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Abstract

In this paper, we address the detection of co-occurring

salient objects (CoSOD) in an image group using frequency

statistics in an unsupervised manner, which further enable

us to develop a semi-supervised method. While previous

works have mostly focused on fully supervised CoSOD,

less attention has been allocated to detecting co-salient

objects when limited segmentation annotations are avail-

able for training. Our simple yet effective unsupervised

method US-CoSOD combines the object co-occurrence fre-

quency statistics of unsupervised single-image semantic

segmentations with salient foreground detections using self-

supervised feature learning. For the first time, we show

that a large unlabeled dataset e.g. ImageNet-1k can be

effectively leveraged to significantly improve unsupervised

CoSOD performance. Our unsupervised model is a great

pre-training initialization for our semi-supervised model

SS-CoSOD, especially when very limited labeled data is

available for training. To avoid propagating erroneous

signals from predictions on unlabeled data, we propose a

confidence estimation module to guide our semi-supervised

training. Extensive experiments on three CoSOD bench-

mark datasets show that both of our unsupervised and semi-

supervised models outperform the corresponding state-

of-the-art models by a significant margin (e.g., on the

Cosal2015 dataset, our US-CoSOD model has an 8.8% F-

measure gain over a SOTA unsupervised co-segmentation

model and our SS-CoSOD model has an 11.81% F-measure

gain over a SOTA semi-supervised CoSOD model).

1. Introduction

Co-salient object detection (CoSOD) focuses on detect-

ing co-existing salient objects in an image group, whereas

salient object detection (SOD) detects the same salient ob-

jects in single images [6, 36, 37, 43, 47, 52, 63]. CoSOD

leverages the extra knowledge that the group images share

a common object by finding semantic similarities across the

†Part of this work was done during an internship at Amazon.
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Figure 1. Visualization of co-saliency detections on an image

group train from the Cosal2015 dataset [65]. Row 1: Original

image, Row 2: DCFM [62] predictions (trained using all labeled

data), Row 3: Our unsupervised model (US-CoSOD), Row 4:

Our semi-supervised model (SS-CoSOD) trained using 1/4 labeled

data with unsupervised pre-training, which has comparable perfor-

mance to the fully supervised DCFM trained with all labels.

image regions in the group. Thus CoSOD models can local-

ize the salient objects more accurately compared to the sin-

gle image based SOD models [13,16] in such image groups.

Both SOD and CoSOD are joint segmentation and detection

tasks as shown in the existing literature [13,15,62] and thus

require segmentation labels. However, collecting segmen-

tation annotations is time-consuming as well as expensive.

This annotation requirement is a drawback for a major-

ity of the existing CoSOD models [13, 15, 62, 67, 71] that

are fully supervised. To relieve the labeling burden, some

works [21,22,39] focused on unsupervised co-segmentation

and co-saliency detection. Semi-supervised learning in

CoSOD [72] aims to learn an effective model from a train-

ing dataset using only a small set of labeled images along

with a larger unlabeled set. Such models have an immense

value in several real-world industrial applications such as

in e-commerce (e.g. automatic product detection from cus-

tomer review and query images of the product without the

need for manual product annotations), content-based im-

age retrieval, satellite imaging, bio-medical imaging, etc.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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However, the prediction performance of these models is sig-

nificantly worse compared to the existing fully supervised

models due to their inefficient use of the unlabeled data. In

this paper, we first solve unsupervised CoSOD using a large

unlabeled dataset and next use the unsupervised model as a

pre-training initialization for our semi-supervised pipeline.

In this work, we take advantage of the recent progress in

self-supervised semantic segmentation [18] as well as self-

supervised self-attention [3] to develop a simple yet effec-

tive unsupervised algorithm for CoSOD (US-CoSOD). As

part of our unsupervised approach, we first obtain the seg-

mentation masks of the co-occurring objects in an image

group using STEGO, an off-the-shelf self-supervised se-

mantic segmentation model [18]. Next, we select the most

common and salient segmentation mask (with guidance

from the self-attention maps obtained from DINO [3], a

self-supervised feature learning method) as the pseudo seg-

mentation label for training an off-the-shelf CoSOD model

in a supervised manner. We show a significant improve-

ment in prediction performance using our methods. How-

ever, standard training datasets are relatively small. In our

paper, we introduce a more up-to-date evaluation task for

unsupervised CoSOD on a set of 150K unlabeled images

from the ImageNet-1k dataset [10,31] (which only contains

class labels without any segmentation annotation).

Next, we show that our unsupervised model forms a

strong pre-training initialization for a CoSOD model trained

in a semi-supervised manner. For this, we propose a

confidence aware student-teacher architecture based semi-

supervised model, SS-CoSOD. Here, we leverage the fact

that in an input image group for CoSOD, we can mix the la-

beled and unlabeled images to effectively propagate knowl-

edge from the labeled images to the unlabeled images in

the image group via cross-region correspondences. We also

introduce a confidence estimation module to block erro-

neous knowledge flow from inaccurate predictions on diffi-

cult unlabeled images. Similar to US-CoSOD, we leverage

the large unlabeled ImageNet-1k [10, 31] dataset to signifi-

cantly improve semi-supervised CoSOD performance.

In Fig. 1, we compare our unsupervised and semi-

supervised models with DCFM [62], a state-of-the-art fully

supervised CoSOD model. Our US-CoSOD produces seg-

mentations comparable with DCFM and our SS-CoSOD

model further improves the segmentation predictions. Our

main contributions are:

• We propose a simple yet effective unsupervised ap-

proach for CoSOD that effectively leverages single-

image semantic segmentations and self-attention maps

generated using self-supervision to generate pseudo-

labels for supervised training of a CoSOD model.

• For the first time, we show that CoSOD can be sig-

nificantly improved using large unlabeled datasets,

e.g. ImageNet-1k [31]. This approach helps us achieve

state-of-the-art results for unsupervised CoSOD.

• We propose a novel approach for semi-supervised

CoSOD by effectively propagating knowledge from

a limited labeled set to a much larger unlabeled set

via confidence estimation and cross-region correspon-

dence between the labeled and the unlabeled sets.

2. Related Work

Co-salient object detection: Graphical models are used

to model pixel relationships in an image group [23, 26–28,

60, 68], followed by mining co-salient objects with consis-

tent features. Some works used additional object saliency

information to first mine the salient objects and then imple-

ment CoSOD [29, 69, 70]. Other works compute the shared

attributes among input images [13, 15, 17, 34, 38, 51, 67, 71,

73] and supplement semantic information with classifica-

tion information. The surveys [9, 14, 64] provide more in-

formation on CoSOD. DCFM [62] mines co-salient features

with democracy while reducing background interference.

We use DCFM as the backbone network in our study.

Unsupervised segmentation: Several unsupervised se-

mantic segmentation approaches use self-supervised feature

learning techniques [8, 25, 40, 54, 56]. Recently, STEGO

[18] showed that semantically correlated dense features

from unsupervised feature learning frameworks can help

distill unsupervised features into high-quality semantic la-

bels. We use this model as a component in our unsupervised

pipeline. In [61], the semantic categories obtained using

self-supervised learning are mapped to pixel-level features

via class activation maps, which serve as pseudo labels for

training. Some papers solve unsupervised co-segmentation

[2,4,21,24,39] and CoSOD [22,65]. Li et al. [39] proposed

an unsupervised co-segmentation model by ranking image

complexities using saliency maps. Hsu et al. [21] devel-

oped an unsupervised co-attention based model for object

co-segmentation. The same authors presented an unsuper-

vised graphical model for CoSOD [22] that jointly solves

single-image saliency and object co-occurrence. Our US-

CoSOD outperforms all of these unsupervised models.

Semi-supervised segmentation: While consistency-

based methods enforce the predictions of unlabeled sam-

ples to be consistent under different perturbations [5,33,46],

pseudo-label based methods [30,32,35,42,45,58], incorpo-

rate unlabeled data into training with high-quality pseudo

labels. Some of these methods [30, 32, 45, 58] apply pixel-

level error correction mechanisms on the generated pseudo-

labels (e.g. using an auxillary decoder or employing a flaw

detector or a discriminator) in order to avoid propagating

label noise. Instead, we directly estimate the prediction er-

ror probability on an unlabeled image at the global level us-

ing a confidence estimation module, trained to estimate pre-
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Figure 2. The proposed unsupervised CoSOD model, US-CoSOD. We first obtain unsupervised semantic segmentation maps from STEGO

[18] and self-attention maps from DINO [3]. The unlabeled categories (from STEGO) in the image group are sorted based on their co-

occurrence frequencies and the final category is chosen based on the overlap between the STEGO and DINO masks per image. The

segmentation mask of the selected category is considered the pseudo ground truth for training an off-the-shelf supervised CoSOD model.

diction confidence (in terms of the segmentation accuracy)

based on the labeled set to block error propagation. Wang et

al. [59] proposed the first semi-supervised co-segmentation

model by optimizing an energy function consisting of inter-

and intra-image distances for an image group. While Zheng

et al. [72] proposed the first semi-supervised CoSOD frame-

work based on graph structure optimization, their model ac-

curacy is low due to the use of hand-crafted features and

their model has not been evaluated under sufficiently low

labeled data. Some semi-supervised SOD models have also

been proposed [42, 44, 66]. SAL [44] used active learning

to gradually expand a small labeled set to include samples

on which predictions are inaccurate. GWSCoSal [48] intro-

duced a weakly supervised learning induced CoSOD model

using group class activation maps.

Existing unsupervised and semi-supervised approaches

suffer from limited performance because they use: (1) hand-

crafted features, and (2) smaller unlabeled datasets. Our

study fills this gap by introducing an unsupervised and a

semi-supervised CoSOD method, both of which uses large-

scale unlabeled data to significantly improve performance.

3. Methodology

Given a group of N images I = {I1, I2, ..., In} con-

taining co-occurring salient objects of a certain class,

CoSOD aims to detect them simultaneously and output

their co-salient object segmentation masks. For unsuper-

vised CoSOD, the goal is to predict the co-salient segmen-

tations {ŷi}
n
i=1 without using any labeled data. For semi-

supervised CoSOD, given a labeled set Dl = {(xl
i, y

l
i)}

Nl

i=1

and a much larger unlabeled set Du = {(xu
i )}

Nu

i=1, we aim

to train a CoSOD model by efficiently utilizing both the lim-

ited labeled data and a large amount of unlabeled data.

3.1. Unsupervised co­salient object detection

Here, we describe our unsupervised CoSOD model (US-

CoSOD) that effectively leverages the frequency statistics

of self-supervised single-image semantic segmentations.

Fig. 2 depicts our unsupervised pipeline for CoSOD.

We first compute the pseudo co-saliency masks based on

the single image segmentation masks and the self-attention

masks, which are then used to train a fully supervised

CoSOD model. Trained with the self-distillation loss [20],

the attention maps associated with the class token from the

last layer of DINO [3] have been shown to highlight salient

foreground regions [3, 57, 61]. Motivated by this observa-

tion, we consider the averaged attention map (across all at-

tention heads) from DINO as the foreground object segmen-

tation. Also, to detect the co-occurring objects, we use the

semantic segmentation masks from a recent self-supervised

single-image semantic segmentation model, STEGO [18].

This model shows that feature correspondences across im-

ages form strong signals for unsupervised semantic segmen-

tation. These correspondences are used to create pixel-wise
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Algorithm 1 Pseudo co-saliency mask generation

Input: Image group I = {I1, I2, .., In}
Output: CoSOD masks CM = {CM1, CM2, .., CMn}

1: Obtain self-attention (SA) maps, SA = {SAi}
n
i=1

from DINO [3].

2: Apply Otsu thresholding on the SA maps to obtain bi-

nary segmentation maps, DM = {DMi}
n
i=1.

3: Obtain the unsupervised single-image semantic seg-

mentation maps, SM c
i for each image i and discovered

unlabeled category c from STEGO [18].

4: Compute the frequency, f c of each semantic unlabeled

category c from STEGO in the image group, I .

5: for i = 1 to n do

6: Ci = {c1, c2, ..., cm} is the set of discovered unla-

beled categories in the image Ii.
7: Sort the categories in Ci by their frequency f c in the

descending order and select the top-K frequent unla-

beled categories, U = {u1, u2, .., uK}.

8: for j = 1 to K do

9: For category uj , compute overlap score:

Ouj

i = Ar(SMuj

i ∩DMi)/Ar(Ii), the overlapped

area between the STEGO mask SMuj

i for cate-

gory uj and the DINO SA map DMi divided by

the total image area.

10: end for

Co-salient object mask, CMi = SM
ccosoi

i is the

STEGO mask of the class, ccosoi that maximizes the

overlap score Oi i.e. ccosoi = argmaxc O
c
i

11: end for

12: return CM

embeddings, which yield high quality semantic segmenta-

tion maps upon clustering. We consider these co-occurring

semantic clusters across the image group as unlabeled cate-

gories and leverage them to find the co-occurring objects.

We detail our unsupervised pseudo co-saliency mask

generation in Algorithm 1. First, we average the self-

attention maps from the nh DINO attention heads to ob-

tain the averaged self-attention map SAi for an image Ii
as: SAi = 1

nh

∑nh

j=1 AM j
i , where AM j

i is the attention

map from the DINO attention head j for the image Ii. Map

SAi is normalized by min-max normalization. We then find

the co-occurrence frequency f c of the discovered categories

across all images in the group I . Next, for each image Ii, we

compute the top-K frequent STEGO categories and finally

select a single unlabeled category ccosoi per image based on

the overlap score Oc
i between the STEGO and the DINO

masks. We then consider the STEGO mask SM
ccosoi

i cor-

responding to the category ccosoi as the pseudo ground truth

mask for Ii. This filtering step ensures that the selected

segmentation corresponds to the most common yet salient

object in the group, therefore preventing co-occurring back-

grounds from being considered as the pseudo masks.

Thus we obtain the pseudo co-salient object masks

CMtrain for all groups Itrain in our training set and train

a CoSOD model [62] in a supervised manner using Itrain
as input and the corresponding pseudo segmentation masks

CMtrain as the training labels. The training loss, Lunsp is:

Lunsp =
1

|B|

|B|∑

i=1

liou(f
unsp(xi, θ), CMi) + λsclsc (1)

where, liou is the IoU loss [49, 70] between the predicted

segmentation map, funsp(xi, θ) and the ground truth seg-

mentation CMi, B is the training batch, and xi is the input

image. lsc is the self-contrastive loss as outlined in [62].

At inference, we use the trained funsp model to detect

co-salient objects in the test image groups, Itest. Note that

the self-supervised component models (STEGO and DINO)

are only used during the training of our US-CoSOD model

(to generate the pseudo-labels) and not during inference.

3.2. Semi­supervised co­salient object detection

While the unsupervised model does not require any la-

beled data for training, such a model is often not at par with

supervised models in terms of prediction accuracy. There-

fore, we develop a semi-supervised approach for CoSOD

(SS-CoSOD), which can effectively leverage a large amount

of unlabeled data with effective prediction confidence esti-

mation. Fig. 3 depicts our semi-supervised pipeline.

In stage 1, we supervisedly pre-train a CoSOD model

fPT on the labeled set and then train our Confidence Es-

timation Network (CEN) on the same set. In stage 2, we

employ a typical self-training framework with two models

of the same architecture, namely student (model fS) and

teacher (model fT ) networks that are initialized as fPT

in stage 1. The student model’s weights θs are updated

via backpropagation while the teacher model’s weights θt
are updated with the exponential moving average (EMA)

scheme [53], i.e., θt = λdθt−1+(1−λd)θs, where λd is the

EMA decay factor (set to 0.95). At each training step, we

sample Bl labeled images and Bu unlabeled images (maxi-

mum value of |Bl| and |Bu| being 16, following [62]). Next,

we combine each batch of labeled images, Bl and unlabeled

images, Bu into a single volume Bl+u before passing the

combined volume through the student network. The train-

ing label for this volume is the combination of the ground

truth labeled mask with the teacher model prediction as:

y(l+u) = [yl, fT (x
u
j , θT )]. This step is different from other

semi-supervised approaches, e.g., U2PL [58] where the la-

beled and the unlabeled sets are passed through the student

model in two separate passes. We leverage the benefit of

learning cross-pixel similarities across all images in the im-
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Figure 3. Proposed SS-CoSOD model for semi-supervised co-salient object detection. In the first stage, we pre-train a CoSOD model on

the labeled set while also training our Confidence Estimation Network (CEN) on the same set. In stage 2, we employ a student-teacher

model (initialized with the model from stage 1) for semi-supervised learning. The labeled and unlabeled data are jointly passed through

the student during training. We weight the unsupervised loss by the confidence score estimated by the CEN module.

age group to effectively propagate object co-saliency infor-

mation from the labeled images to the unlabeled images.

A supervised loss, Ls is computed for the labeled set

and an unsupervised loss, Lu is computed for the unlabeled

samples. For every labeled image, our goal is to minimize

the supervised IoU loss as:

Ls =
1

|Bl|

∑

(xl
i,y

l
i)∈Bl,

xu
j ∈Bu

liou(f
l
S([x

l
i, x

u
j ], θS), y

l
i) + λsclsc

(2)

where liou is IoU loss and lsc is self-contrastive (SC) loss.

λsc is set as 0.1 (following [62]). The SC Loss, lsc is

computed as: lsc = − log(cosc + ϵ) − log(1 − cosb +ϵ)

with cosc = cos(proto(l+u), proto
(l+u)
c ) and cosb =

cos(proto(l+u), proto
(l+u)
b ), where proto is the prototype

generated by the original inputs, protoc is the co-salient

prototype generated by the foreground regions, and protob
is the background prototype generated from the background

regions in the image. cos is the cosine-similarity function

and ϵ is a small positive constant to avoid overflow.

We pass the unlabeled batch, Bu, through the teacher

network and compute the unsupervised loss between the

predictions of the teacher and the student networks. The

unsupervised loss is weighted using the confidence scores

predicted by the CEN module for each unlabeled image as:

Lu =
1

|Bu|

∑

xl
i∈Bl,

xu
j ∈Bu

g̃(xu
i , θ

l
C)liou(f

u
S ([x

l
i, x

u
j ], θS), fT (x

u
j , θT ))

(3)

where g̃(xu
j , θ

l
C) =

g(xu
j ,θ

l
C)

∑|Bu|
j=1

g(xu
j
,θl

C
)

is the confidence weight

estimated by CEN, g for the unlabeled sample xu
i , parame-

terized by θlC that is learned from the labeled batch Bl. We

observed that the normalized confidence weight is crucial

for model convergence. Our objective is to minimize the

overall loss, L = Ls + λuLu, where Ls and Lu represent

supervised loss on the labeled set and unsupervised loss on

the unlabeled set respectively. λu is set as 1 [62].

Confidence Estimation Network (CEN): The CEN model

is trained to estimate the reliability score of the model pre-

diction. To train this model, we use the labeled image

set Sl as the input and the corresponding segmentation F-

measure [1] scores of the pre-trained model fPT predic-

tions in stage 1 as the ground truth. We use a ResNet50

backbone [19] trained using the DINO method because of

its ability to well segment the discriminative image regions.

The model is trained by fine-tuning the pre-trained ResNet

backbone and an fc(2048, 1) layer using the MSE loss as:

LC =
1

|Sl|

∑

(xl
i,y

l
i)∈Sl

(CEN(xl
i, θ

l
C)−Fβ(fPT (x

l
i, θS), y

l
i))

2

(4)
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Table 1. Performance comparison of unsupervised models for CoSOD. Our US-CoSOD-ImgNet150 model achieves the best result.

CoCA Cosal2015 CoSOD3k

Method MAE↓ Fmax
β ↑ Emax

φ ↑ Sα ↑ MAE↓ Fmax
β ↑ Emax

φ ↑ Sα ↑ MAE↓ Fmax
β ↑ Emax

φ ↑ Sα ↑

DINO (DI) [3] (ICCV 2021) 0.214 0.372 0.572 0.540 0.154 0.659 0.753 0.688 0.146 0.624 0.749 0.679

STEGO (ST) [18] (ICLR 2022) 0.235 0.353 0.555 0.523 0.164 0.618 0.717 0.676 0.204 0.543 0.660 0.615

TokenCut [56] (CVPR 2022) 0.167 0.467 0.704 0.627 0.139 0.805 0.857 0.793 0.151 0.720 0.811 0.744

DVFDVD [2] (ECCVW 2022) 0.223 0.422 0.592 0.581 0.092 0.777 0.842 0.809 0.104 0.722 0.819 0.773

SegSwap [50] (CVPRW 2022) 0.165 0.422 0.666 0.567 0.178 0.618 0.720 0.632 0.177 0.560 0.705 0.608

Ours (DI+ST) 0.165 0.461 0.676 0.610 0.112 0.760 0.823 0.767 0.124 0.684 0.793 0.724

Ours (US-CoSOD-COCO9213) 0.140 0.498 0.702 0.641 0.090 0.792 0.852 0.806 0.095 0.735 0.832 0.772

Ours (US-CoSOD-ImgNet150) 0.116 0.546 0.743 0.672 0.070 0.845 0.886 0.840 0.076 0.779 0.861 0.801

Ours (US-CoSOD-ImgNet450) 0.127 0.543 0.726 0.666 0.071 0.844 0.884 0.842 0.079 0.775 0.854 0.800

where fS is the student model parameterized by θS ,

Fβ(p, q) is the Fβ-metric computed between two segmen-

tation maps p and q, and Sl is the labeled set. After train-

ing, CEN provides a reliability estimate of model prediction

solely based on the image contents (Fig. 4 in supplement).

4. Experimental Results

4.1. Setup

Datasets and evaluation metrics: We used labeled data

from COCO9213 [55], a subset of the COCO dataset [41]

that contains 9,213 images selected from 65 groups, to train

our semi-supervised model. We additionally constructed a

dataset of 150K unlabeled images by selecting 150 images

per class from the training subset of ImageNet-1K [10, 31]

to train our unsupervised and semi-supervised models. We

evaluate our methods on three popular CoSOD benchmarks:

CoCA [71], Cosal2015 [65] and CoSOD3k [14]. CoCA

and CoSOD3k are challenging real-world co-saliency eval-

uation datasets, containing multiple co-salient objects in

some images, large appearance and scale variations, and

complex backgrounds. Cosal2015 is a widely used dataset

for CoSOD evaluation. Our evaluation metrics include the

Mean Absolute Error (MAE↓) [7], maximum F-measure

(Fmax
β ↑) [1], maximum E-measure (Emax

φ ↑) [12], and

S-measure (Sα ↑) [11].

Implementation details: We used DCFM [62] as the back-

bone model for all experiments. While the student network

in SS-CoSOD consists of the Democratic Prototype Gen-

eration Module (DPG) and the Self-Contrastive Learning

Module (SCL) from DCFM, we removed SCL in the teacher

network because this network is not updated via backprop-

agation [62]. We used the Adam optimizer for training. The

total training time is 5 hours for US-CoSOD and 8 hours for

SS-CoSOD using ImageNet-1K. The inference time is 84.4

fps. More details in the supplementary.

4.2. Quantitative evaluation

In Table 1, we quantitatively evaluate the predictions

obtained using seven different unsupervised baseline mod-

els: DINO self-attention mask (DI) [3], the most fre-

quently co-occurring semantic unlabeled category mask

from STEGO (ST) [18], the pseudo co-saliency mask

(DI+ST), predictions from TokenCut [56], DVFDVD [2],

SegSwap [50], and predicted masks from our US-CoSOD

model. We evaluated SegSwap [50] (that only predicts

pairwise co-segmentations) by averaging the predicted co-

segmentations over all image pairs in an image group i.e.

between one image and every other image in the group. Ta-

ble 1 shows that our US-CoSOD model trained on the 150K

images from ImageNet (150 images per class) achieves the

best performance. However, increasing the number of im-

ages to 450 per class slightly reduced the model accuracy.

This could be attributed to the fact that adding more unla-

beled images to the training set may lead to erroneous train-

ing due to the noisy pseudo ground truth masks generated

by DI+ST (using which US-CoSOD is trained).

In Table 2, we compare the performance of different ver-

sions of our SS-CoSOD models using different proportions

of labeled data. The “US-CoSOD” prefix indicates that the

model is initialized with the pre-trained US-CoSOD model.

“DJ” indicates that the model is trained with labeled and

unlabeled images passed ‘disjointly’ to the student model

without any cross-region interaction between the two sets.

The SS-CoSOD model is trained semi-supervisedly using

only images from the COCO9213 dataset. Finally, the “SS-

CoSOD with ImgNet” version utilizes the extra 150 images

per 1K ImageNet classes during semi-supervised training.

In order to include the unlabeled ImageNet images in our

semi-supervised setting, we use CEN to infer the confidence

weights for the unlabeled images and then include the sam-

ples with predicted score ≥ 0.9 in the labeled set and the

remaining samples in the unlabeled set.

In Table 2, we observe a consistent improvement in SS-

CoSOD performance when the reliability scores from CEN

are used to modulate the unsupervised loss. Joint labeled-

unlabeled student training further leads to a small but con-

sistent improvement. We further observe a significant im-

provement in performance when the ImageNet-1K dataset

is used for semi-supervised learning, e.g. on the CoCA

dataset, we obtain a reduction of 20% for MAE and gains

of 4.79% for maximum F-measure, 2.64% for maximum E-

measure, and 2.76% for S-measure compared to SS-CoSOD

337



Table 2. Performance comparison of the different versions of our unsupervised and semi-supervised models. In column 1, we indicate the

fraction of labeled data for training, followed by the actual number of images. See supplementary for the results with 1/8 labeled data.

CoCA Cosal2015 CoSOD3k

Labeled data Method MAE↓ Fmax
β ↑ Emax

φ ↑ Sα ↑ MAE↓ Fmax
β ↑ Emax

φ ↑ Sα ↑ MAE↓ Fmax
β ↑ Emax

φ ↑ Sα ↑

US-CoSOD 0.108 0.557 0.754 0.683 0.068 0.854 0.888 0.846 0.076 0.783 0.857 0.801

SS-CoSOD-DJ (w/o CEN) 0.107 0.485 0.728 0.635 0.094 0.771 0.834 0.771 0.089 0.709 0.817 0.742

1/16 (576) SS-CoSOD-DJ (w/ CEN) 0.115 0.488 0.730 0.639 0.086 0.782 0.847 0.787 0.086 0.717 0.828 0.755

SS-CoSOD 0.113 0.492 0.733 0.641 0.085 0.788 0.850 0.792 0.084 0.721 0.830 0.758

US-CoSOD+SS-CoSOD 0.111 0.554 0.751 0.681 0.066 0.855 0.890 0.849 0.075 0.783 0.858 0.803

SS-CoSOD with ImgNet 0.098 0.562 0.757 0.684 0.072 0.837 0.880 0.828 0.068 0.784 0.865 0.800

US-CoSOD 0.109 0.569 0.758 0.685 0.069 0.855 0.888 0.844 0.077 0.783 0.854 0.797

SS-CoSOD-DJ (w/o CEN) 0.097 0.552 0.763 0.678 0.076 0.828 0.874 0.818 0.075 0.776 0.859 0.790

1/4 (2303) SS-CoSOD-DJ (w/ CEN) 0.096 0.560 0.764 0.685 0.069 0.839 0.885 0.831 0.069 0.784 0.867 0.802

SS-CoSOD 0.097 0.562 0.765 0.686 0.068 0.841 0.886 0.833 0.068 0.785 0.868 0.803

US-CoSOD+SS-CoSOD 0.107 0.566 0.757 0.686 0.066 0.858 0.891 0.848 0.073 0.787 0.859 0.803

SS-CoSOD with ImgNet 0.091 0.581 0.772 0.698 0.066 0.851 0.891 0.841 0.064 0.799 0.875 0.812

US-CoSOD 0.105 0.569 0.760 0.688 0.068 0.856 0.889 0.843 0.074 0.793 0.862 0.804

SS-CoSOD-DJ (w/o CEN) 0.092 0.572 0.771 0.694 0.068 0.846 0.885 0.834 0.071 0.791 0.865 0.802

1/2 (4607) SS-CoSOD-DJ (w/ CEN) 0.090 0.578 0.772 0.699 0.062 0.851 0.892 0.843 0.067 0.795 0.870 0.810

SS-CoSOD 0.088 0.582 0.773 0.700 0.062 0.854 0.892 0.843 0.066 0.797 0.872 0.809

US-CoSOD+SS-CoSOD 0.110 0.563 0.755 0.686 0.064 0.858 0.894 0.850 0.072 0.794 0.866 0.810

SS-CoSOD with ImgNet 0.088 0.590 0.775 0.705 0.062 0.861 0.896 0.850 0.063 0.804 0.876 0.817

Full (9213) US-CoSOD 0.102 0.573 0.764 0.692 0.068 0.860 0.890 0.845 0.077 0.791 0.856 0.799

SS-CoSOD with ImgNet 0.091 0.591 0.778 0.707 0.061 0.865 0.901 0.852 0.062 0.809 0.882 0.821

Original Ground truth US-CoSOD TokenCut SegSwap DVFDVD

Figure 4. Qualitative comparisons of our US-CoSOD model with

other baselines on the teddy bear image group from CoCA. US-

CoSOD produces the most accurate segmentation masks.

trained using the COCO9213 dataset on the 1/2 data split.

Comparison with existing CoSOD models: In Table 3,

we compare the performance of existing unsupervised and

semi-supervised CoSOD models with our model using the

Fmax
β -measure and the Sα-measure metrics. Both of our

unsupervised and semi-supervised models outperform the

corresponding state-of-the-art models by a significant mar-

gin e.g., on the Cosal2015 dataset, our US-CoSOD model

has an 8.8% F-measure gain over DVFDVD [2], an unsu-

pervised SOTA co-segmentation model and our SS-CoSOD

model (using ImageNet-1K) has an 11.81% F-measure gain

over FASS [72], a semi-supervised CoSOD model.

Ablation studies:

Variant model: For certain image groups (e.g. key, frisbee,

etc.), the co-saliency of the common objects can be lesser

than that of other bigger objects solely due to the lesser

area, which could impact performance. To test this hypothe-

sis, we investigate a variant model that normalizes the over-

lap score by STEGO mask area as: O
′j
i =

Ar(SM
j
i
∩DMi)

Ar(SM
j
i
)

(see Algorithm 1). US-CoSOD (without area normaliza-

tion) has more accurate predictions compared to this vari-

ant on all test sets, e.g. US-CoSOD achieves F-measures

0.461, 0.760, and 0.684 against the variant model’s 0.410,

0.613, and 0.579 on CoCA, Cosal2015, and CoSOD3k re-

spectively. See supplementary for more details.

Performance on challenging categories: Our US-CoSOD

outperforms the pre-trained DINO and DINO+STEGO

models by a significant margin on challenging categories

(categories over which DINO scored lesser than the average

DINO F-measure score over the test dataset). For instance,

the average F-measures of DINO, DINO+STEGO, and US-

CoSOD are 0.598, 0.654, and 0.738 on the Cosal2015

dataset respectively. See supplementary for more details.

CEN backbone: We compared the confidence estimation

error (Mean Squared Error, MSE) of CEN using different

backbone networks on the unlabeled set. DINO (ResNet50)

yielded the least MSE across different data splits e.g. MSE

using ResNet50, MobileNetV2, ViTB, and ViTS are 0.166,

0.171, 0.176, and 0.177 respectively on the 1/4 labeled data

split. See supplementary for details. We attribute the lower

accuracy of MobileNetV2 to its lower feature representation

power. Also the transformer models DINO (ViTB, ViTS)

fail to outperform the convolutional models (e.g. ResNet50)

due to the lesser training data (in different data splits).

4.3. Qualitative evaluation

In Fig. 4, we qualitatively compare the CoSOD predic-

tions from TokenCut [56], SegSwap [50], and DVFDVD [2]

with our US-CoSOD on the teddy bear image group from
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US-CoSOD

Ground 

truth

DCFM

(all labels)

Camera (from CoCA) Butterfly (from CoSOD3k) Sofa (from Cosal2015)

SS-CoSOD

(all labels)

Input 

image

DCFM

(1/4 labels)

SS-CoSOD

(1/4 labels)

Figure 5. Qualitative comparisons of our model with different baselines on three image groups selected each from the CoCA, CoSOD3k,

and Cosal2015 datasets. Our SS-CoSOD model (all labels) produces the most accurate segmentation mask compared to the other baselines.

CoCA. We see that US-CoSOD more accurately detects the

teddy bear in the four images compared to the baselines.

In Fig. 5, we qualitatively compare the CoSOD pre-

dictions from different baselines with SS-CoSOD on three

image groups, each from the CoCA, CoSOD3k, and

Cosal2015 datasets. We see that our US-CoSOD gen-

erates reasonable masks and our SS-CoSOD approaches

further improve these predictions while performing better

than the fully supervised DCFM trained with limited labels.

While DCFM (all labels) produces incomplete segmenta-

tions (columns 5, 9, 11, and 12) and overestimates the co-

saliency (in columns 2, 3, 5, and 8) in certain image regions,

our SS-CoSOD (all labels) model predictions suffer fewer

inaccuracies, producing more accurate CoSOD masks.

Table 3. Comparison of our models with existing unsupervised

and semi-supervised models for CoSOD on Cosal2015.

Method Type Label % Fmax
β ↑ Sα ↑

CSSCF [24] (TMM 2016) Unsup - 0.682 0.671

CoDW [65] (IJCV 2016) Unsup - 0.705 0.647

UCCDGO [22] (ECCV 2018) Unsup - 0.758 0.751

DVFDVD [2] (ECCVW 2022) Unsup - 0.777 0.809

SegSwap [50] (CVPRW 2022) Unsup - 0.618 0.632

Ours (US-CoSOD) Unsup - 0.845 0.840

FASS [72] (ACMM 2018) Semi-sup 50% 0.770 -

Ours (SS-CoSOD w/ ImgNet) Semi-sup 25% 0.851 0.841

Ours (SS-CoSOD w/ ImgNet) Semi-sup 50% 0.861 0.850

Fig. 6 shows that while multiple categories can co-exist

in an image group (e.g. flowers and butterflies), our DI+ST

model extracts the more co-salient butterflies, guided by the

DINO SA maps. Also, our US-CoSOD model trained using

Original image     Semantic segmentation     DINO SA (DI)                   DI + ST                  US-CoSOD

Figure 6. DINO self-attention maps and US-CoSOD predictions

using DI+ST for training. US-CoSOD produces the best results.

the pseudo co-saliency masks from DI+ST improves the co-

saliency masks (better structural consistency) from DI+ST.

5. Conclusion

We presented a novel unsupervised approach for CoSOD

based on the frequency statistics of semantic segmenta-

tions, which forms a strong pre-training initialization for

a semi-supervised CoSOD model. Our semi-supervised

model employs a student-teacher approach with an effec-

tive confidence estimation module. We demonstrate that

both our unsupervised and semi-supervised CoSOD mod-

els can significantly improve prediction performance over

a fully-supervised model trained with limited labeled data.

As future work, we aim to improve our unsupervised model

by avoiding the use of any off-the-shelf component.
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