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Abstract

We propose a novel and effective purification-based ad-
versarial defense method against pre-processor blind white-
and black-box attacks, without requiring any adversarial
training or retraining of the classification model. Based on
the observation of the adversarial noise, we propose a simple
iterative Gaussian Smoothing (GS) that smoothes out adver-
sarial noise and achieves substantially high robust accuracy.
To further improve the method, we propose Neural Contex-
tual Iterative Smoothing (NCIS), which trains a blind-spot
network (BSN) in a self-supervised manner to reconstruct
the discriminative features of the smoothed original image.
From the extensive experiments on the large-scale ImageNet,
we show that our method achieves both competitive standard
accuracy and state-of-the-art robust accuracy against most
strong purifier-blind white- and black-box attacks. Also, we
propose a new evaluation benchmark based on commercial
image classification APIs, including AWS, Azure, Clarifai,
and Google, and demonstrate that users can use our method
to increase the adversarial robustness of APIs.

1. Introduction

Despite the great success of deep learning-based image
classification, it is well known that the classification models
are vulnerable to the adversarial attacks, since the initia-
tive reporting from [18]. Among various attempts to defend
against such attacks, adversarial training (AT) [29] is re-
garded as one of the most robust defense methods. However,
AT also possesses several limitations [4] as follows: (a) the
computational cost is very expensive [38] particularly for
the large-scale datasets like ImageNet [13], (b) it is diffi-
cult to guarantee the overall generalization capability as the
model needs to be re-trained for every different task and
adversary [29], and (c) significantly standard accuracy de-
teriorations has been reported even for a small perturbation
budget for the attack [29] cases.

Regarding the above limitations, the input transformation
methods [20, 27, 48], which attempt to remove the adversar-
ial noise in the images before feeding them to classifiers,
can be thought of as alternatives for AT since they do not re-
quire the re-training of the classifier. While such methods are
widely regarded as broken by the strong [20] and sophisti-
cated adaptive attacks, e.g., [2], they have been reconsidered
recently due to their practical value, often under the term of
purification of adversarial attacks [32, 41, 50].

In this paper, we also focus on the adversarial purification
setting. In other words, we assume the adversary may (or
may not) have full access to the classifier subject to attack,
but has no access to the purification model. Such setting
may seem relatively weak compared to other stronger attack
scenarios, in which the adversary has additional access to the
purification model or its output [3, 42]. However, we argue
that such a pre-processor blind attack is what we may en-
counter the most in practice. For a more concrete argument,
consider the situation in which a provider of large-scale im-
age classification API would want to make the classifier
“robust” to the potential adversarial attacks [36], while main-
taining the standard accuracy as high as possible. In such a
case, allowing the strong adaptive attack would be unreal-
istic since it basically means the entire API service system
has been breached by the adversary to access the classifier
and purifier, concerning the adversarial robustness of the
classifier becomes a secondary issue. A more realistic sce-
nario would be the one where the adversary aims to attack
the classifier for the API (with/without the knowledge of the
classifier) [28], and API providers devise additional guard,
i.e., the purifier for defending the pre-trained classifier.

To this end, we devise a novel smoothing-based purifi-
cation scheme that can significantly enhance the robustness
of the classifier while maintaining the standard accuracy in
the above-mentioned setting. Our contributions are threefold.
First, we make a novel observation on the distribution of
the adversarial noise that it is more or less zero mean and
symmetric at the patch level. Second, from the above ob-
servation, we show that a very simple Gaussian Smoothing
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Figure 1. Visualization examples for defending the commercial vision API (Clarifai). The API predicts the correct top-5 predictions for the
original clean images (first column), while it gets completely fooled by the adversarial examples (second column). The right two columns
show the prediction results when two purifiers, NRP (resG) [32] and our NCIS, are applied to the adversarial examples, and we clearly
observe the superior performance of NCIS.

(GS), which essentially employs a non-negative, symmetric
convolution kernel, can achieve surprisingly high robust ac-
curacy when it is iteratively applied as a purifier. Third, in
order to compensate for the loss of the standard accuracy
of the iterative GS, we employ a novel and efficient Blind-
Spot Network (BSN), extended from a recent self-supervised
learning-based denoiser [5], to reconstruct the discriminative
features in the original image that are smoothed out by the
iterative GS.

In order to validate our method, which is dubbed as Neu-
ral Contextual Iterative Smoothing (NCIS), we carry out
an extensive evaluation of our method on the large-scale
ImageNet [13] dataset for the various purifier-blind attack
settings. More concretely, we follow the standard experimen-
tal protocol proposed in [15] and compare NCIS with other
strong recent baselines for the following variations: four dif-
ferent classifier models, (pre-processor blind or full) white-
box/black-box attacks, L2/L∞ targeted and untargeted at-
tacks, and varying perturbation budget ϵ and attack iterations.
Furthermore, to the best of our knowledge, we propose a new
evaluation benchmark for the four commercial vision APIs,
i.e., Amazon AWS, Microsoft Azure, Google, and Clarifai,
for the first time and evaluate the purifier performance for the
strong transfer-based black-box attacks [28] (See Figure 1).
Consequently, we demonstrate that our NCIS achieves very
robust performance across all the tested attack settings and
significantly outperforms the state-of-the-art purifier [32],
with 14% fast inference time and ×14.7 lower GPU memory
requirement. Moreover, for pre-processor blind white-box
L∞ PGD attack, we show our NCIS even outperforms the
strongest adversarial training (AT)-based defense FD [45],
without any classifier re-training.

2. Related Work

Blind-spot networks (BSN) for image denoising Recent
blind image denoising, training neural network-based de-
noiser only using noisy images, has made notable improve-
ments. One of the main research directions of denoising is to
use the blind-spot network (BSN). Several types of BSN are
proposed for their own proposed method [5, 8, 9, 24, 26, 44].
Among them, FBI-Net [5] achieves the best denoising per-
formance with a small-sized network add-on.

Adversarial attack White-box attacks generate adversarial
examples based on the input gradient, having network infor-
mation of target models. FGSM [18] generates adversarial
examples with an optimization-based method by a single-
step update. In follow-up studies, multi-step methods were
proposed which strengthen the level of attacks by taking mul-
tiple gradient steps [12, 25, 29] in an iterative manner. Also,
other attack approaches including new loss functions [7, 30],
momentum-based iterative attack [16], and creating diverse
input patterns [46] have been introduced. Black-box attack
deals with the case an attacker cannot access the model
gradient, and hence more difficult than white-box attack
scenario. Transfer-based attacks [28] generate adversarial
examples against a substitute model, and it is known that at-
tacks are more successful when the substitute model and the
target model architectures are similar [15]. Query-based at-
tacks [1, 10, 22, 43] estimate the gradient through queries but
require many queries for adversarial examples generation.

Adversarial defense Adversarial training (AT) meth-
ods [18, 29] train the classifier with adversarial examples by
min-max optimization, and shows stable robustness against
various adversarial attacks. However, they require excessive
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training cost and have trade-off [15, 45] between the stan-
dard and robust accuracy. Certified defense methods [11, 36]
aim to guarantee the model to be robust against adversarial
perturbations with theoretical lower bounds on the robust
accuracy. Input transformation processes the input images to
achieve robustness against adversarial attacks [17,20,27,48].
These methods are simple and cheap to apply but are eas-
ily broken by strong adversarial attacks [15]. Recently, pu-
rification methods that shift the adversarial examples back
to the clean data representation have been actively pro-
posed [32, 37, 39, 40, 50]. However, most of the methods
conducted experiments only on small datasets (e.g., MNIST
and CIFAR-10/100). Among the methods, [32] is the only
one that showed experimental results on ImageNet. Among
these methods, Denoised Smoothing (DS) [36] proposed
an approach that applies a pre-trained Gaussian denoiser for
adversarial robustness. However, there exist several differ-
ences compared to our method, which will be discussed in
the Supplementary Materials (S.M).

3. Motivation
3.1. Preliminary and Notations

Adversarial attack In a general image classification task,
we denote the original input image by x ∈ X ⊂ RD, in
which D is the number of pixels, and the ground-truth label
of x by y ∈ Y ⊂ RL, in which L is the number of classes.
A classification model parameterized by ϕ is denoted by
gϕ : X → Y , and we assume gϕ is pre-trained with ex-
ternal training data. Now, an adversary attempts to attack
gϕ by generating an adversarial example x′ for x cause
the misclassification of x. The attack is called untargeted
if gϕ(x′) ̸= y and targeted if gϕ(x′) = y∗ where y∗ is a
target class different from y. The adversarial example x′ is
typically generated by solving an optimization problem, e.g.,

x′ = argmax
z:∥z−x∥p≤ϵ

L(gϕ(z),y;ϕ), (1)

for the untargeted attack, where L denotes a classification
loss function, ∥z −x∥p ≤ ϵ denotes the Lp-norm constraint
of the optimization, and ϵ is the perturbation budget. Directly
solving of (1) is intractable and various approximation meth-
ods have been proposed [7, 16, 18, 25, 29, 46]. We refer to
white-box attack when the model architecture and weight of
gϕ are completely known, and black-box attack vice versa.
Purifier Purification is a pre-processing step for an input
image before it is fed to a classification model. Let the goal
of the purifier Tθ : X → X is to reconstruct the purified
image which allows gϕ to predict an original prediction of
x for a given input. Then, given the adversarial example x′,
the optimal purifier Tθ∗ will be

gϕ(Tθ∗(x′)) = ŷ, (2)

where ŷ = gϕ(x). However, note that the purifier randomly
takes the adversarial example x′ or the original image x as
an input image during the general inference situation, hence
it is difficult to be trained in a naive supervised manner.
Blind-spot network (BSN) The BSN is a special form of
neural network that tries to reconstruct a pixel in the middle
based on its surrounding context pixels. Namely, for a given
input x, the output of the BSN for pixel i is denoted by

fθ,i(x) = f(θ,C−i
k×k), (3)

in which C−i
k×k is the k × k patch of x surrounding i, that

does not include the pixel i. The BSN is typically used as
a denoiser to estimate the clean x based on the noisy z,
of which the model parameter θ is trained by minimizing
∥z−fθ(z)∥22, i.e., in a self-supervised manner. In this paper,
we utilize BSN as a smoothing function that is trained with
the original clean x and show that it can work as an effec-
tive purifier that can both remove the adversarial noise and
maintain the original discriminative feature of x. For a partic-
ular BSN architecture, we extend the recent state-of-the-art
network called FBI-Net in [5].

3.2. Analysis on Adversarial Noise

Suppose we have n clean images {xi}ni=1 and generated
adversarial examples {x′

i}ni=1 for each clean image by the
process (1). Assuming that the adversarial noise is additive,
we denote the i-th adversarial noise image as

N ′
i = x′

i − xi, i = 1, . . . , n, (4)

and analyze the empirical distribution of N ′
i . More

concretely, we randomly selected 1,000 images from
the ImageNet training set and generated adversarial ex-
amples with the most generally used, untargeted L∞
PGD white-box attack [29]. We collected 5,000 adver-
sarial noise images in total by generating 5 attacked im-
ages for each xi using the perturbation budgets ϵ =
{1/255, 2/255, 4/255, 8/255, 16/255}, respectively. Then,
we randomly cropped 100 K ×K patches from each noise
image (thus, obtained 5 × 105 patches) and computed the
empirical mean and skewness [19] of those patches.

Figure 2(a) shows the empirical mean of the adversarial
noise in the patches (for varying patch sizes), and Figure 2(b)
shows the empirical skewness. From the figures, we clearly
observe that the adversarial noise in a patch is more or less
zero-mean and has a symmetric distribution. This somewhat
surprising regularity of adversarial noise, although generated
from the complex iterative optimization process, motivates
us to use a very simple Gaussian Smoothing (GS) based
purifier in the next section. Note that additional experimental
results for other types of attack are proposed in S.M.
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(a) Dist. of mean. (b) Skewness. (c) MSE. (d) Accuracy.

Figure 2. Empirical analysis for adversarial examples generated from untargeted L∞ PGD (α = 1.6 / 255, where α is a step size) attack with
10 attack iterations, and iterative Gaussian smoothing (σ = (K − 1)/6 where K is the size of a kernel).

3.3. Iterative Gaussian Smoothing (GS)

Gaussian Smoothing (GS) is a widely used low-pass fil-
ter for image processing, which smoothes an image with a
Gaussian kernel. The mechanism can be represented by the
convolution operation between a Gaussian kernel k of size
K ×K and an input image. Namely, when an adversarial
example x′ is given as the input to the Gaussian smoothing
function G(·), we denote the GS process as

G(x′) = x′ ⊗ k, (5)

in which ⊗ is the convolution operation. Since G(·) is a
linear operation, and from (4), we have

G(x′) = G(x+N ′) = G(x) +G(N ′)

= G(x) +N ′ ⊗ k ≈ G(x).
(6)

The last approximation follows from N ′ ⊗ k ≈ 0, which
is from the observation in Figures 2(a) and 2(b) that the
pixels in K ×K patches in N ′ have symmetric, zero mean
distribution and k is a non-negative, symmetric kernel. From
(6), therefore, we can deduce that GS can mostly wash out the
adversarial noise in x′ and will make the smoothed version
of x′ become almost identical to that of x.

Furthermore, by denoting Gi = G ◦Gi−1 as applying
GS i times iteratively, we can apply the similar logic as
in equation (6) and deduce Gi(x′) ≈ Gi(x) as well, but
with smaller approximation error. The reason is that the
patches in Ni ⊗ k will still have zero mean, symmetric
distributions, and the adversarial noise will keep getting
washed out as we iteratively apply the Gaussian kernel k.
On the other hand, as GS continues, we can also expect that
Gi(x′) and Gi(x) will get farther from x, since GS will
also wash out detailed and discriminative features in x. Thus,
as the iteration continues, we can conjecture that iterative GS
may encounter a trade-off of increasing the robust accuracy,
by removing adversarial noise, while hurting the standard
accuracy, by also removing the discriminative features in x.

Figure 2(c) and 2(d) experimentally validate the above
conjecture for the iterative GS. In the figures, for an Im-
ageNet pre-trained ResNet-152 classifier, we tested with

1,000 clean images, x, randomly subsampled from the Im-
ageNet training dataset, and their adversarial examples, x′,
generated by L∞ PGD (ϵ = 16/255) attack. Figure 2(c)
shows the MSE of ∥x−Gi(x)∥22 and ∥x−Gi(x′)∥22 as i
increases, for different patch size K. From the figure, we can
clearly observe that the two MSEs become almost identical,
but increase (i.e., both Gi(x) and Gi(x′) get farther from
x), as i increases, corroborating our above conjecture. Figure
2(d) reports both standard and robust accuracy of ResNet-
152 when the iterative GS is used as a purifier for the same
L∞ PGD attack on the whole ImageNet validation set. We
observe that the very simple iterative GS is surprisingly effec-
tive in purifying the adversarial noise as the robust accuracy
of 44.92% is achieved when K = 5 and i = 7. However, we
also note that the standard accuracy decreases as i gets larger
due to the removed discriminative features. Motivated by
this result, we propose our NCIS, which utilizes the iterative
GS to maintain high robust accuracy but also employs BSN
that can reconstruct the discriminative features washed out
by GS to also achieve high standard accuracy.

4. Neural Contextual Iterative Smoothing

Motivated by the strong performance of iterative GS in
the previous section, we propose a learnable neural network-
based smoothing function as an iterative smoothing-based
purifier. More concretely, we first present the improved per-
formance of using self-supervised trained FBI-Net [5] for
iterative smoothing, devise a more efficient version of FBI-
Net dubbed as FBI-E, and present our NCIS, combining
FBI-E with GS for a more stable and superior purifier.

Iterative smoothing with FBI-Net FBI-Net is a fully
convolutional network that utilizes a special class of masked
convolution filters as shown in Figure 3(a) such that the
BSN condition (3) can be satisfied. Now, for given n clean
images {xi}ni=1, we can train the network parameters, θ, of
the FBI-Net by minimizing

n∑
i=1

∥xi − fθ(xi)∥22, (7)
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Figure 3. Illustration of FBI and FBI-E. (a): The black points denote
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namely, in a self-supervised manner. Denoting the learned
parameter by θ∗, we expect that fθ∗(x) can be an effective
smoothing-based purifier. The reasoning is, since the adver-
sarial noise in x′ is very small as shown in Figure 2(a), and it
is generated independent of fθ∗ , the trained FBI-Net would
have the similar outputs for both x and x′, and they will be
a smoothed reconstruction of x. Consequently, we expect

∥fθ∗(x′)− x∥22 ≈ ∥fθ∗(x)− x∥22
< ∥G(x′)− x∥22 ≈ ∥G(x)− x∥22.

(8)

Note the reasoning for (8) is possible since we are using
BSN; when an ordinary fully convolutional network-based
denoiser, e.g., DnCNN [52], is used for fθ in (7), then it will
end up learning an identity map, hence, ∥fθ∗(x′)−x′∥22 ≈ 0.
Thus, the adversarial example will be preserved.

Figure 5(a), which is for the same setting as Figure 2(c),
experimentally verifies the above intuition for the iterative
smoothing with the FBI-Net. Namely, denoting f i

θ∗(x) =
fθ∗ ◦ f i−1

θ∗ (x), the figure shows ∥x − f i
θ∗(x)∥22 and ∥x −

f i
θ∗(x′)∥22 as the iteration number i increases (the green solid

and dashed line, respectively). Compared to the best iterative
GS with K = 5 (brown solid and dashed lines), we observe
that FBI-Net-based smoothing does a much better job than
GS in reconstructing the original image x for both input
cases (x and x′), until i ≤ 4. Moreover, in Figure 5(b), we
show the Purification Success Rate (PSR) as,

PSR(x, z) =
1

n

n∑
i=1

1{gϕ(x) = gϕ(z)}.

in which z is the output of a purifier that takes either x or
x′ as input. The PSR is a metric for how much the PSR
can recover the original classification result for x. From the
figure, we again observe that the iterative smoothing with
FBI-Net does a much better job than iterative GS, in line
with Figure 5(a), in preserving the original classification for
x (green solid), until iteration i ≤ 6. We also observe that
PSR for x′ (green dashed) increases as well until i ≤ 6.
FBI-E: Extending FBI-Net While promising, we also
observe that iterative smoothing with FBI-Net shows a few
limitations. First, PSR for the given x′ is still lower than
iterative GS. Second, MSE and PSR diverge significantly,

causing unstable results after a certain iteration. Finally, FBI-
Net requires a large memory cost for the reconstruction and
has a slow inference time to be used as a purifier.

To overcome these limitations and improve efficiency, we
introduce two tensor operations for FBI-Net, patch→channel
and channel→patch, to expand the reconstruction process
from context→pixel to context→patch. Hence, the FBI-E
mapping, Fθ(x), can be denoted as

Fθ(x) = OC→P (fθ(OP→C(x))), (9)

in which OP→C(·) and OC→P (·) denotes patch→channel
and channel→patch operation, respectively. Figure 3(b) il-
lustrates the two operations being applied as a pre- and post-
operation for FBI-Net; OP→C(·) transfers pixels of each
m × m patch in an input image (color-coded) to channel-
wise pixels and OC→P (·) exactly does the reverse operation.
By these operations, FBI-E is also a BSN, but the reconstruc-
tion is now done in a patch level based on the context around
the patch, and we expect (8) would also hold for Fθ.

The advantage of the two proposed operations is quite
huge since it reduces the spatial resolution of both the input
image and all feature maps of FBI-Net by m×m times. As
shown in Figure 5(a) and 5(b), we experimentally checked
that FBI-E with m = 2 achieves superior MSE and PSR for
both input cases (orange solid and dashed lines) than GS
and FBI-Net. Furthermore, the inference time and memory
improvement of FBI-E over FBI-Net is given in the ablation
study given in the later section.
Neural contextual iterative smoothing (NCIS) After ap-
plying the proposed two operations, the level of difficulty for
the reconstruction increases since FBI-E has to reconstruct
the entire patch of size m × m, not just a single pixel. To
address this problem, we propose to combine FBI-Net with
GS and propose a new smoothing function as

Fθ,NCIS(x) = Fθ(x) +G(x). (10)

The network parameter θ∗ is obtained by minimizing (7),
which results in Fθ∗(x), learning to reconstruct the resid-
ual x − G(x). The intuition is that, when an adversarial
example x′ is given as input, we expect G(x′) to wash out
the adversarial noise such that G(x′) ≈ G(x), and then
we let Fθ∗(x′) to reconstruct the discriminative features of
the original x that is also smoothed out by G(x). Hence,
we expect Fθ∗(x′) ≈ Fθ∗(x) ≈ x − G(x). Finally, our
proposed Neural Contextual Iterative Smoothing (NCIS)
is obtained by iteratively applying Fθ∗,NCIS(x) denoted as
F i

θ∗,NCIS(x) = Fθ∗,NCIS ◦ F i−1
θ∗,NCIS(x). The overall proce-

dure of our NCIS is depicted in Figure 4.
In Figure 5(a) and 5(b), we verify the promising results

of our NCIS. First, NCIS (m = 2 for FBI-E and K = 11
for GS) achieves the lowest MSE for both input cases until
the i = 7 compared to other methods, which shows that
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Figure 5. Empirical verification using randomly selected 1,000
images from ImageNet training dataset and adversarial examples of
generated from untargeted L∞ PGD (ϵ = 16/255, α = 1.6/255)
attack with ten attack iterations.

NCIS can successfully estimate the original image x for
both inputs (x and x′). Second, consequently, NCIS with
seven iterations attains the highest PSR for x maintaining
the competitive PSNR for x′ compared to FBI-E. The results
show that iterative GS and NCIS, which are trained based
solely on self-supervised learning using only original images
(i.e., without any adversarial training), have a potential to
become a powerful purifier for adversarial defense. Finally,
we add the DnCNN + GS (K = 11), using DnCNN in place
of Fθ(x) in (4), and we observe that the general CNN-based
denoiser model cannot be used as the smoothing function for
the iterative smoothing since it almost perfectly reconstructs
the input image, even the adversarial noise in the input.

5. Experimental Results

5.1. Experimental settings

In this section, we validate our NCIS against various types
of attacks on the ImageNet validation dataset. We designed
our experimental setting following [6, 15] for rigorous verifi-
cation of our proposed method. Also, we used attacks and
defenses implemented on public packages [14, 15, 23, 33].
Adversarial attack For using white-box attack meth-
ods, we mainly consider pre-processor blind white-box at-
tack, which has access only to classification model weights.
We selected four ImageNet pre-trained models, ResNet-
152 [21], WideResNet-101 [51], ResNeXT-101 [47] and
RegNet-32G [34], and then we generated adversarial exam-
ples of the ImageNet validation dataset using four untar-
geted gradient-based iterative attacks, PGD [29], CW [7],
MIFGSM [16], DIFGSM [46] and AutoAttack [12]. For

black-box attack, we experimented with transfer-based at-
tacks which still achieve a strong and efficient attack suc-
cess rate compared to other types of black-box attacks. For
transfer-based attack, we generated adversarial examples by
attacking a substitute model with L∞ PGD attack, and the
substitute models are listed in the S.M.
Adversarial defense We selected four input transformation-
based defense methods abbreviated as FS (depth= 4) [49],
JPEG (quality= 90) [17], TVM (p = 0.3, λ = 0.5, max
iteration= 10) [20, 35] and SR (σ = 0.04) [31]. Moreover,
we implemented the current state-of-the-art purification-
based method, NRP and NRP(resG) [32], from their official
code. NRP (resG) is the lightweight version of NRP. Lastly,
we added FD [45], one of the current state-of-the-art adver-
sarial training method, by implementing the code and weight
for ResNet-152 proposed in [15]. Additionally, we had con-
sidered adding recently proposed purification methods such
as SOAP [40] and ADP [50], but neither of them publicized
their code nor experimented on ImageNet. A more detailed
comparison of settings with other purifier-based methods is
proposed in the S.M. For Gaussian smoothing (GS) used in
all experiments including GS in NCIS, we set σ = (K−1)/6
by following the fact that the length for 99 percentile of Gaus-
sian distribution is 6σ. If there are no additional notations,
we set K for GS to 5 and only used NCIS consisting of
FBI-E (m = 2) and GS (K = 11) for all experiments. We
conducted experiments using NCIS trained by three different
seeds and report the average result. The detailed description
of the experimental settings, the architecture of FBI-Net, and
hyperparameters are in the S.M.

5.2. Experimental results for pre-processor blind
white-box attacks

Experiments with various white-box attacks Table 1
shows the experimental results of each defense method
against five attacks for four different ImageNet pre-trained
classification models. First, as for standard accuracy, JPEG
achieved the best results. However, as already presented
in [15, 20], traditional input transformation-based methods
are easily broken by white-box attacks. Second, GS achieves
superior robust accuracy in most cases and even outperforms
NRP and NRP (resG). One possible reason NRP and NRP
(resG) show deteriorated performance compared to its origi-
nal paper is that the proposed loss function for training NRP
and NRP (resG) is not well generalized to purify adversarial
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(a) Untargeted (various ϵ) (b) Untargeted (various iters) (c) Targeted (various ϵ) (d) Targeted (various iters)

Figure 6. Experimental results against L∞ white-box PGD attacks with ResNet-152. For the experiments on various ϵ, we set α = 1.6/255,
where α is a step size, with ten attack iterations. In the case of experiments for attack iterations, we set ϵ = 16/255, and α = 1.6/255 if the
iteration is lower than 10, and used α = 1/255 otherwise. Note that FD denotes the model trained by adversarial training proposed in [45].

Table 1. Experimental results of untargeted white-box adversarial
attack. For L∞ attacks, we set ϵ = 16/255, α = 1.6/255 and
attack iterations = 10. For L2 PGD attack, we used ϵ = 5 and α =
0.1. For L2 CW attack, other than setting attack iterations as 10, we
applied default hyperparameters proposed in [23]. Boldface denotes
our proposed methods, and red and blue denotes the highest and
second highest results respectively. For ResNet-152, WideResNet-
101 and ResNeXT-101, we set i = 7 for GS and NCIS.

Model / Defense
Standard
Accuracy

CW
(L2)

MIFGSM
(L∞)

DIFGSM
(L∞)

PGD
(L∞)

PGD
(L2)

R
es

N
et

-1
52

W/o defense 78.25 9.37 6.34 0.43 6.20 10.66
JPEG 78.13 26.78 6.36 0.61 6.25 29.01

FS 76.66 46.37 6.35 0.46 6.22 41.08
TVM 69.84 59.37 9.32 5.02 17.41 59.15
SR 77.24 40.87 6.36 0.05 6.22 31.06

NRP (resG) 72.24 58.05 16.39 2.40 9.60 55.84
NRP 74.04 58.16 12.35 2.59 10.71 55.58
GS 63.32 60.36 24.28 22.28 44.92 60.65

NCIS 68.93 64.32 39.05 33.29 48.06 64.28

W
id

eR
es

N
et

-1
01

W/o defense 78.91 9.42 6.96 0.31 6.60 11.97
JPEG 78.22 41.55 6.95 0.10 6.91 33.19

FS 77.03 48.82 6.95 0.10 6.91 46.41
TVM 69.17 69.18 12.15 7.56 20.33 59.84
SR 77.85 40.24 6.94 0.10 6.93 33.14

NRP (resG) 72.45 58.96 19.66 4.34 12.18 58.17
NRP 74.58 58.60 14.97 5.53 13.22 57.69
GS 60.33 57.88 28.15 25.30 45.04 57.96

NCIS 68.54 63.96 34.18 33.98 49.26 64.03

R
es

N
eX

T-
10

1

W/o defense 79.21 9.43 8.59 0.61 7.81 13.84
JPEG 78.28 43.23 8.46 0.65 7.96 36.77

FS 77.54 47.88 8.61 0.62 7.94 46.14
TVM 70.66 59.47 12.52 6.68 20.67 61.05
SR 78.08 40.45 8.59 0.65 8.0 34.31

NRP (resG) 73.65 59.04 20.57 4.14 13.00 59.53
NRP 75.28 58.30 15.88 5.23 13.58 58.15
GS 63.78 60.77 28.01 23.50 46.43 61.18

NCIS 70.08 65.12 36.47 35.53 51.46 65.57

examples generated from various types of attack. On the
other hand, because our GS is based on the findings of the
characteristic of adversarial noise, it can be applied to purify
varied types of adversarial examples. Furthermore, NCIS
consistently surpasses the robust accuracy of GS and other
baselines for all the architectures, including RegNet-32G
reported in the S.M. Additionally, since we observed that
there is little difference in performance between NRP and
NRP (resG) and NRP is computationally expensive, we only
use NRP (resG) for the remaining experiments.

In the S.M, we present additional results as follows:
First, we report experimental results against AutoAttack [12],
which is one of the most powerful attack methods, and the
results are consistent with our previous findings. Second,
in order to compare our method with Denoised Smoothing
(DS) [36], we implemented both their official code and the
pre-trained weights of a denoiser. We experimentally con-
firm that not only DS requires a significant amount of time
for defense, but its robust accuracy against PGD attack is
also lower than that of our method. Third, we compare the
inference time, GPU memory usage, and number of parame-
ters of each method. As a result, we confirm that NRP has
slower inference time than NCIS due to its larger number of
parameters and the increased GPU memory usage required
for purification.

Experiments with PGD attack with various settings To
evaluate the proposed method more rigorously, we experi-
mented with both targeted and untargeted L∞ PGD attack
with various ϵ and the number of attack iterations.

Figure 6(a) and 6(b) show the experimental results for
untargeted L∞ PGD attack in ResNet-152 [21]. As ϵ and the
number of attack iterations increase, the robust accuracy of
baseline defense methods goes significantly down. Besides,
FD has lower standard accuracy (63.96) compared to NCIS.
Moreover, input transformation-based methods and NRP are
crumbling like a wreck when the attack setting is strong.
However, NCIS and GS achieve the highest robust accuracy,
showing up to four times higher robust accuracy of FD.
Besides, both the standard and robust accuracy of NCIS are
higher than those of GS in all settings.

Also, Figure 6(c) and 6(d) show experiments on targeted
L∞ PGD attack. We observe that the tendency of experimen-
tal results has changed from the untargeted results. First, FD
and NRP (resG) show better performance than the untargeted
attack case. We presume that both FD and NRP (resG) have a
generalization problem and fail to defend against all types of
attacks stably. Second, the robust accuracy of FD and NRP
degrade as the number of iterations and ϵ increase, resulting
in lower robust accuracy than our methods against strong
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Table 2. Experimental results for vision APIs. Boldface, red and blue each denotes the proposed, highest and second highest result. The
numbers in the Table each denotes the standard and robust accuracy (in parenthesis) for each case. Vaniila case does not use any of defenses.

Prediction Accuracy Top-1 (Top-5) Accuracy
AWS Azure Clarifai Google AWS Azure Clarifai Google

Vanilla 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00(1.00)/0.00(0.00) 1.00(1.00)/0.00(0.00) 1.00(1.00)/0.00(0.00) 1.00(1.00)/0.00(0.00)
JPEG 0.78/0.12 0.82/0.08 0.78/0.58 0.75/0.10 0.75(0.91)/0.04(0.14) 0.72(0.94)/0.02(0.12) 0.79(0.95)/0.45(0.80) 0.60(0.84)/0.04(0.13)

FS 0.60/0.21 0.60/0.05 0.76/0.56 0.55/0.11 0.44(0.72)/0.08(0.23) 0.42(0.67)/0.06(0.10) 0.69(0.94)/0.45(0.77) 0.43(0.67)/0.07(0.14)
SR 0.78/0.19 0.81/0.12 0.85/0.62 0.69/0.13 0.72(0.89)/0.06(0.25) 0.75(0.95)/0.10(0.17) 0.87(0.99)/0.52(0.80) 0.46(0.77)/0.07(0.18)

NRP 0.45/0.19 0.47/0.16 0.45/0.19 0.39/0.14 0.30(0.57)/0.09(0.18) 0.34(0.54)/0.12(0.18) 0.30(0.57)/0.09(0.18) 0.26(0.47)/0.09(0.16)
GS 0.68/0.26 0.63/0.23 0.79/0.65 0.55/0.21 0.45(0.80)/0.11(0.25) 0.53(0.78)/0.20(0.30) 0.72(0.99)/0.55(0.86) 0.42(0.69)/0.11(0.23)

NCIS 0.74/0.28 0.80/0.21 0.86/0.62 0.72/0.27 0.60(0.88)/0.13(0.31) 0.78(0.95)/0.13(0.29) 0.76(0.98)/0.55(0.80) 0.54(0.83)/0.20(0.37)

attacks. On top of this, NCIS and GS achieve superior robust
accuracy against strong attacks. See S.M for the results on
other classifiers (e.g., WideResNet-101, ResNeXT-101, and
RegNet-32G), showing similar tendencies.

Although our paper focuses on pre-processor blind white-
box attack for a classification model, we also conducted
experiments on full and purifier-aware white-box attacks
where attackers can access or are aware of the purifier. To
counter both strong attacks, we propose a simple variant of
NCIS, adding Gaussian noise in the procedure of iterative
smoothing. Also, note that we conducted ablation studies to
confirm the role of each proposed component. The details
and experimental results are proposed in the S.M.

5.3. Experimental results for black-box attacks

Transfer-based black-box attack Figure 7 shows ResNet-
152 results attacked by adversarial examples generated by
attacking WideResNet-101 [51]. The notable discovery is
that FD shows the almost constant but most robust result for
all cases, similar to experimental results already proposed
in [15]. Also, different from white-box attack cases, NRP
(resG) achieves competitive performance compared to other
input transformation-based methods, supporting the result
of their paper. However, note that our GS and NCIS not
only surpass the performance of NRP (resG) but also NCIS
achieves competitive performance compared to FD when
considering both standard and robust accuracy. Additionally,
we conducted experiments with the state-of-the-art score-
based black-box attack (Square [1]) and the experimental
results on other classifiers, reported in the S.M.
Experiment with APIs [28] showed existing APIs for
multi-label classification can be fooled by ensemble transfer-
based black-box attacks. Based on this finding, we propose
a new experiment for evaluating purification methods us-
ing APIs of Azure, AWS, Clarifai, and Google. From this
experiment, we evaluate how well each purifier can restore
the top five labels predicted from a clean image when given
strong adversarial examples. To evaluate each purifier, we
used three evaluation metrics: Prediction Accuracy, Top-1
Accuracy, and Top-5 Accuracy. The additional details of
metrics and used hyperparameters are noted in the S.M.

Table 2 shows experimental results on the gener-
ated test dataset. First, we observe that traditional input

(a) Experiments for various ϵ (b) Experiments for various iters
Figure 7. Experiments on transfer-based black-box attack with L∞
PGD for ResNet-152.

transformation-based methods generally show high standard
accuracy with competitive robust accuracy compared to NRP
(resG). We believe that this result shows another example
of insufficient generalization of NRP (resG) for purifying
various types of adversarial examples. Second, NCIS and
GS show the most uniformly competitive performance for
various APIs. Among them, NCIS achieves better purifica-
tion performance than GS, considering the average of the
standard and robust accuracy.

6. Concluding Remarks
We proposed Neural Contextual Iterative Smoothing

(NCIS) for adversarial purification against adversarial at-
tack to a classifier. First, we proposed the novel observation
that adversarial noise has almost zero mean and a symmetric
distribution. Second, based on the above finding, we pro-
posed the learnable neural network-based smoothing func-
tion, named as NCIS, for adversarial purification. From the
extensive experiments, we observed NCIS robustly purifies
adversarial examples generated from various types of white-
and black-box attack without requiring re-training of the
classification model.
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