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Abstract

In autonomous driving applications, there is a strong
preference for modeling the world in Bird’s-Eye View
(BEV), as it leads to improved accuracy and performance.
BEV features are widely used in perception tasks since they
allow fusing information from multiple views in an efficient
manner. However, BEV features generated from camera
images are prone to be imprecise due to the difficulty of
estimating depth in the perspective view. Improper place-
ment of BEV features limits the accuracy of downstream
tasks. We introduce a method for incorporating map in-
formation to improve perspective depth estimation from 2D
camera images and thereby producing geometrically- and
semantically-robust BEV features. We show that augment-
ing the camera images with the BEV map and map-to-
camera projections can compensate for the depth uncer-
tainty and enrich camera-only BEV features with road con-
texts. Experiments on the nuScenes dataset demonstrate
that our method outperforms previous approaches using
only camera images in segmentation and detection tasks.

1. Introduction
Self-driving systems rely on various sensors to perceive

their surroundings and make informed decisions. Cameras
are commonly used to capture rich semantic information of
a particular view, while LiDAR provides spatial informa-
tion like depth, orientation, and coordinates. To enhance
perception, state-of-the-art methods often integrate differ-
ent modalities through sensor fusion. Although LiDAR is
usually favored due to its accuracy and reliability, adverse
weather conditions like heavy rain or fog can negatively
affect its performance. Moreover, LiDARs are expensive,
which restricts their use in some applications. As a result,
recent research has explored creating low-cost LiDAR-free
autonomous driving systems using only cameras.

In low-cost camera-based autonomous driving systems,
it is a long-standing challenge to generate 3D features from
just 2D RGB images. In absence of LiDAR, multi-view
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Figure 1. Our model leverages the Bird’s-Eye View (BEV) map to
improve perspective depth estimation from 2D multi-view camera
images, producing geometrically- and semantically-robust BEV
features (challenging areas highlighted by dotted boxes). (a)
Ground-truth (b) BEV masks predicted by LSS [24] (c) Our pre-
dictions.

(or surround-view) camera setups are a great alternative
for obtaining depth cues and semantic information from
the environment. While earlier multi-view methods relied
on extracting features individually from each camera in a
monocular framework [22,27,33], recently, BEV-based ap-
proaches, which represent surrounding scenes in BEV space
have gained popularity [9, 24, 29]. BEV modeling has the
advantage that it can aggregate semantic information from
multiple views and create a comprehensive representation
of the surrounding scene at any specific timestep. State-
of-the-art methods in 3D object detection [11, 18, 21] ag-
gregate features from multiple images and create BEV fea-
tures to perform detection. Although BEV-based methods
have greatly improved the performance of camera-only 3D
detection, their performance is still limited by inaccurate
depth estimation of 2D images as an intermediate step in
BEV feature generation.

Generally, BEV-based frameworks using camera images
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estimate pixel-wise depth and context on images from mul-
tiple views [24, 25], and employ a module which splats the
image features onto corresponding BEV coordinates based
on predicted depth. However, generated BEV features are
dependent on semantic features unaware of 3D geometry,
leading to incorrect feature projection onto BEV space. Fur-
thermore, as BEVDepth [16] suggests, estimated depth dis-
tribution from camera sensors is likely to be far away from
the correct depth of 2D points provided by LiDAR. Hence,
it is essential to employ auxiliary tools to guide BEV gen-
eration models to learn the correct depth distribution of 2D
images and enhance produced camera BEV features during
training. Previous methods [1, 21] attempted to fuse BEV
features extracted from LiDAR and camera to preserve both
geometric and semantic information from multiple sensors.
Other works [16, 19] proposed to use radar and LiDAR to
provide more accurate depth for camera BEV features.

In this work, we introduce a novel method for incorpo-
rating map features into BEV modeling for 3D perception
tasks. Our method achieves superior performance through
two means: 1) we encode and utilize camera-projected map
information to improve multi-view depth estimation and 2)
we utilize BEV map based spatial normalization to refine
the BEV features computed from cameras prior to feeding
them to downstream detection and BEV segmentation tasks.
To our best knowledge, this is the first map-aware method
proposed for camera-based 3D object detection and BEV
segmentation. Our method addresses the challenges aris-
ing from inaccurate depth estimation and feature smearing
in prior methods. We demonstrate its effectiveness through
experiments on the nuScenes dataset [3].

2. Related Work

2.1. Multiview Camera-Only 3D Object Detection.

Recent advances in object detection [6, 20, 26, 30] have
led to the development of CNN-based 3D object detection
models [2, 32, 33, 36] that can generate 3D bounding boxes
from monocular images. These models have shown promis-
ing results in the field of autonomous driving and robotics.
One such approach is the use of the DETR [4] architec-
ture as a base for 3D detection models using surround-view
images, which has led to the development of several cam-
era 3D detection models utilizing Transformers, namely
DETR3D [34], ORA3D [28]. These models initialize 3D
object queries and refine queries by extracting related cam-
era features from multiple views by utilizing spatial cross-
attention. BEVFormer [18] further improves detection per-
formance by adopting BEV spatial queries and temporal at-
tention with previous frames.

Another branch of multiview camera detection predicts
depth and context in perspective views followed by view-
transform operation to BEV features. OFT [27] was the first

to adopt a transformation from 2D image features to BEV
features. In OFT, image-based features are projected onto
the voxel grid and orthographic ground plane to create BEV
features. LSS [24] builds upon OFT, utilizing six surround
images to extract depth distribution and context features
from the image features. These frustum-shaped features
are then pooled into BEV features using a splat module.
More recent methods like BEVDet [11], BEVDepth [16],
BEVStereo [15], and BEVDet4D [10] follow network de-
sign of OFT [27], LSS [24] and conduct multiview 3D de-
tection tasks. These methods fuse features from surround-
view cameras into the BEV view and improve detection
performance by utilizing both spatial and temporal infor-
mation. Overall, the field of camera 3D object detection is
rapidly evolving, and new approaches are being developed
to overcome the limitations of existing methods. Along this
line of work, we improve depth distribution using map in-
formation, which further improves the accuracy and robust-
ness of 3D object detection models.

2.2. Multimodal Fusion.

Recently, many works in 3D object detection have fo-
cused on multimodal fusion techniques that combine data
from different sensors to improve perception accuracy. (i)
Camera-LiDAR: MV3D [5] uses multiple cameras and
LiDAR sensors to incorporate 2D and 3D information.
AVOD [13] first generates a set of frustums from the Li-
DAR point cloud, and then extracts features from the RGB
image within each frustum. The features are aggregated
across all frustums to obtain 3D object detections. TransFu-
sion [1] presents a robust LiDAR-camera fusion approach
using transformer-based [31] networks to extract features
from both modalities and fuse them for improved object
detection. DeepFusion [17] introduces two techniques for
effectively aligning the transformed features from the two
modalities using the attention-based method. (ii) Camera-
Radar: RadarDepth [19] investigates combining monocular
images and sparse radar data for depth estimation in 3D ob-
ject detection.

There also exist approaches to leverage High-Definition
(HD) maps with LiDAR sensors. HDNet [35] is a single-
stage detector for 3D object detection that operates in BEV
and fuses LiDAR information with rasterized maps. The
goal of HDNet is to exploit HD maps, which provide strong
priors, to boost the performance and robustness of mod-
ern object detectors. MapFusion [7] is a framework pro-
posed to integrate HD maps with point cloud data into 3D
object detection pipelines to improve performance. Unlike
these, we want to explore a fusion between multiview cam-
eras and HD maps. To our best knowledge, ours is the first
attempt to use a map to compensate for depth ambiguities
from monocular cameras, further improving perception ac-
curacy.
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Figure 2. Overview of our BEVMap framework. The BEV map is projected onto multi-view camera images and separately encoded.
These encodings are then merged with RGB features obtained from multi-view images and used to predict perspective depth for each view.
The predicted depth is used to place perspective features inside a BEV feature map. Separately, BEV map mask is utilized to spatially
modulate scale and bias of BEV features obtained from multi-view cameras to generate BEV map-aware features. (Orange arrow denotes
task performed without BEV Map mask input and black denotes tasks with BEV Map mask input.)

3. Method

Following existing approaches [11, 16], we start from
LSS [24], which introduces the camera-to-BEV transforma-
tion approach. In the first two steps of LSS, they encode
multi-view features into 3D frustums with estimated depth
(i.e. “lift”) and then transform them onto a unified plane in
BEV (i.e. “splat”). This BEV representation enables encod-
ing multiple camera inputs into a unified space, which can
eventually be used for various downstream tasks, such as
3D perception, motion planning/prediction, and BEV seg-
mentation.

Building upon LSS [24], we leverage road information
as additional depth cues to improve the quality of estimated
depth from multi-view cameras. Similar to existing ap-
proaches, our model takes as an input a set of K images
Ic of different views from arbitrary cameras, and produces
a BEV representation of the scene around the ego vehicle.
We assume that camera intrinsics Ic ∈ R3×3 and extrinsics
Ec ∈ R3×4 are known for each camera c. Furthermore, we
assume availability of a map M in the top-down coordinate
system, but not any other depth sensor, such as LiDAR.

3.1. Map Features in Perspective View

As shown in Fig. 2 (bottom left), we first generate an
ego-centered BEV map in the top-down coordinate system.

This map contains various map elements (e.g. traffic lights,
car parking areas, stop lines, walkways, etc.) represented
as polygons. A top-down coordinate system is built such
that the pose of ego vehicle at any time t is always at a
fixed location in the image. The polygons for the map ele-
ments are then rasterized into this coordinate system. Each
map element is mapped to a specific RGB color according
to its label, yielding a 3-channel image of size H×W con-
taining rasterized polygons corresponding to different map
elements.

In addition to rendering the map elements, we also gen-
erate a grayscale image with the same size H×W rendering
the distance from the ego vehicle to each point on the BEV
map. This distance map is then concatenated with the ren-
dered map elements and projected into the perspective view
for each camera and shown in Fig. 2 (middle left) and in
more detail in Fig. 3. More specifically, a grid of equally-
spaced points (xi,yi) are sampled from the rendered BEV
map and transformed to each camera c using the camera
extrinsic and intrinsic matrices Ec,Ic to obtain image coor-
dinates (ui,vi) for that camera:

(ui,vi) = Ic(Ec(xi,yi,zi))

where zi =−1
(1)

We set all zi to −1 to compensate for the height of the cam-
era sensors. This process yields a 4-channel per-camera
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Figure 3. Given an ego-centered BEV map, we use map-to-camera
projections based on each views’ camera parameters to assign map
features to corresponding pixels in the perspective view.

map Mc ∈RH×W×4 for each camera c. We dub this RGB+D
map as Map PointClouds.

3.2. Perspective Encoding and Fusion

Multi-view camera images Ic and corresponding pro-
jected map images Mc are then fed into image encoders fI
and map encoder fM , respectively. We use the same back-
bone from LSS [24], which consists of four 3×3 convolu-
tion layers with BatchNorm, ReLU activation, and MaxPool
layers. Both encoders produce 512-dimensional features of
size 22×8, where the decoder will consume these features
for downstream tasks such as BEV segmentation and 3D
perception tasks.

We then concatenate the features from encoders fI and
fM to produce the encoding fI(Ic)⊕ fM(Mc) joining seman-
tic information from the camera image and and geometric
information from the scene map.

3.3. Map-Aware Perspective Depth Prediction

This concatenated feature is then fed into the depth en-
coder fd to produce two intermediate features: depth distri-
bution and context features.

[Fdepth;Fcontext] = fD( fI(Ic)⊕ fM(Mc)) (2)

More specifically, the depth encoder maps each pixel
(u,v) of an image Ic ∈ RH×W×3 to a set of D discrete depth
values Fdepth ∈ R|D| = {d1,d2, ...,dD}. In addition, the net-
work produces a feature vector capturing the semantic con-
text Fcontext ∈ RC for each pixel.

3.4. Perspective to BEV Projection

For mapping the perspective feature maps to BEV, we
follow the lift-splat process in LSS [24], which transforms

Figure 4. BEV Map-based spatial adaptive normalization. We use
spade module [23] to allow network to adaptively modulate BEV
feature maps obtained from perspective view to learn statistics of
BEV map’s road elements.

all pixels in the 2D image plane of all cameras to a unified
3D BEV coordinate system. More specifically, we use the
predicted depth distribution Fdepth for each pixel to create a
point cloud by scattering points across all possible depths
for that pixel. Each point in this point cloud carries the fea-
ture vector Fcontext for that pixel.

Using a voxelization and pooling process, the model
projects the point cloud features Fcontext into BEV as

BEVcam = Voxel-Pool(Fcontext). (3)

We filter out points which do not fall within map poly-
gons, or within the model’s BEV field of view.

3.5. BEV Map Spatial Normalization

As shown in Fig. 2 (bottom), we also employ a BEV
map-based spatially adaptive normalization, named as
BEV-SPADE. By using BEV binary map mask transformed
from BEV RGB map as an indicator, we aim to manipulate
the statistics of objects on roads and objects off roads within
the bird’s-eye view (BEV) representation for reducing false
positive predictions. Following the works of SPADE [23],
we adopt a spatially adaptive normalization layer on view-
transformed BEV features from camera and perspective
view maps as illustrated in Fig. 4. Our BEV-SPADE module
is formulated as:

BEVfused = αc,y,x(BEVm)
BEVcam −µ

σ
+βc,y,x(BEVm), (4)

where BEVm, BEVcam denote corresponding input BEV seg-
mentation mask of 3D scene and BEV features from per-
spective view. µ and σ are mini-batch mean and vari-
ance. α and β are the channel-wise modulation parame-
ters for BEVcam features. As shown in Fig. 4, BEV fea-
tures from perspective view go through BatchNorm layer
and output normalized activations. We extract features from
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given BEV segmap with Chidden channels. Depending on the
input position (y, x) of the road segmap and order of chan-
nel c, MLPs αc,y,x and βc,y,x will transform BEVm features
to modulated scale and bias for each pixel of BEV feature
maps from perspective view.

4. Experiments
4.1. Implementation and Evaluation Details

Implementation Details. BEVMap framework is evalu-
ated in both BEV segmentation and 3D object detection
tasks and baseline methods are LSS [24], BEVDet [11],
BEVDepth [16]. To demonstrate our framework’s effective-
ness, the same experiment settings are used in both baseline
and our BEVMap methods. For BEV segmentation task,
both [24] and BEVMap are trained for 300k steps, around
43 epochs with batch size of 4. The input resolution of both
camera images and projected map is 128×352, which is
same as camera resolution of LSS network. Adam [12] op-
timizer with learning rate 1e-3, weight decay 1e-7 is used to
optimize binary cross entropy. Generated BEV grid resolu-
tion is set as 200×200, and we sample 100×100 map point
clouds on BEV. For 3D detection task, the input resolution
of models is set as 256×704, and BEV grid resolution is
128×128. We sample 128×128 map point clouds on BEV
grid, which are projected to each perspective view as model
inputs with projected maps. We train all detection models
with 24 epochs, with learning rate of 2e-4 and a total batch
size of 56 on 7 NVIDIA GeForce 3090 GPUs. To fully uti-
lize depth featured from map, we exclude lidar-supervised
depth loss for BEVDepth baseline and ours while training.

Evaluation Metrics. To evaluate the effectiveness of our
proposed model, we perform object and map segmen-
tation tasks in terms of a widely-used Intersection-over-
Union (IoU) score, which measures Binary Cross Entropy
between segmentation prediction and ground-truth binary
mask. Note that a range of 100m × 100m is set for this
segmentation task where ego-vehicle is centered (effective
forward sensing range of ego-vehicle is 50m).

Further, we also follow the evaluation protocol of
nuScenes [3] for the 3D object detection task. We use
the following 5 TP metrics: Average Translation Er-
ror(ATE), Average Scale Error(ASE), Average Orientation
Error(AOE), Average Velocity Error(AVE), and Average
Attribute Error(AAE). Note that all TP metrics are also cal-
culated using a 2m center distance threshold during match-
ing. We also measure mean average precision (mAP) by
taking the mean value of AP (average precision) of differ-
ent object classes based on 2D center distance on ground
plane. Lastly, we use the nuScenes Detection Score (NDS)
to measure a consolidated scalar metric defined as follows:
NDS= 1

10 [5 mAP+∑mTP∈TP (1−min(1,mTP))] where TP
is five TP metrics.

Dataset. We use the nuScenes [3] dataset for our eval-
uation. nuScenes is a large-scale autonomous driving
benchmark dataset that provides a full 360-degree field of
view captured by six different cameras on a fixed camera
rig. This comprises 20-second-long 1,000 video sequences,
which are fully annotated with 3D bounding boxes for ten
object classes. The dataset covers 28k annotated samples
for training, and validation and testing contain 6k scenes
each. Also, nuScenes provides the BEV map, annotating
commonly-observed map features such as road segments,
lanes, crosswalks, walkways, stop lines, and parking lots.
For all scenes, we generate an ego-vehicle-centered map in
a top-down coordinate system, and over 34k maps are gen-
erated. We will make our generated map publicly available.

Data Augmentation. We also use standard data augmen-
tation techniques over perspective-view map inputs consist-
ing of a set of polygons and bird-eye-view map. Following
widely-used data augmentation techniques, we apply ran-
dom scaling, rotation and flipping of input camera image
augmentation to PV maps. We apply the same camera aug-
mentation schemes to projected map depth values on the
image plane. Plus, we apply random flipping and rotation
to BEV map input along with 3D gt augmentation in BEV
space. We observe that applying these augmentation tech-
niques generally improves the representation power of BEV
features.

4.2. 3D Object Detection Performance

Quantitative Analysis. To evaluate the effectiveness of our
proposed method, we add our map-based approach to ex-
isting state-of-the-art methods, including BEVDet [11] and
BEVDepth [16], which are multi-view 3D object detection
models based on view transformation into BEV represen-
tations. As shown in Table 1, models with our map-based
approach generally outperform baselines (compare with and
without our proposed BEVMap) in terms of a consolidated
metric NDS and other error metrics on nuScenes validation
data, respectively. Notably, BEVMap model implemented
on BEVDepth, which is trained without lidar supervision
(depth loss), generally outperforms BEVDepth without li-
dar supervision and achieves comparable performance with
BEVDepth baseline model with lidar supervison. This con-
firms that using a map modality helps improve overall 3D
perception performance. In our analysis, this gain is ob-
tained mainly by improvement in depth estimation and uti-
lization of more road contexts in generating bev features,
which we will explain later.

Qualitative Analysis. We observe in Fig. 5 that leverag-
ing a map as an input improves the overall 3D perception
performance. Fig. 5 shows the visualized results of 3D
bounding boxes predicted by BEVDet [11] (bottom) and
BEVDet [11] with our proposed method (top). The pre-
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Table 1. 3D object detection performance comparison with the state-of-the-art approaches BEVDet [11] and BEVDepth [16]. nuScenes [3]
validation set is used. All models trained with CBGS † : without lidar supervision [39], ‡ : with lidar supervision.

Methods Modality Resolution NDS ↑ mATE↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓

BEVDet [11] Camera 256x704 0.377 0.734 0.274 0.573 0.907 0.239
BEVDet [11] + BEVMap (Ours) Map-Fused Camera 256x704 0.395 0.700 0.275 0.559 0.788 0.227

BEVDepth† [16] Camera 256x704 0.396 0.666 0.277 0.577 0.909 0.250
BEVDepth† [16] + BEVMap (Ours) Map-Fused Camera 256x704 0.408 0.667 0.271 0.559 0.817 0.212

BEVDepth‡ [16] Camera, LiDAR 256x704 0.406 0.663 0.271 0.558 0.876 0.237

Figure 5. Examples of 3D object bounding box prediction results from ours (top) and our baseline (BEVDet [11]).

dicted bounding boxes are colored yellow with the ground-
truth bounding boxes (see cyan boxes) overlaid. We also vi-
sualize the predicted and the ground-truth bounding boxes
with LiDAR point clouds (see rightmost column). In gen-
eral, using our model generally improves the overall detec-
tion performance by significantly reducing the number of
false positives. Our baseline exhibits a relatively large num-
ber of false positive detections (see the front left and front
view images), while our baseline model with BEVMap is
more robust across the entire region. Overall, we observe
that our method qualitatively and quantitatively improves
detection accuracy.

Further, in Fig. 6, we provide more diverse qualitative
examples. For two driving scenarios, we provide (i) the
visualized 3D bounding box predictions (yellow) as well
as ground-truth (cyan), (ii) visualizations on top of LiDAR
point clouds, (iii) BEV object (or vehicle) segmentation re-
sults, and (iv) BEV map segmentation results. In (iii), a map
is overlaid for better visualization. In (iv), we color-coded
differently for each map feature (drivable area with cyan,
stop lines with orange, walkways with red, and crosswalks

Table 2. Performance comparison for (i) object and (ii) drivable
area segmentation tasks over the bird’s-eye-view grid. IoU scores
are compared with existing approaches, including FISHING [8],
OFT [27], and LSS [24].

Model Modality
IoU scores (%)↑

Vehicle Drivable Area

FISHING [8] Camera 30.0 -

OFT [27] Camera 30.1 74.0

LSS [24] Camera 32.1 75.4

LSS + BEVMap (Ours) Map-Fused Camera 33.6 (+1.5) 88.8 (+13.4)

with pink). As we observe in that figure, our model rea-
sonably well predicts 3D object bounding boxes as well as
vehicle and map segmentations.

Also, as shown in Fig. 7, we observe that a correlation
between predicted depth and ground truth depth becomes
more improved with our proposed method than that of LSS,
i.e. more samples are aligned well with the depth of ground
truth.
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Figure 6. Examples of detected 3D objects visualized on (a) 2D camera images and (b) on LiDAR point clouds. We also provide results of
(c) BEV vehicle and (d) map segmentation.
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Figure 7. Correlation between LiDAR-based ground truth depth
and predicted depth. We compare ours (right) with LSS [24] (left).

4.3. BEV Segmentation Performance

Vehicle and Drivable Area Segmentations. In Table 2,
we further demonstrate the ability to learn semantic and ge-
ometric BEV representations by evaluating models in the
following BEV segmentation tasks: objects and drivable
area. We measure IoU scores and compare them with other
state-of-the-art approaches: Fishing, OFT, and LSS. Results
show that leveraging map-fused camera features largely im-
proves the BEV segmentation tasks, which confirms that
map-fused camera features help project pixels in the im-
age plane into the BEV plane, especially for vehicles and
drivable areas. BEV Map input is not used for evaluating
drivable area segmentation.

Map Segmentation. We further evaluate the model’s abil-
ity to learn semantic and geometric information for the BEV
map segmentation. In Table 3, we report IoU scores for

Table 3. BEV map segmentation performance comparison.
(PVMap Only) IoU scores are reported with existing approaches,
including OFT [27], LSS [24], CVT [38], BEVFusion [21], Point-
Pillars [14], CenterPoint [37], and BEVFusion [21]. Note that
larger is better. †: Map-fused

Modality Drivable Ped. Cross. Walkway Stop Line Carpark Mean

PointPillars [14] L 72.0 43.1 53.1 29.7 27.7 45.1

CenterPoint [37] L 75.6 48.4 57.5 36.5 31.7 50.0

BEVFusion [21] C+L 85.5 60.5 67.6 52.0 57.0 64.5

OFT [27] C 74.0 35.3 45.9 27.5 35.9 43.7

LSS [24] C 75.4 38.8 46.3 30.3 39.1 46.0

CVT [38] C 74.3 36.8 39.9 25.8 35.0 42.4

BEVFusion [21] C 81.7 54.8 58.4 47.4 50.7 58.6

LSS + BEVMap (Ours) C† 88.8 64.2 74.0 55.9 72.4 71.1

five map components (i.e. drivable area, pedestrian cross-
walk, walkway, stop lines, and car parking area) in the BEV
segmentation task. Note that we remove BEV Map input
from model design specifically for map segmentation task.
We compare ours with other existing approaches, includ-
ing OFT, LSS, CVT, BEVFusion, PointPillars, CenterPoint,
and BEVFusion. The first four methods depend only on
camera sensors, while PointPillars and CenterPoint rely on
LiDAR sensors. BEVFusion uses a camera and LiDAR sen-
sors together, while ours uses perspective map-fused cam-
era sensors. By incorporating perspective view map encod-
ing with camera features, our approach generally outper-
forms the other approaches in all categories, confirming that
our model learns semantic and geometric information from
map inputs. Thus, we believe it can substantially benefit
downstream tasks such as 3D perception.
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Table 4. Categorical comparison of Object Heading/Velocity Estimation Error on nuScenes val set.

Models Metric ↓ Car Truck Bus Trailer C.V Ped. Mot. Byc.

BEVDepth mAOE/mAVE 0.131/0.960 0.140/0.862 0.078/1.726 0.397/0.820 1.030/0.124 1.394/0.887 0.924/1.521 0.985/0.375

BEVDepth + BEVMap mAOE/mAVE 0.115/0.851 0.122/0.733 0.109/1.818 0.412/0.409 1.026/0.121 1.347/0.882 0.801/1.422 0.987/0.303

Table 5. Ablation Study on 3D Detection Task. We show NDS,
mATE, mAOE, mASE metrics, which are related to depth estima-
tion. Lidar supervision option is removed for BEVDepth based
models.

Model NDS ↑ mATE ↓ mAOE ↓ mAVE ↓

BEVDet [11] 0.377 0.734 0.573 0.907

+ Map PointCloud 0.390 0.719 0.575 0.807

+ BEV SPADE 0.395 0.700 0.550 0.788

BEVDepth [16] 0.396 0.666 0.577 0.909

+ Map PointCloud 0.407 0.683 0.551 0.834

+ BEV SPADE 0.408 0.667 0.559 0.817

4.4. Ablation Studies

Extensive ablation study of BEVMap framework is con-
ducted on nuScenes val set to demonstrate BEVMap’s ef-
fectiveness and robustness. We explore two main contribu-
tions of BEVMap including perspective view encoding and
BEV map spatial normalization in 3D detection and BEV
segmentation tasks.

Robust to Different Detectors. We evaluate effectiveness
of fusing BEVMap framework on two detectors BEVDet
and BEVDepth. Since we attempt to leverage map features
on extracting better depth and context features, we choose
LSS-based 3D detectors to evaluate BEVMap’s effective-
ness. Evaluation results on nuScenes val set is illustrated
in Table 5. BEVMap achieves significant improvement on
BEVDet with use of perspective view Map Pointcloud and
use of BEV SPADE (approximately 4.77% NDS, 4.63%
mATE, 4.01% mAOE and 13.1% mAVE). Huge reduction
in error metrics related to distance and direction implies
that utilizing map aids in estimating better object depth and
heading direction.

In addition, BEVMap brings similar improvements in
detection performance in BEVDepth (3.03% NDS). Specif-
ically, both Map PointCloud and BEV SPADE improve
mAOE, mAVE, which are related to prediction of correct
object heading, by 3.22% mAOE, 11.2% mAVE amount of
error reduction. The consistent drop in orientation and ve-
locity error is also illustrated in Table 4, where BEVMap
shows better heading/velocity estimation on most of de-
tection categories of nuScenes dataset. Performance gain
in mAVE/mAOE demonstrates that BEVMap is capable of
leveraging more road contexts in generating BEV features

Table 6. Ablation Study on Vehicle Segmentation Task. Near IoU
and Far IoU are measured separately in BEV coordinates.

Model IoU scores ↑ Near IoU ↑ Far IoU ↑

LSS [24] 32.8 21.1 11.7

+ Perspective-View Map 32.7 21.2 11.5

+ Projected Map Depth 33.1 20.8 12.3

+ BEV SPADE 33.6 21.1 12.5

and can predict object orientation based on road features.

Effectiveness of BEVMap in Vehicle Segmentation.
We also conduct ablation studies on each component of
BEVMap on vehicle segmentation. In Table 6, we separate
IoU metric into far and near regions. Near IoU is measured
within a 25-meter radius region around the ego vehicle in
BEV space, while Far IoU is measured in the rest of region
in -51.2m to 51.2m local BEV grid. By using perspective
view map and projected distances from ego vehicle (Map
Depth) in image plane, IoU in far region improve from 11.5
to 12.3. BEV-SPADE module further boosts IoU in far re-
gion. The result implies that fusing map features with cam-
era features provide more accurate depth cues and context
in far regions.

5. Conclusion

We propose a novel approach called BEVMap, which
augments the camera images with the BEV map to improve
perspective depth estimation from 2D multiview camera im-
ages. To our best knowledge, this is the first map-aware
method proposed for camera-based 3D object detection and
BEV segmentation. Our experiments on the large-scale
nuScenes dataset demonstrate that our method can produce
geometrically- and semantically-robust BEV features and
outperforms existing camera-based approaches in the BEV
segmentation and detection tasks.
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