obtained when predicting both
(+0.7mIoU over cluster only) which demonstrates some
complementary between them.

4.2. Ablation study of patch clustering

In this section, we report model ablation results focused
on the clustering mechanism. In Tab. 2 a), we see that both
Sinkhorn-Knopp and me-max regularizations are useful to
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Consumer Driving Indoor Aerial Underwater Avg. rel.
Method dense? ADE20k P.Cont PVOC Citys. BDD CamVid IDD KITTI SUN ISPRS SUIM A (%)
ImageNet-1k - ViT-Small/16
Random init. 20.4 20.7  32.1 437 392 41.6 440 382 18.9 35.6 56.1 0
DINO [10] 41.2 46.7 727 69.3 589 51.7 528 450 424 40.3 70.7 62.6
MoCo-v3 [14] 42.5 49.3 72.0 69.0 59.0 51.8 533 452 44.2 40.4 73.6 65.6
Leopart [74] v 422 48.7 733 70.8 59.1 52.0 533 46.1 434 40.7 71.1 65.5
iBOT [73] v 42.6 49.7 745 71.3 60.1 53.1 544 46.7 44.7 45.8 72.2 69.5
LOCA (Ours) v 44.8 51.3 74.0 709 60.5 56.6 55.0 47.9 45.2 43.0 73.5 72.0
ImageNet-1k - ViT-Base/16
Random init. 21.1 19.6 29.1 51.4 40.2 433 452 39.0 19.7 28.1 53.0 0
DINO [10] 44.1 50.7 74.1 784 60.7 515 543 464 44 4 41.5 71.2 71.9
MoCo-v3 [14] 454 51.6 745 786 604 51.1 537 457 45.6 42.1 72.6 73.6
iBOT [73] v 47.0 546 750 798 62.1 515 555 47.0 46.3 42.2 73.2 77.7
MAE [29] v 45.5 517 750 79.7 62.1 57.8 558 48.3 459 44.6 72.4 77.8
LOCA (Ours) v 47.9 549 76.7 79.8 62.8 56.1 556 485 47.7 45.6 74.0 82.1

Table 3. Comparison with other SSL pretrainings on 11 semantic segmentation benchmarks. We report mean IoU on the different
validation sets. In the last column, we report the relative improvement over starting from random initialization averaged across all the
datasets. We consider SSL methods trained on ImageNet-1k without labels using the ViT-Small and -Base architectures.

encourage the model to use the full set of cluster proto-
types. In Tab. 2 b), we compare our patch-level pseudo-
labeling method to image-level ones on ADE20k seman-
tic segmentation and on ImageNet- 1k 10-shot classification.
The image-level clustering framework is akin to existing
SSL frameworks such as DINO [10] or MSN [3]. We eval-
uate two global aggregation techniques: token (CLS) and
global average pooling (GAP). We see that performance
on semantic segmentation improves with per-patch assign-
ments instead of image-level clustering. However, we ob-
serve a decay on classification. In Tab. 2 c), we see that
LOCA is robust to the number of clusters K, though over-
clustering is beneficial [8, 74]. In Tab. 2 d), we show the
effect of reducing the number of queries. Using a single
query instead of 10 allows to speed up pretraining time by
x 3 but induces a loss of 5.1mloU in transfer performance.

5. Main Results
5.1. Comparison with other SSL pretrainings

In this section, we compare LOCA to popular state-of-
the-art SSL models for ViTs: DINO [10], Leopart [74],
MoCo-v3 [14], MAE [29] and iBOT [73]. Compared mod-
els use ImageNet-1k (without labels) and ViT-{B, S}/16.
Transfer to 11 semantic segmentation benchmarks. In
Tab. 3, we report the performance of different SSL pretrain-
ing methods after end-to-end semantic segmentation fine-
tuning on diverse datasets. First, we see that representa-
tions learned with LOCA transfer very well to semantic
segmentation across the different considered datasets and
architectures. Of particular interest, MAE achieves the sec-
ond best SSL performance. In terms of training efficiency,
one LOCA epoch takes 17.4 minutes while one MAE epoch
takes 5.7 minutes based on our implementation. LOCA

Method 1/32 1/16 1/8 1/4 1/2 1

Supervised - DeiT-IIT [56] 20.9 27.1 32.7 383 420 473
DINO [10] 184 245 29.5 352 39.5 44.1
MoCo-v3 [14] 17.7 252 30.8 36.5 40.7 454
iBOT [73] 209 28.0 334 38.7 42.6 47.0
MAE [29] 184 253 30.5 36.1 40.6 455
LOCA (Ours) 222 30.0 344 39.1 42.8 479

Table 4. Fewshot semantic segmentation. We report mean IoU
on the validation set of ADE20k for different SSL pretrained mod-
els. All methods use ImageNet-1k and ViT-B/16. Only a fraction
of training images are used for finetuning.

reaches a relative improvement of 82.1% in 600 epochs
while MAE reaches 77.8% in 2.6x more epochs (1600).
Hence, LOCA improves over MAE by +4.3 points while
being 1.1x longer to train. We also include in the Ap-
pendix a preliminary comparison with recent and concur-
rent DINO-v2 [43]. Note that DINO-v2 combines image-
level losses with a patch-level objective akin to the iBOT
objective [73]. Hence, given that LOCA outperforms iBOT
across the different tasks in Tab. 3 (+2.5 for ViT-S and +4.4
for ViT-B), a promising direction could be to use LOCA in-
stead as a patch-level objective within DINO-v2 framework.

Label-efficient semantic segmentation. A good prop-
erty for pretrained representations is the ability to transfer
with few annotations [1, 3, 71]. In Tab. 4 we evaluate fea-
tures when finetuning on fewshot semantic segmentation.
We randomly sample a fraction of training images from
ADE20k and use only those to finetune our model [31]. In
the 1/32 split, as few as 630 training images are used. We
report the average over 5 different folds [31]. We observe
that LOCA pretraining improves label-efficiency of seman-
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Method Data  Sup. dense? Classif. Loc. Both

ViT-Base/16
CLIP [406] WIT  Text 583 664 459
AugReg [53] Im21k Labels 60.7 674 48.1
LOCA (Ours) Im21k @ v 50.2 68.5 48.5
ViT-Large/16
AugReg [53] Im21k Labels 60.3 68.0 50.7

LOCA (Ours) Im2lk @ v 51.6 71.0 523

Table 5. Comparison with supervised pretrainings by disen-
tangling localization and classification on semantic segmentation.
We report classification only (“Classif.”: mAP), localization only
(“Loc”: mloU) and full semantic segmentation (“Both”: mloU)
on ADE20k. LOCA yields excellent locality understanding.

tic segmentation models. The gap with other methods be-
comes larger when fewer finetuning images are available.

5.2. Comparison with other pretraining paradigms

In this section, we compare our self-supervised location-
aware pretraining to two powerful image-level pretraining
paradigms: (i) image classification (i.e. label supervision)
as in [53,70] and (ii) image-text alignment as in CLIP [46].

Localization and classification trade-off. Semantic seg-
mentation combines classification and localization, where
these two tasks may have different feature preferences. In
Tab 5, we disentangle classification and localization perfor-
mance for models pretrained with an image- vs dense- level
objective. For classification evaluation, the task is to pre-
dict the label of the masks present in an image but not their
spatial extent. For localization evaluation, we use an oracle
replacing the label of each mask by the label of the ground
truth mask the model has the best IoU with. We report re-
sults for ADE20k in Tab. 5 and other datasets in Appendix.
We also report results with supervised image classification
DeiT-1II [56] in Appendix. We observe in Tab 5 that models
pretrained with an image-level supervised objective are bet-
ter at classification than LOCA. However, LOCA is better
at pure localization, which results in improved performance
on semantic segmentation which requires both locality and
class-level understanding.

Depth estimation. The previous experiment (Tab. 5) shows
that LOCA features are particularly good at localization.
While the focus of this work is semantic segmentation, we
explore the potential of LOCA on depth estimation, another
per-pixel prediction task requiring high spatial understand-
ing but less semantic understanding. We follow [19] and
train a Dense Prediction Transformer [47] with frozen back-
bone on Waymo Open real-world driving dataset [55]. We
observe in Tab. 6 that LOCA transfers better to depth es-
timation than backbones trained with image-level supervi-
sion. LOCA achieves comparable or better performance
than supervised ViT-e while having 10x less parameters.

67
param(M) MSE | AbsRel | < 1.1 < 1.25 < 1.252

ViT-Lsup [53] 304  0.027 0.121 0.594 0.871 0.972
ViT-L LOCA 304  0.024 0.102 0.681 0.891 0.973

ViT-esup [70] 3926  0.024 0.112 0.631 0.888 0.975
ViT-H LOCA 632  0.024 0.101 0.685 0.894 0.975

Model

Table 6. Monocular depth estimation on the Waymo Open
dataset [55]. We follow the setup from [19] and report their num-
ber for ViT-L and ViT-e supervised (“sup”’) backbones.

Scaling in data axis Scaling in model axis

w
(=)}
w
(=)

— Base

252 — Large 52

Ex 48

x

& 44 44

E—l A LOCA —#— ImageNet-21k
< 40 % AugReg 40 ImageNet-1k

U T T T T T T
100k IM 10M 22M 86M 304M 632M

Pretraining data size (Im-21k) Number of parameters

Figure 6. Scaling study: transfer on ADE20k validation set.
5.3. Scaling data and model axes

A premise of SSL is that it can scale to arbitrary large
datasets since images do not require any annotations. Be-
cause location-aware supervised pretraining is not feasible
in practice due to the huge cost of pixel-level category an-
notations, we believe our self-supervised spatial pretraining
could be a good candidate for scaling. In Fig 6, we propose
a scaling study on data and model axes. In the left panel, we
see that LOCA Large network benefits more from scaling in
dataset size than the smaller Base architecture. In the right
panel, we see that pretraining LOCA on full ImageNet-21k
scales better in model axis than using smaller, albeit highly
curated, ImageNet-1k dataset. Overall, mirroring the trend
of image-level supervised pretrainings [ 13, 70], we observe
that we need to scale both dataset size and model capac-
ity to achieve the best of performance. Overall, the results
in Fig 6 show that our method scales promisingly to large
models and large amount of data, which is a positive signal
that it could be a viable candidate for semantic segmenta-
tion pretraining at scale.

6. Conclusion

We present a novel self-supervised, spatially-aware pre-
training that leads to improved transfer on several seman-
tic segmentation downstream tasks. A promising direction
for future work is to combine LOCA dense objective with
global image-level ones [6,43,73]. Finally, we focused on
semantic segmentation (and depth estimation) only in this
paper, but the set of visual tasks with localization is large
and we hope that our findings can serve as a useful check-
point for future studies beyond this scope. We discuss po-
tential negative societal impact in the Appendix.
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