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Abstract

Underwater imaging presents numerous challenges due
to refraction, light absorption, and scattering, resulting in
color degradation, low contrast, and blurriness. Enhancing
underwater images is crucial for high-level computer vision
tasks, but existing methods either neglect the physics-based
image formation process or require expensive computa-
tions. In this paper, we propose an effective framework that
combines a physics-based Underwater Image Formation
Model (UIFM) with a deep image enhancement approach
based on the retinex model. Firstly, we remove backscatter
by estimating attenuation coefficients using depth informa-
tion. Then, we employ a retinex model-based deep image
enhancement module to enhance the images. To ensure ad-
herence to the UIFM, we introduce a novel Wideband Atten-
uation prior. The proposed PhISH-Net framework achieves
real-time processing of high-resolution underwater images
using a lightweight neural network and a bilateral-grid-
based upsampler. Extensive experiments on two underwa-
ter image datasets demonstrate the superior performance of
our method compared to state-of-the-art techniques. Addi-
tionally, qualitative evaluation on a cross-dataset scenario
confirms its generalization capability. Our contributions lie
in combining the physics-based UIFM with deep image en-
hancement methods, introducing the wideband attenuation
prior, and achieving superior performance and efficiency.

1. Introduction

Underwater imaging is important for various applica-
tions such as marine life studies, coral reef monitoring,
ocean exploration, and underwater robotics [35]. How-
ever, capturing high-quality underwater images is challeng-
ing due to factors like refraction, selective light absorption,
and scattering. Colors are attenuated differently underwa-
ter, with shorter wavelength colors (green and blue) appear-
ing more pronounced due to scattering and longer wave-
length colors (red and orange) being absorbed. This effect

is amplified at greater depths, resulting in color degradation,
low contrast, and blurriness in underwater images. These
challenges make it difficult for computer vision tasks like
segmentation, object detection, and tracking. To address
this, we propose an effective framework that combines deep
image enhancement techniques with a physics-based image
model that considers light scattering in water.

Early works [1,28] perform Underwater Image Enhance-
ment (UIE) by correcting contrast, brightness, saturation
etc. However, unlike images captured in the air, it is cru-
cial to consider the physical process of underwater image
formation when processing these images. Another line of
works [2, 3, 52] use Underwater Image Formation Mod-
els(UIFM) to improve the visual clarity of underwater im-
ages. These models mathematically simulate how light in-
teracts with the underwater environment and how imaging
devices capture the images. UIFM-based underwater im-
age enhancement methods often estimate unknown color
and light scattering attenuation coefficients to recover clean
image signals based on the mathematical model. However,
these methods are computationally expensive for real-time
applications as they require estimating attenuation coeffi-
cients for each image. Recent studies [17, 20, 43] have
been inspired by the success of deep neural networks in
tasks like image dehazing and low-light image enhance-
ment, and have applied deep networks for underwater image
enhancement. These approaches learn the mapping between
degraded images and their enhanced counterparts. Addi-
tionally, most underwater image datasets consist of high-
resolution images [10, 40], but these models often process
them at lower resolutions, limiting their performance.

In this work, we propose an effective framework that
leverages the formulation of physics based UIFM with
retinex model based deep image enhancement framework.
We employ the well established UIFM model proposed in
Sea-Thru [4], where an underwater image is modeled to
have two components (i) Direct signal representing the pri-
mary source of image formation and contains the true char-
acteristics of the subject being captured, however with at-
tenuated colors as a function of distance and wavelength;
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Figure 1. Sample results for images from the UIEB dataset. Top: input; Bottom: corresponding enhanced image.

(ii) Backscatter signal arising from light scattering by par-
ticles suspended in the water. Backscatter tends to be more
prominent in underwater imaging due to the higher concen-
tration of suspended particles compared to the air.

Firstly, we propose to estimate and remove backscatter
by estimating the attenuation coefficients as proposed in
[4]. However, this step requires depth information, which
is not available for most underwater image datasets as it
is difficult to obtain. To circumvent this, we propose the
utilization of an off-the-shelf monocular depth estimation
method [48], which we found to be effective. On observing
that these backscatter-removed images resemble low-light
underexposed images, we propose to use a retinex model-
based deep image enhancement module to perform UIE.

Physical model based methods estimate attenuation co-
efficients for each image individually, while data driven
methods ignore the physical image formation process and
treat UIE as low light image enhancement problem. In
this context, we aim to leverage the effectiveness of both
lines of work by proposing a novel Wideband Attenuation
prior. Through this, while performing image enhancement
with PhISH-Net, we ensure that it also adheres to the UIFM
model [4], thus considering the characteristics of light scat-
tering in water. We perform most of the computation on
low-resolution images and subsequently employ a bilat-
eral grid-based upsampling module to generate the high-
resolution enhanced images.

Our study encompasses comprehensive experiments on
two underwater image datasets: UIEB [40] and EUVP [35].
In addition, we qualitatively evaluate the cross-dataset per-
formance by testing the model trained on EUVP on another
dataset named SQUID [10]. Our method consistently out-
performs state-of-the-art (SOTA) UIE methods. Further-
more, the proposed PhISH-Net framework is computation-
ally efficient and lightweight with 0.55M parameters. The
key contributions of our work are as follows:

• The proposed PhISH-Net framework combines the
physics-based UIFM with a deep image enhancement
approach based on the retinex model.

• We propose a novel wideband attenuation prior condi-
tioned on the UIFM while learning PhISH-Net. This
takes into account the optical characteristics and color
attenuation properties of water.

• Our approach exhibits superior performance compared
to SOTA on two underwater image datasets. Further,
we demonstrate its effectiveness by qualitatively eval-
uating its cross-dataset generalization performance.

2. Related Work
In this section, we provide a comprehensive review of

the latest advancements in UIE.

Image Processing based Methods aim to restore the
clarity of underwater images by modifying their appear-
ance based on prior visual characteristics. They employ
various image processing techniques, such as contrast
adjustment [34], histogram equalization (HE) [49], white
balance [47], and fusion-based approaches [7, 8]. Hassan
et al. [32] propose to use contrast limited adaptive HE as a
pre-processing step for further retinex based enhancement.

Physical Model based Methods extend the principles
of prior model-based dehazing algorithms to underwater
scenes, treating UIE as an inversion problem. The objective
is to restore the image by effectively reversing the degra-
dation caused by the underwater imaging process. Various
approaches have been developed based on different priors,
such as the dark channel prior [13–15, 53, 58], red channel
prior [24], attenuation curve prior [66], backscatter pixel
prior [75] and minimum information prior [42]. Notable
model-based methods include works by Akkaynak et
al. [3], Berman et al. [10], Pei et al. [52], Xie et al. [68],
HLRP [76], MLLE [74], and ICSP [33].

Data Driven Methods with deep learning have recently
gained prominence in UIE. CNN based methods include
WaterNet [40], UWCNN [38], SGUIE-Net [56], UICoE-
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Net [57] and UIE-Net [64]. GAN based approaches
include UGAN [19], UW-GAN [60], Spiral-GAN [31],
FunIE-GAN [35], WaterGAN [44], Dense GAN [27], FE-
GAN [29], TOPAL [36], and CycleGAN [41]. However,
such methods perform poorly on real-world images due
to their reliance on large synthetic datasets for training
as they fail to take into account the domain shift problem
between synthetic and real-world data [67]. They also dis-
regard the physical process of image formation under water.

Low Light Image Enhancement Given the dimly lit
nature of the backscatter removed images, UIE can benefit
from the combined insights of retinex-based and deep
learning-based approaches in low-light image enhance-
ment. Retinex-based methods [12, 26, 45, 63] decompose
the underwater image into reflectance and illumination
components [21] and estimate the illumination to enhance
the image quality. On the other hand, deep learning-based
methods leverage techniques such as encoder-decoder
networks [46, 59, 69, 70], bilateral learning [61], and
adversarial learning [22, 72], to improve image quality.

In the following section, we present our method, which
complements existing learning-based approaches by har-
nessing the strengths of modern deep neural networks while
incorporating insights from an underlying physical model to
enhance underwater images.

3. Methodology
Here, we present our two main components : (i) UIFM,

which is used for backscatter estimation; (ii) PhISH-Net,
the proposed deep image enhancement framework to en-
hance the backscatter-removed image.

3.1. Underwater Image Formation Model

In this work, we employ the UIFM proposed in Sea-
Thru [4]. According to this model, the formation of any im-
age I captured underwater can be modeled using two com-
ponents, the direct signal (D) and backscatter (B) [5]. For
each channel c ∈ {r, g, b}, the image can be decomposed as

Ic = Dc +Bc (1)

D and B are governed by two coefficients, the wideband
(RGB) attenuation (βd) and the backscatter coefficient (βb).
Equation 1 is further expanded as follows:

I = J e−βdz +B∞ (1− e−βbz) (2)

Here, J is the unattenuated scene that would have been cap-
tured if there was no water medium attenuating colors with
depth z. B∞ is the backscatter color. In this model, the
coefficients βd and βb are considered to be distinct. βb and
βd depend on several factors including object reflectance,

spectrum of ambient light, spectral response of the camera,
the physical scattering and beam attenuation coefficients of
the water body, all of which are functions of wavelength.
Now, we describe the algorithm to estimate backscatter B,
which is then used to obtain the direct signal D from the
captured underwater image I .

3.2. Backscatter Estimation

When light penetrates through the water surface and in-
teracts with underwater objects, it undergoes scattering in
various directions. Additionally, suspended particles in the
water column contribute to the scattering phenomenon to-
wards the surface, resulting in a form of noise known as
backscatter. This is modelled as an additive signal, which
degrades the quality of underwater images.

The amount of backscatter in an image increases expo-
nentially with the depth z and eventually reaches saturation.
In areas where the scene reflectance or illumination tends to
zero, the captured image I → B. Backscatter can hence be
estimated by identifying such areas. Inspired by the dark
channel prior, this is done by searching for the darkest RGB
triplets based on the depth map. The depth map is first
partitioned into 10 evenly spaced clusters. In each cluster,
we search I for RGB triplets in the bottom 1%, the set of
which we denote as Ω. An overestimate of backscatter is
B̂(Ω) ≈ I(Ω), which can be modelled using Equation 2 as

B̂ = J ′ · e−βd′z︸ ︷︷ ︸
Residual term

+B∞ (
1− e−βbz

)
(3)

Given an input image I and its corresponding depth
map z, the coefficients B∞, βb, βd′ and J ′ are estimated
using a non-linear least squares fitting subject to bounds as
described in [4]. This is summarized in Algorithm 1.

Depth Estimation To accurately estimate backscatter, an
absolute depth map is required. While some datasets utilize
structure-from-motion [4] with known objects for scale to
obtain these depth maps, this approach is limited in datasets
without pre-existing depth information. To overcome this
challenge, we employ an off-the-shelf depth estimation net-
work to generate depth maps. Specifically, we adopt a
boosted version of monocular depth estimation proposed
by [48], which builds upon MiDaS [37] without retraining
the base model. This depth boosting framework enhances
the depth map quality by iteratively incorporating scene
structure information using double estimation and patch se-
lection at different resolutions. We demonstrate the quality
of depth images with and without boosting in the supple-
mentary material. We further employ a heuristic to estimate
the minimum and maximum depth values in the absence of
explicit information.
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Algorithm 1 Backscatter Estimation

Input: Underwater image I , Depth map z.
1: Initialization: Ω = ∅, D = 0.
2: Partition z in 10 evenly spaced clusters Ψ between

max(z) and min(z).
3: for cluster in Ψ do
4: Add RGB triplets of I in the bottom 1% to Ω.
5: end for
6: An overestimate of the backscatter is given by B̂(Ω) ≈

I(Ω), which can be modelled using Eq.(2).
7: for c ∈ {r, g, b} do
8: Estimate B̂c using a non-linear least squares fit on

Eq.(3) and then obtain the direct signal.
9: Dc = Ic − B̂c.

10: end for
Output: Estimated backscatter B̂ and Direct signal D.

3.3. PhISH-Net

The direct signal estimated using the backscatter is often
dimly lit. The task of enhancing this direct signal mim-
ics the well explored low light image enhancement prob-
lem, which we draw inspiration from. At its core, image
enhancement involves finding a mapping that enhances an
input image I to produce an improved version Ĩ .

A well established image enhancement model is the
retinex model, where an image captured I is composed of
two components, Reflectance Ĩ and Illumination S. Math-
ematically, this is given as I = S ∗ Ĩ , where ∗ denotes
a pixel-wise multiplication. In our case, I = D, the di-
rect signal obtained after backscatter removal. As in sev-
eral prior works [21, 26], we treat Ĩ as the enhanced image.
Now, given I , the problem reduces to estimating the illumi-
nation map S, using which the enhanced image Ĩ can be ob-
tained as S−1 ∗ I . Although early works such as LIME [26]
and DUAL [73] model S as a single-channel illumination
map, recent studies [61] have shown that representing the
illumination map using three channels yields better perfor-
mance, especially in terms of colour enhancement and han-
dling non-linearity across different colour channels.

In this work, we propose PhISH-Net to predict a three-
channel illumination map S, which is then used to obtain
the enhanced output image as Ĩ = I/(S + ϵ).

We propose to use a simple convolutional architecture
equipped with a network designed to extract both global
and local features, aiding in the estimation of bilateral grid
coefficients [25]. These coefficients are then applied to
the output of a guide network, to obtain a high-resolution
illumination map Shr. Subsequently, the enhanced image
is computed as Iout = Dhr/(Shr + ϵ). This allows most
network computations to be performed at a reduced reso-
lution, facilitating real-time processing of high-resolution

underwater images. This approach not only addresses
computational efficiency but also enables the model to
handle images of varying sizes. The overall pipeline for this
image enhancement process is illustrated in Figure 2. We
impose a novel prior on the wideband (RGB) attenuation
coefficient βd based on the experimental findings in [4].
PhISH-Net is optimized to predict the illumination map
Shr by minimizing the proposed attenuation loss, image
reconstruction loss, color loss and smoothness loss. We
first describe the proposed wideband attenuation prior and
then describe each of the loss components.

Wideband Attenuation Prior The objective is to recover
the unattenuated scene J from the estimated direct signal D,
following the UIFM model described in Section 3.1. Con-
sidering the visual properties of the estimated direct signal
mimic that of a low light image, the objective can alterna-
tively be formulated based on retinex based image model
to recover the reflectance component by estimating the il-
lumination map. Sea-Thru draws inspiration from image-
dehazing models, and [23] suggest that there is a linear re-
lationship between image-dehazing and the retinex model.
This in turn suggests that the objective of estimating the
unattenuated scene J based on UIFM can be related to that
of estimating reflectance based on Retinex model. Here,
we propose a novel wideband attenuation prior through at-
tenuation loss La, which constrains the predicted output to
follow both the image formation models. The attenuation
component e−βdz being analogous to the illumination map
S, we can obtain a coarse estimate of the wideband atten-
uation coefficient, given the depth map z and the predicted
illumination map Shr as follows.

β̂d(z) =
− logShr

z
(4)

This coefficient is known to decay with depth z following
a two-term exponential curve as shown below. This was
established in [4] by performing extensive experimentation
on a variety of underwater image datasets.

βd(z) = a ∗ e−b·z + c ∗ e−d·z (5)

PhISH-Net predicts the illumination map Shr which we use
to constrain the coarse estimate of the coefficient βd ob-
tained from Equation 4 to follow the curve in Equation 5 by
using the following wideband attenuation prior loss La.

La = ∥(− logShr

z
)− (a ∗ e−b·z + c ∗ e−d·z)∥2 (6)

Here, a, b, c, d ∈ R+ are obtained from a learnable co-
efficient predictor network using features extracted by the
encoder block. We denote these coefficients by the vector
V = [a, b, c, d] in Figure 2.
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Figure 2. Underwater Image Enhancement model: Here, we briefly illustrate the steps involved (1) Backscatter Removal (Section 3.2)
(2) PhISH-Net: Given a high-resolution backscatter-removed image, we create a guide map and predict bilateral grid coefficients from its
downsampled version. They are used to obtain a high-resolution illumination map, yielding the enhanced image via the retinex model.

Reconstruction loss is obtained as the L2 norm between
the predicted enhanced image and the ground truth en-
hanced image Igt. Here, c is the channel and c ∈ {r, g, b}.

Lr = ∥(S−1
hr ∗Dhr)−Igt∥2 s.t. (Dhr)c ≤ (Shr)c ≤ 1 (7)

Color Loss is employed to match the colors of the pre-
dicted output Iout with the ground truth image Igt. This is
achieved by minimizing the angle ∠(, ) between each color
pair for all pixels p. Here, each RGB color is considered as
a vector in three dimensional space.

Lc =
∑
p

∠((Iout)p, (Igt)p) (8)

Smoothness Loss is a weighted L2 norm of the gradients of
the illumination map S. This is imposed based on the prior
observation that illumination in natural images is typically
locally smooth.

Ls =
∑
p

∑
c

ωp
x,c (∂xSp)

2
c + ωp

y,c (∂ySp)
2
c (9)

The weights ωp
x,c and ωp

y,c are spatially varying smoothness
weights designed to promote locally smooth variations
on pixels with small gradients while allowing for dis-
continuous illumination on pixels with large gradients
in the illumination map. In the context of underwater
images, which are prone to inconsistent illumination, the
smoothness loss helps mitigate the introduction of abrupt
changes in the illumination map.

Training PhISH-Net Given an underwater image dataset
D = {(Ii, Iigt)}Ni=1, where Iigt is the enhanced version
of the image Ii and N is the number of images, we train
PhISH-Net using the following loss:

Li = wrLi
r + wcLi

c + wsLi
s + waLi

a (10)

where Li corresponds to the loss for the ith image pair
and wr, wc, ws and wa are the weights assigned to each
loss component. The values are empirically set to wr =
10, ws = 2, wc = 1 and wa = 0.5.

3.4. Photofinishing

Color correction is a crucial step in enhancing underwa-
ter images. To eliminate undesirable color casts, images
are first white balanced, which improves their overall ap-
pearance. Previous work [8] has shown that artifacts are
typically present in the red and blue channels, and are cor-
rected.

Irc = Ir + α1 ∗ (Īg − Īr)

Ibc = Ib + α2 ∗ (Īg − Īb)
(11)

where Irc and Ibc are the corrected red (Ir) and blue (Ib)
channels respectively. Īc denotes the mean value of channel
c ∈ {r, g, b}. The combining coefficients α1 and α2 and are
chosen between [0, 1].

The final output is obtained through a multi-scale fu-
sion technique based on a laplacian pyramid [11]. First, a
gamma-corrected and unsharp masked version of the white-
balanced image are generated to enhance global colour con-
trast and edge sharpness. The two versions are weighted
using local image quality metrics such as the laplacian con-
trast weight, saliency weight, and saturation weight. The
weights are chosen to preserve the desired qualities and re-
ject undesired defaults of the inputs. The output of this step
is convexly combined with the model’s output to allow for
a more natural and visually appealing final image.

4. Experimental Results
Datasets In order to comprehensively assess the perfor-
mance of our proposed approach, we conducted exten-
sive experiments on two real-world underwater datasets:
UIEB [40], EUVP [35]. The UIEB dataset consists of 890
underwater images with diverse scenes and varying levels of
degradation. The EUVP dataset contains 5550 paired dark
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(a) Input (b) Drews et al. [16] (c) Peng et al. [55] (d) Ancuti et al. [6]

(e) Ancuti et al. [9] (f) Emberton et al. [18] (g) Berman et al. [10] (h) Proposed Method

Figure 3. Results for various models on the sample RGT 3204 from the SQUID dataset.

images captured during oceanic explorations. We use 80:20
train-test split for these two datasets in all experiments. Fur-
ther, we also use the SQUID [10] dataset which comprises
57 underwater images from different locations, represent-
ing various water properties and conditions. Due to the lim-
ited number of available images in SQUID dataset, here we
evaluate the model trained on EUVP and qualitatively com-
pare our method with prior approaches in Figure 3. This
experiment also demonstrates the generalization ability of
this method across datasets.

4.1. Implementation Details

Backscatter Estimation We use an off-the-shelf depth
boosting method [48] based on MiDaS [37], a monocular
depth estimation method, without further retraining. The
obtained depth map is used for backscatter estimation on
the full-resolution underwater images.

PhISH-Net The model is built using PyTorch [51] and
trained for 100 epochs with a batch size of 64 on an
NVIDIA RTX A5000 GPU using the loss defined in
Equation 10 and the Adam optimizer with a learning rate of
1e−4. During training, the input images are resized to 512
× 512 pixels, and a fixed size of 256 × 256 pixels is used
for the low-resolution input. An intermediate representa-
tion is obtained using a series of five convolutional blocks,
which is then fed into the local and global feature extractor.
The resulting local and global features are concatenated
and upsampled using a bilateral grid-based module [25].
The architecture of each module is described in detail in the
supplementary material. Given that the guide network is
fully convolutional, it can handle images of any resolution
at test time, enabling us to operate at the original resolution.

Evaluation Metrics To quantitatively evaluate the effec-
tiveness of our proposed model, we employ a compre-

hensive set of both reference-based and non-reference-
based quality metrics. The reference based metrics in-
clude Peak Signal-to-Noise Ratio (PSNR), PSNR for the
Luminance channel (PSNR-L), Structural Similarity Index
Measure (SSIM), and Patch-based Contrast Quality Index
(PCQI) [62]. These metrics provide a comparative assess-
ment by comparing the enhanced images with reference im-
ages. In addition, we also evaluate the model based on
five non-reference-based metrics which evaluate the quality
of enhanced images without relying on reference images.
These include Underwater Colour Image Quality Evalua-
tion (UCIQE) [71], Colorfulness Contrast Fog density index
(CCF) [65], Underwater Image Quality Measure (UIQM),
Underwater Image Colorfulness Measure (UICM) and Un-
derwater Image Contrast Measure (UIConM) [50]. It is im-
portant to note that higher values indicate better results and
improved image quality for all these metrics.

4.2. Additional Analysis

In this section, we thoroughly evaluate and discuss the
performance of the proposed framework. To provide a com-
prehensive assessment, we benchmark our approach against
several existing UIE methods, enabling a comparative anal-
ysis. Moving beyond quantitative evaluations, we delve into
qualitative results and present visual comparisons with pre-
vious methods, allowing for a deeper understanding of the
improvements achieved. Furthermore, we conduct an ab-
lation study to explore the individual contributions of each
loss component in our framework. These discussions shed
light on the importance of each component of our approach.

Comparative Analysis We present a thorough com-
parison of the proposed framework with various UIE
methods on two datasets, UIEB and EUVP, including both
traditional/model-based approaches [4, 14, 33, 54, 76] and
deep learning-based methods [19, 30, 35, 36, 39, 60]. The
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Method PSNR PSNRL SSIM PCQI UCIQE UIQM UICM UIConM CCF
(↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

U
IE

B

FUnIE-GAN [35] 17.3828 20.0596 0.7285 0.6393 0.5459 1.3993 5.7775 1.1605 21.0605
UW-GAN [60] 16.2281 19.1524 0.7644 0.7187 0.5655 1.3467 5.5550 1.1219 22.8449
UWCNN [39] 12.0247 13.7820 0.6469 0.3921 0.5058 1.0647 1.9216 0.9398 11.0019
HLRP [76] 13.0317 13.7891 0.2874 0.2326 0.6356 1.6477 9.5089 1.1915 36.9312
MLLE [74] 18.1079 19.4733 0.7985 0.9105 0.6044 1.6287 4.8271 1.0124 36.2740
IBLA [54] 15.5610 17.7756 0.7390 0.6949 0.6020 1.4397 7.3312 1.0143 28.9752
TOPAL [36] 20.5871 22.6706 0.8674 0.7148 0.5841 1.2209 5.0093 1.0321 21.2175
UDCP [14] 11.9286 12.7288 0.6441 0.6117 0.5956 1.5725 7.1986 1.1748 27.1441
Water-Net [40] 18.7003 19.7212 0.8623 0.6926 0.5711 1.2637 5.0644 1.0633 16.5005
ICSP [33] 11.7942 13.1037 0.6340 0.7323 0.5636 1.4759 6.3012 1.0484 26.6930

PhISH-Net 21.1390 23.4312 0.8686 0.9294 0.6405 1.5968 8.8169 1.1513 37.2389

E
U

V
P

FUnIE-GAN [35] 20.5600 27.4704 0.8866 0.8927 0.5086 1.5549 4.0977 1.2502 29.2321
UW-GAN [60] 15.7630 22.8411 0.9155 0.9653 0.5262 1.4741 3.3911 1.2164 29.3064
UWCNN [39] 15.5175 18.4511 0.8439 0.6451 0.5427 1.4212 1.6375 1.2607 19.5666
HLRP [76] 12.4673 13.3926 0.2213 0.1722 0.5748 1.5591 4.0038 1.2885 30.0306
MLLE [74] 14.2530 16.1892 0.6125 1.0295 0.5879 1.7296 2.9907 0.7756 36.2180
IBLA [54] 16.9223 23.0862 0.8643 0.9891 0.5895 1.5616 4.6178 1.1100 39.5418
TOPAL [36] 18.3044 24.4843 0.9335 0.9942 0.5826 1.4905 3.2523 1.1990 34.9025
UDCP [14] 14.4190 18.2478 0.8140 0.8572 0.5908 1.6489 4.7064 1.1962 35.1508
Water-Net [40] 18.2595 24.3506 0.9357 0.8831 0.5793 1.4975 3.1465 1.2309 25.6186
ICSP [33] 12.1254 14.5056 0.6710 0.9797 0.5750 1.5896 4.0923 0.9728 41.2878

PhISH-Net 20.9197 27.4717 0.8559 1.0378 0.5918 1.5925 4.3570 1.1512 38.8619

Table 1. Image Quality Metrics of various UIE methods on the UIEB and EUVP datasets.

Figure 4. Stage-wise outputs of the proposed framework.

results, summarized in Table 1, clearly demonstrate the
superiority of our approach over all previous methods
on both datasets. While our model might not secure the
highest ranking in certain non-reference-based metrics,

Lr Lc Ls La PSNR (↑) SSIM (↑)

✓ 20.7987 0.8299
✓ ✓ 20.8560 0.8319
✓ ✓ ✓ 20.8671 0.8320
✓ ✓ ✓ ✓ 21.1390 0.8686

Table 2. Ablation study of loss components on UIEB dataset

it’s noteworthy to observe that techniques achieving high
non-reference metrics tend to yield low reference-based
metrics, particularly in terms of SSIM and PCQI. This
topic has been elaborated upon in the supplementary
material, alongside enhancements in metrics attributed to
the photofinishing step. Additionally, stage-wise results are
shown in Figure 4. Overall, these quantitative evaluations
establish the superiority of our proposed framework over
previous works.

Qualitative results We further demonstrate the effec-
tiveness of our framework by showcasing sample results
from two datasets: UIEB and EUVP (see Figures 1 and 6
respectively). Additionally, we evaluate the generalization
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Figure 5. Results of the ablation study that demonstrates the effectiveness of each component in the loss function.

Figure 6. Sample results for images from the EUVP dataset. Top:
input; Bottom: corresponding model output.

capability of PhISH-Net through a cross-dataset scenario.
Specifically, we test SQUID images on the EUVP trained
model and present the results in Figure 3. We also investi-
gate the utility of enhanced images for downstream tasks
by analyzing SIFT features, which we demonstrate in the
supplementary material.

Ablation Study To assess the significance of each loss

Method Runtime (s) (↓) GFLOPs Parameters

256x256 512x512 1024x1024 (↓) (↓)

Sea-Thru [4] 2.84940 10.5835 43.9366 - -
UDCP [14] 2.09800 5.02730 12.2055 - -
ICSP [33] 0.56110 2.31270 4.66480 - -
HLRP [76] 1.45400 1.62400 2.09600 - -
IBLA [54] 3.34579 14.0217 57.0798 - -
UGAN [19] 0.00131 - - 18.1547 54.4041
FUnIE-GAN [35] 0.00122 - - 10.2388 7.01959
FE-GAN [30] - - - 2.84000 11.4760
UW-GAN [60] 0.00037 - - 0.00385 1.92567
UWCNN [39] 0.21299 0.44511 2.14731 28.4671 0.03997
TOPAL [36] 0.50230 1.98956 8.33497 111.6193 36.6749
Water-Net [40] 1.03550 2.54530 4.62990 142.9039 1.09067

PhISH-Net (network) 0.00216 0.00280 0.00413 - -
PhISH-Net (pre/post) 0.21160 0.46964 1.66681 - -

PhISH-Net (overall) 0.21376 0.47244 1.67095 0.09001 0.55620

Table 3. Complexity Analysis of PhISH-Net.

component in our proposed approach, we conducted a
comprehensive ablation study. The results, presented in
Figure 5, highlight the consistent improvement in model
performance with the addition of each loss term. Addi-
tionally, we analyze the impact of each extra component
on quality metrics, as summarized in Table 2. We observe
the PSNR and SSIM metrics improve significantly as each
individual loss term is incorporated, indicating superior
image quality. Overall, the ablation study provides valuable
insights into the efficacy of our proposed loss. Additionally,
we conducted ablation studies by altering the intrinsic pa-
rameters of the model and evaluating its robustness against
image and depth degradations. Further details are provided
in the supplementary material.

Complexity Analysis We evaluate our method’s complex-
ity in FLOPs, parameters, and runtime (Table 3). We ob-
serve that our model achieves a significant improvement in
run-time, even for high-resolution underwater images. In
terms of parameters and FLOPs, the proposed model is ex-
tremely lightweight, at only 0.55M parameters.

5. Conclusion

In this paper, we have presented an effective frame-
work for underwater image enhancement that combines a
physics-based UIFM with a deep image enhancement ap-
proach based on the retinex model. Our proposed PhISH-
Net framework achieves real-time processing of high-
resolution underwater images using a lightweight neural
network and a bilateral-grid-based upsampler. By intro-
ducing a novel Wideband Attenuation prior, we account for
the optical characteristics and color attenuation properties
of water while also following the retinex model. Extensive
experiments on two underwater image datasets demonstrate
the superior performance of our method compared to state-
of-the-art techniques. Additionally, our approach show-
cases cross-dataset generalization capability. Overall, our
contributions lie in the integration of physics-based mod-
eling, deep image enhancement, and efficient processing,
offering a compelling solution for the underwater image en-
hancement task.
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[25] Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W
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