
FLORA: Fine-grained Low-Rank Architecture Search for Vision Transformer

Chi-Chih Chang1,∗, Yuan-Yao Sung1,∗, Shixing Yu2,3,∗, Ning-Chi Huang1, Diana Marculescu2, Kai-Chiang Wu1

National Yang Ming Chiao Tung University1, University of Texas at Austin2, Cornell University3

brian1009.en08@nycu.edu.tw, sungyuanyao@gmail.com,

sy774@cornell.edu, dianam@utexas.edu, {nchuang, kcw}@cs.nctu.edu.tw

Abstract

Vision Transformers (ViT) have recently demonstrated
success across a myriad of computer vision tasks. How-
ever, their elevated computational demands pose signifi-
cant challenges for real-world deployment. While low-
rank approximation stands out as a renowned method to
reduce computational loads, efficiently automating the tar-
get rank selection in ViT remains a challenge. Drawing
from the notable similarity and alignment between the pro-
cesses of rank selection and One-Shot NAS, we introduce
FLORA, an end-to-end automatic framework based on NAS.
To overcome the design challenge of supernet posed by vast
search space, FLORA employs a low-rank aware candi-
date filtering strategy. This method adeptly identifies and
eliminates underperforming candidates, effectively allevi-
ating potential undertraining and interference among sub-
networks. To further enhance the quality of low-rank su-
pernets, we design a low-rank specific training paradigm.
First, we propose weight inheritance to construct super-
net and enable gradient sharing among low-rank modules.
Secondly, we adopt low-rank aware sampling to strategi-
cally allocate training resources, taking into account in-
herited information from pre-trained models. Empirical
results underscore FLORA’s efficacy. With our method,
a more fine-grained rank configuration can be generated
automatically and yield up to 33% extra FLOPs reduc-
tion compared to a simple uniform configuration. More
specific, FLORA-DeiT-B/FLORA-Swin-B can save up to
55%/42% FLOPs almost without performance degradtion.
Importantly, FLORA boasts both versatility and orthogo-
nality, offering an extra 21%-26% FLOPs reduction when
integrated with leading compression techniques or com-
pact hybrid structures. Our code is publicly available at
https://github.com/shadowpa0327/FLORA.

1. Introduction
The transformer architecture [35] has dominated natu-

ral language processing (NLP) tasks with impressive re-
sults. Though intuitively, the transformer model seems in-

ept to the special inductive bias of space correlation for
image-oriented tasks, it has proved its capability on vision
tasks with comparable results to convolutional neural net-
work (CNN) [11]. Since their inception, vision transform-
ers (ViT) and their variants have shown great potential for
image classification [49], object detection [36], and seman-
tic segmentation [25]. However, the ViT requires a large
number of parameters and high computational cost to obtain
higher accuracy, making it unsuitable for edge computing.
That is mainly due to the stack of self-attention modules
that suffer from quadratic complexity with regard to the in-
put size, among other factors. Hence, research on efficient
transformer models has become more important recently.

Earlier works on compressing ViTs mainly follow the
techniques for compressing NLP models, ranging from
unstructured pruning [50], attention head/structured prun-
ing [8, 46], token pruning [20, 29, 41]; to knowledge distil-
lation [18, 34] and quantization [26, 48].

Aside from the above-mentioned directions, another im-
portant category of method that employ efficiency in neural
network (NN) structure is low-rank approximation. In the
case of 2D low-rank approximation, singular-value decom-
position (SVD) minimizes the Frobenius norm of the differ-
ence between the original matrix and the approximated ma-
trix. Yet, SVD cannot be directly utilized for convolutions
in CNNs because weights need to be represented by higher-
dimensional (e.g., 4D) tensors [22]. Special design [19, 21]
is developed for CNNs by decomposing them into multiple
consecutive tensors. However, there is still significant ac-
curacy drop even after fine-tuning as training is performed
on the transformed network structure with consecutive ten-
sors without activation functions in-between. As a result,
convergence can be degraded due to vanishing or exploding
gradients [22]. This obstacle is largely alleviated in ViTs
since 90% of total parameters and operations (see the sup-
plemental materials for detailed analysis) are linear mod-
ules and conduct matrix multiplication. Linear modules
can be decomposed into just two consecutive matrices. To
put it in another way, ViTs are much more friendly than
CNNs when incorporating low-rank decomposition in their

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2482

https://github.com/shadowpa0327/FLORA


structure. Meanwhile, low-rank decomposition considers
redundancy in deep neural networks as noise that contains
a very small percentage of variance. Hence, it’s different
from general pruning methodologies for NN compression,
in the way that the overall structural dimension and infor-
mation flow will not be affected or truncated through low-
rank guided compression techniques.

To effectively integrate low-rank approximations with-
out compromising network performance, the central chal-
lenge lies in identifying a suitable set of rank settings. In the
context of a Vision Transformer (ViT) with N linear mod-
ules and a maximum rank value of M , the potential rank
settings explode to an immense number of MN . Typically,
M takes values in the order of a few hundred, leading to an
exceedingly vast array of choices. However, existing meth-
ods that deal with low-rank approximation for transformers
often resort to heuristic rank choices [27] or enforce uni-
form ranks across all compression targets [37], due to the
absence of an automated rank selection strategy. Clearly,
there is a strong need for an automatic rank selection ap-
proach to reduce the resource-intensive search process and
mitigate the potential for suboptimal outcomes.

To surmount this challenge we present an innovative ap-
proach: reimagining the rank selection process as a Neural
Architecture Search (NAS) problem. This new viewpoint is
based on two main insights.

First, finding the best rank is a lot like choosing the right
architecture for low-rank models. This similarity arises be-
cause picking the rank essentially how the corresponding
low-rank architecture is built underneath.

Second, a property of SVD-based low-rank architec-
tures, specifically the inheritance of top-r eigenvectors from
pretrained. For different rank settings ri and rj , where
ri < rj the corresponding low-rank architecture share a sig-
nificant portion of information from pretrained weights at
the initial state. Such intrinsic property offers a great oppor-
tunity for us to train these candidates jointly like the way the
supernet is optimized via weight sharing strategy in One-
Shot NAS [14,30]. Building upon the well-recognized prin-
ciples of One-Shot NAS, we introduce Fine-grained Low-
Rank Architecture Search, dubbed as FLORA, to search for
optimal low-rank architecture for ViT. Our main contribu-
tions are outlined as follows:

• We have discovered a captivating correlation between
rank selection and One-Shot NAS and propose a first-
of-its-kind low-rank architecture search regime for vi-
sion transformer.

• To realize our vision, we propose a low-rank aware
filtering policy specifically crafted to eliminate can-
didates exhibiting subpar performance. By mitigat-
ing interference from less promising alternatives, this
approach directly addresses the training challenges a

supernet encounters due to the vast low-rank search
space, thereby enhancing the efficiency and effective-
ness of the overall NAS process.

• Building on this, we architect a unique supernet train-
ing paradigm tailored for low-rank structures, leverag-
ing the inherent properties of SVD. This promotes both
parameter and gradient sharing, significantly acceler-
ating supernet convergence. As a result, subnetworks
emerge with competitive performance, primed for di-
rect deployment without exhaustive retraining.

• We conduct a series of experiments to demonstrate
FLORA’s orthogonality to other compression tech-
niques and its generalization capability on ViT vari-
ants, which provides a new perspective on high ra-
tio compression for ViT. Extensive experiments further
demonstrate competitive results on ImageNet-1k when
compressing DeiT and Swin-Transformer. For in-
stance, FLORA-DeiT-B and FLORA-Swin-B achieve
FLOPs reductions of 55% and 46%, respectively, on
their corresponding backbones with negligible accu-
racy degradation.

2. Related Work
2.1. Transformer Compression

Compression methods for transformers can be broadly
categorized into: pruning, token reduction and efficient ar-
chitecture design. Pruning techniques are proposed to al-
leviate the high computational cost and memory usage by
removing the redundant weights in the transformer-based
models. VTP [50] reduced the number of embedding di-
mensions by extending the network slimming approach [24]
to ViTs. [13, 15] proposed to skip the inessential layers to
obtain a shallow model. Similarly, WDPruning [42] re-
moved the less significant channels of the linear projec-
tion by using a neural-network-based saliency predictor.
For the token-reduction-based techniques, [29, 32] hierar-
chically remove the redundant patches, thus reducing the
computational overhead by slimming the input features.

Aside from above, some other works dedicated on de-
sign a efficient architecture directly by introducing CNNs to
form a hybrid structure. MobileViT [28] mixed global pro-
cessing in transformers with convolution, which learns bet-
ter representations with fewer parameters and simple train-
ing recipes.

Recent work endeavored to combine multiple pruning
strategies into a unified framework, i.e., considering mul-
tiple dimensions simultaneously. For instance, UVC [46]
pruned the heads in MHSA, channels in linear projec-
tion, and considered layer skipping. Meanwhile, MDC
[16] jointly optimized an extra dimension, the number of
patches.

2483



2.2. Low-Rank Approximation

Aside from the model compression technique mentioned
in the previous section, the low-rank matrix factorization
on weights is also an effective methodology to reduce com-
putational burden. In CNN-based models, [31] split the
convolution kernel into two small ones with fixed rank.
Some other works studied rank selection to generate finer-
grained low-rank approximation. [40] selected the rank base
on thresholding. [17] introduced rank-based cost function
and formulated a constraint optimization problem to decide
the rank selection during training.

Low-rank approximation (LRA) for transformer-based
models can mainly be divided into two categories: (1)
LRA for attention matrix (ScatterBrain [5], OmniNet [33])
and (2) LRA for linear embedding (LRT [37]). The for-
mer is mainly designed for transformers in NLP whose
input sequences are relatively long. When the sequence
length (patch number) is small (e.g., ViT), the performance
gain is relatively minor, as shown in the original paper
of ScatterBrain. As for the latter one, LRT applies LRA
with uniform-rank config and demonstrates its potential on
Transformer for speech recognition tasks. Besides, we em-
pirically found that the sensitivity to the performance loss
concerning rank level is different among each linear em-
bedding layer. Therefore, in this work, we set up a novel
paradigm based on One-Shot NAS to explore the immense
rank selection space of ViT more thoroughly and reduce the
potential sub-optimality incurred by the simple manual set-
ting.

2.3. Neural Architecture Search

One-Shot NAS [2, 4, 12, 14, 23, 30] has been proposed
to efficiently discover architectures using weight-sharing
strategies for CNN. DARTS [23] frames NAS as a con-
strained optimization problem and employs differentiable
methods to optimize both network parameters and archi-
tecture parameters jointly. Interestingly, some prior ef-
forts have adapted DARTS [39, 47] for low-rank architec-
ture search within CNNs. However, such DARTS-based
methods often requiring retraining for robust performance,
which might be expensive as the number of deployment
considerations increase [3].

To surmount the challenge, two-staged based NAS [3,
3, 14] decouple the training and searching. A supernet is
first trained, followed by the application of an evolutionary
algorithm to identify the optimal architecture.

Focusing on the vision transformer, AutoFormer [7] ex-
tends the two-staged based NAS paradigm [45], integrat-
ing a weight entanglement strategy to seek the optimal
ViT architecture. GLiT [6] further introduces the local-
ity module, incorporating CNN-correlated features into the
search space, thus reducing computational costs and explic-
itly modeling local correlations between patches.

Unlike traditional NAS methods that primarily focus on
parameters like kernel size, embedding dimensions, and
head numbers in transformers and CNNs, our work cen-
ters on the unique low-rank architecture search space. This
search space is vast, with each module potentially present-
ing hundreds of candidate rank settings. Due to the lack of
a specifically designed solution for supernet construction,
the search process can be burdened by computational over-
heads and undertraining issues. In this work, we aim to
address these challenges. We introduce an optimized One-
Shot NAS approach, specially crafted for low-rank archi-
tecture selection, to fully harness the potential of low-rank
approximation in optimizing ViT.

3. Preliminary
One-Shot NAS In this work, we focus on the two-staged
based One-Shot NAS paradigm. First, the architecture
search space A is encoded into an over-parameterized su-
pernet N (A,W ), where W stands for the weight of su-
pernet and W is shared among candidate architectures (i.e.,
low-rank architectures a ∈ A ). Then, we train the supernet
by maximizing the objective function:

WA = argmin
W

Ea∼Γ(A)[L(N (a,W (a))], (1)

where WA is the weights of the supernet, a ∈ A is a rank
configuration, W (a) is weights of a, N (a,W (a)) denotes
the corresponding subnetwork, and L stands for the training
loss.

Second, with the well-trained supernet, we can leverage
it as a confident proxy to guide the searching algorithm such
as evolutionary algorithm (EA) to search for optimal archi-
tecture that maximize the objective function (e.g., accuracy)
while statisfying the target constraint (e.g., FLOPs). The
objective function can be formulated as:

a∗ = argmax
a∈A

ACCval(N (a,WA(a)))

s.t. Flower ≤ F(a) ≤ Fupper,
(2)

where ACCval is the accuracy on validation set, F(a) de-
notes the FLOPs of the subnetwork with the configuration
a, Flower and Fupper are the lower bound and upper bound
of FLOPs constraints, respectively.

4. Methodology
4.1. Mappging Rank Selection into NAS

Our primary goal is to maximize the benefits of low-rank
approximation within transformers. This entails identifying
the optimal rank setting r and then generating the associated
low-rank modules for each linear component. In pursuing
this, we observed a clear correlation between rank selection
and One-Shot NAS, leading to two key insights:

2484



Local Search Space

QKV:

FC1: …

Low-Rank 
Architecture

(i-1)-th
Block

(i+1)-th
Block

⋮
Output

Input

⋮

i-th Block
(Weight Sharing)

(i-1)-th
Block

(i+1)-th
Block

Input

Output

Sample 

Proxy
Dataset

Gradient Gradient
Descent

Candidates Ranking

Evaluation
Sample 

FC2:

Refined Local Search Space

QKV:

FC1: …

FC2:

Local Rank 
Space Filtering

(i-1)-th
Search Space

Global Search Space

…

…

i-th
Search Space

(i+1)-th
Search Space

(i-1)-th
Search Space

Global Search Space

…

…

i-th
Search Space

(i+1)-th
Search Space

(a)

(b)

(c)

⋮

⋮

Trained
Local Supernet

Val
Dataset

Performance

Cost

Figure 1. Illustration of low-rank aware candidate filtering. (a): Filtering is applied sequentially to each block. (b): For the i-th transformer
block, we construct a local supernet by substituting the i-th block with a weight-sharing superblock that encompasses the local low-rank
architecture. (c): Leveraging the trained supernet as a performance estimator, we filter the local rank space, considering the trade-off
between performance benefits and computational costs.

• In low-rank approximation, given a rank setting r, we
decompose the linear modules into two matrices: Ur ∈
Rm×r and Vr ∈ Rn×r. Under this scenario, deciding
on an optimal rank choice is equivalent to choosing
architectural components in network design.

• The rank-r low-rank approximation inherits the top-
most r significant eigenvectors from full-rank pre-
trained weight matrices. When considering two rank
settings ri and rj , where ri < rj , it is evident that the
set of eigenvectors for ri is a proper subset of those of
rj . During finetuning, this subset property suggests
that the low-rank matrices Uri and Vri of rank set-
ting ri can be approximately inherited from Urj and
Vrj , respectively. This is because their initial states are
identical, with the top ri eigenvectors holding a signifi-
cant portion of information from the pretrained weight
matrices. This characteristic provides a perfect link for
these candidates to be trained jointly, which aligns well
with One-Shot NAS and its weight-sharing concept.

Based on these insights, we propose to map the rank se-
lection problem into NAS and introduce the Fine-grained
Low-Rank Architecture Search, abbreviated as FLORA, to
effectively identify fine-grained low-rank architecture.

Challenge While the mapping into One-Shot NAS
presents a promising pathway, there are still challenges we
must overcome to actualize a sound and effective solution

for rank selection. Traditional One-Shot NAS methodolo-
gies often focus on a discrete search space with around 3-5
choices per block, which is deemed manageable in terms
of computational demand. However, when we consider the
realm of rank selection for low-rank approximation, the sce-
nario becomes vastly more intricate, since the candidate
rank choices is usually larger than hundreds.

Earlier studies focused on low-rank approximation for
CNNs suggest a simplification of this astounding search
space. They advocate for ranks adhering strictly to a con-
stant multiple, often 32 or 64, aiming to strike an optimal
balance between search cost and granularity [39]. However,
when these methods are applied to architectures like ViT,
the sheer scale of the search space remains overwhelming.
For instance, the classic DeiT-B, with its embedding dimen-
sion of 768 and a constant multiple of 64, still presents up
to 12 rank choices for each linear module.

This expansive choice set introduces two primary chal-
lenges. Firstly, without a well-designed strategy to con-
struct and train the supernet, subnetworks may risk under-
training or face weight-coupling issues [1, 9]. This can lead
to biased estimations of network performance. Secondly,
once an approximate model has been identified, retraining
is often essential to refine its performance – an additional
computational overhead that is not desirable, especially in
compression scenarios.

To overcome the design challenges mentioned above, we

2485



offer a series of techniques to enhance the performance of
low-rank supernets, including the filtering strategy to iden-
tify weak candidates to prevent from possible interferenc-
ing (Sec. 4.2) and alongside low-rank aware paradigm for
supernet consruction and training crafted for resource effi-
ciency and accelerated convergence based on the observa-
tion of inherent property of low-rank approximation (Sec.
4.3).

4.2. Low-Rank Aware Candidate Filtering

Supernet performance is deeply linked to the quality of
its search space. When employing low-rank approximation,
aggressive rank settings can sometimes lead to irreversible
information loss. Conversely, architectures with conserva-
tive rank settings might not deliver any substantial benefits
in terms of computational efficiency. The weight-sharing
nature of supernets further complicates this, as tightly cou-
pled subnetwork weights can negatively influence promis-
ing architectures, leading to interference and compromised
performance.

A seemingly straightforward solution would be to dis-
card these unsuitable configurations. However, the vastness
of the low-rank search space renders such a direct approach
both cumbersome and computationally taxing. To address
this, we draw on a key observation: architectures that under-
perform at the local level (withing one transformer block)
often falter in a global context (entire low-rank architec-
ture). With this in mind, we introduce a bi-level filtering
mechanism, called low-rank aware candidate filtering, to
identify architectures that strike a balance between accu-
racy and computational demand. The flow of our algorithm
is illustrated in Fig. 1.

Local Level Filtering Our strategy commences at the lo-
cal level, focusing on individual transformer blocks. Tech-
nically, we create a local supernet that encompasses the
low-rank architecture of the current transformer block, leav-
ing other blocks uncompressed. This local supernet is then
trained on a proxy dataset—a subset of the original training
data.

To steer our selection process, we employ the Precision
Cost Ratio, defined as:

M(a) = λ ∗ P(a)−F(a) (3)

Here, P(a) and F(a) respectively denote the classifica-
tion accuracy and computational overhead associated with
a low-rank architecture a. The parameter λ adjusts the bal-
ance between precision and cost. Utilizing this metric, we
rank the low-rank architecture on a block level and retain
only the top-k candidates.

Global Level Integration According to the results of lo-
cal filtering, we then generated the potential global architec-
tures based on the cartesian product. In essence, any global

architecture that houses a locally discarded component is
eliminated. By doing so, we effectively weed out underper-
forming candidates, giving rise to a optimized search space,
which is smaller and more friendly for supernet construc-
tion and training.

Weight 
Inheritance

Output

Input

Low-Rank
choicesU!"#

Output

Input

VriT
V!"#$

Uri

Attention

MLP

FC1

FC2

QKV

…

…

Output

Input

Ur1 Ur2 Ur3

Vr1T

Vr2T

Vr3T

Output

Input

Ur1 Ur2 Ur3

Vr2T Vr3T
Vr1T

Output

Input

Output

Input

Figure 2. Illustration of weight inheritance technique for supernet
construction. All rank architecture of a specific linear modules are
encompassed within a superblock. For a designated rank settings,
the corresponding rank architecture will be generated by inheriting
from superblock

4.3. Boosting Low-Rank Supernet

Achieving a superior supernet performance involves
multiple aspects. While refining the search space is crucial,
the way subnetworks are incorporated and trained within
the supernet is equally important. The successful conver-
gence of the supernet, and its ability to prepare low-rank
subnets for immediate use without additional training, de-
pends on both the integration method and the training strat-
egy. To address these challenges, we introduce the Low-
Rank Aware Training Paradigm (LRAT). Tailored for low-
rank architectures, LRAT combines two main components:
Weight Inheritance, which ensures a suitable integration of
various rank choices, and Low-Rank Aware Sampling, a
training approach that adjusts to the needs of different rank
architectures.

Weight Inheritance For a linear component with N
candidate rank choices C = {r1, r2, ..., rN} and we
can yield corresponding low-rank module set S =
{(Ur1 , Vr1), (Ur2 , Vr2), ..., (UrN , VrN )}. Our goal is to de-
sign a suitable technique to integrate all of these candidates
into a choice block so that our supernet can be constructed.

In our earlier discussion (Sec. 4.1), we explored how
top eigenvectors overlap across different rank choices in
low-rank approximations. Specifically, for a rank ri, the
top eigenvectors, originating from the full-rank pretrained
weight matrices, capture a significant chunk of information
from the initial state. Furthermore, these eigenvectors for
ri act as a subset to the eigenvectors of a higher rank rj
where ri < rj . This suggests that as we navigate through
different rank settings, there is both reusability and overlap

2486



of information from the initial state across different ranks.
Consequently, instead of handling each low-rank module in
isolation, we could co-train the corresponding modules by
jointly sharing their parameters and gradients to boost the
convergence.

Building on these insights and drawing inspiration from
the shared convolutional kernels in CNN NAS practices
[30, 45], we present the weight inheritance method. As il-
lustrated in Fig. 2, every low-rank module is encapsulated
within the largest one, expressed as:

Uri = UrN [:, : ri], Vri = VrN [:, : ri] (4)

For a specific rank ri, the values of Uri and Vri are inher-
ited from the top-ri columns of UrN and VrN respectively.
During the backward pass, the gradients of Uri and Vri

are updated back to the corresponding sub-matrices in UrN

and VrN . Within each choice block, the candidate with the
largest rank is set to the size of the uncompressed model’s
factorized weights and with SVD.

It’s evident that each sub-structure is a subset of the
structures with higher rank levels, culminating in the super-
matrix, as shown below:

Uri ⊆ Urk , Vri ⊆ Vrk

∀k ∈ {i+ 1, i+ 2, ..., N} ∀ri ∈ C
(5)

With shared weights among low-rank modules, gradient in-
formation can be efficiently utilized across groups. This
mutual gradient update strategy ensures that all candidate
low-rank architectures are trained concurrently, bolstering
convergence during the supernet training phase.

Low-Rank Aware Sampling Contrary to prior works
[7, 14] that train the supernet from scratch, our approach
initializes the supernet with weights from a pretrained un-
compressed model. In this context, subnetworks are seen as
low-rank approximated networks for different rank choices.
This introduces a new perspective on sampling during train-
ing: it’s suboptimal to sample subnetworks using a uniform
distribution. Instead, our design for a new sampling distri-
bution is guided by two key observations:

• Architectural search algorithms are generally complex
and hard to train. For a pre-selected search space, it’s
computationally arduous to thoroughly train every sub-
structure. For the entire system to achieve peak perfor-
mance and consistent convergence, training resources
must be judiciously allocated to different subnetworks,
warranting a non-uniform distribution.

• Low-rank architectures, especially those of lower
ranks, derive varying degrees of information from pre-
trained weights. Such inheritance can be perceived as
the architecture having undergone preliminary train-
ing. As a result, during supernet training, it’s crucial

to divert more resources (like sampling probability)
towards these less-informed structures, ensuring bal-
ance.

With the above insights in mind, we introduce a non-
uniform path sampling strategy that favors smaller rank
choices within each low-rank linear layer. Formally, let’s
define the rank choice for a low-rank linear layer by a ran-
dom variable X . Its Probability Mass Function (PMF) of X
is formulated as:

pX(r) = P (X = r) =
1
r∑

r′∈C
1
r′

, r ∈ C (6)

Recall that C denotes the rank choice set of a specific
low-rank linear layer. The prior distribution of selecting
a sequence of rank choice would be Γ(A) = P (X1 =
rk1 , ..., Xi = rki , ..., Xl = rkl

), where Xi, rki denotes the
random variable of i-th choice block and its correlated rank
choice, respectively.

5. Experiments
We trained and tested FLORA on the ImageNet-1k [10]

dataset using several representative ViT models, such as
DeiT [34] and Swin Transformer [25], as our pre-trained
backbones. In line with earlier NAS practices [43, 44], our
supernet is trained under the in-place distillation strategy
(e.g., under the supervision of the uncompressed model it-
self). We employed the evolutionary algorithm to search
for the target architecture. For detailed information on hy-
perparameters used in training and supernet configuration,
please refer to the supplemental materials.

5.1. General Comparison
We compare our results with state-of-the-art ViT pruning

methods, ranging from input sequence reduction (Dynam-
icViT [29]), weight pruning (WDPruning [42], S2ViTE [8]),
and multi-dimension pruning (UVC [46]). It is worth men-
tioning that DynamicViT and UVC both include the knowl-
edge distillation in their methodologies, which is identical
to our method.

The results are shown in Tab. 1. Compared to
channel pruning methodologies (WDPruning [42]), we
achieve around 1% accuracy improvement under the same
or smaller level of computation reduction and model
size on every backbone, demonstrating the effectiveness
of searching for a low-rank subnetwork against struc-
ture pruning techniques. Besides, when considering the
sequence reduction-based methods (DynamicViT [29]),
FLORA achieves comparable performance under with bet-
ter FLOPs savings with different optimized targets. For
DeiT-B/Swin-B, we can either enjoy 20%/21% additional
FLOPs reduction with competitable or even higher top-1
accuracy. Besides, FLORA further demonstrates its supe-
riority with not only FLOPs saving but an extra 60%/30%

2487



Table 1. Comparison of FLORA with different ViT compression
methods on ImageNet-1k dataset.

Method FLOPs
FLOPs
saving Params

Params
saving

Top-1
Acc

DeiT-S

Baseline 4.7G - 22.1M - 79.8%
DynamicViT 3.4G 28% 23.1M - 79.6%

SPViT 3.3G 30% 16.4M 26% 78.3%
WDPruning 3.1G 32% 15.0M 32% 78.6%

S2ViTE 3.1G 32% 14.6M 34% 79.2%
UVC 2.7G 42% - - 79.4%
Ours 2.7G 42% 12.6M 43% 79.6%

DeiT-B

Baseline 17.6G - 86.4M - 81.8%
S2ViTE 11.8G 33% 56.8M 35% 82.2%
SPViT 11.7G 33% 62.3M 28% 81.6%

DynamicViT 11.2G 36% 87.2M - 81.3%
WDPruning 11.0G 37% 60.6M 30% 81.1%

UVC 8.0G 55% - - 80.6%
Ours 8.0G 55% 37.9M 56% 81.8%

Swin-S

Baseline 8.7G - 49.6M - 83.2%
DynamicViT 6.9G 20% 50.8M - 83.2%
WDPruning 6.8G 22% 37.4M 26% 82.4%

SPViT 6.1G 30% 39.2M 30% 82.4%
Ours 6.1G 30% 34.8M 30% 82.8%

Swin-B

Baseline 15.4G - 87.8M - 83.5%
DynamicViT 12.1G 21% 88.8M - 83.4%

SPViT 11.4G 26% 68.0M 24% 83.2%
Ours 9.0G 42% 52.3M 41% 83.2%

model size reduction when compared to DynamicViT.
Lastly, when compared to multi-dimensional compression
methods, we achieve superior results on DeiT-Base, reg-
istering a 1.2% improvement in performance under the
same FLOPs level. Overall, we can observe that FLORA
shows competitive performance with SOTA methods on
small models like DeiT-S and Swin-S while outperform-
ing all the methods under comparison on large models like
DeiT-B and Swin-B.

Figure 3. Results of integrating FLORA with DynamicViT.

Table 2. Experiments on TinyViT and integration with Dynam-
icViT. DynamicViT is denoted as DyViT. Results show the orthog-
onality of FLORA on top of other compression methods

Model Methods GFLOPs Top-1 Acc

TinyViT-21M baseline 4.3G 83.1%
Ours 3.2G (-25%) 83.1% (-0%)

DeiT-S
baseline 4.7G 79.8%
DyViT 3.4G (-28%) 79.6% (-0.3%)
DyViT + Ours 2.3G (-49%) 79.3% (-0.6%)

DeiT-B
baseline 17.6G 81.8%
DyViT 11.2G (-36%) 81.3% (-0.5%)
DyViT + Ours 6.70G (-62%) 81.0% (-0.8%)

5.2. Generality and Orthogonality
Results on the Compact Hybrid Transformer In the
previous section, we have demonstrated the generality
of FLORA on Transformer-only variants DeiT and Swin
Transformer. Here we further show that our approach is ag-
nostic to model architectures even on a hybrid structure (i.e.,
CNN + Transformer). The results of FLORA a TinyViT-
22M [38] with 224 x 224 input is shown in Tab. 2. The
computational cost can be reduced by 25% without sacrific-
ing performance on TinyViT, affirming the generality of our
proposed FLORA.
Integrating with Other Compression Methods To show
the orthogonality of our approach, we integrate the pro-
posed FLORA with token reduction based compression
method DynamicViT to achieve further compression ra-
tio. Here, we use the uncompressed model itself for su-
pervising. From Tab. 2, FLORA achieves 21%/26% more
FLOPs reduction while only sacrificing 0.3% more perfor-
mance degradation on DeiT-S/B. Fig. 3 provides an clearer
view for the demonstration of orthogonality. On DeiT-B,
when integrating FLORA with DynamicViT, the reduction
on FLOPS is further improved by 1.7x over standalone Dy-
namicViT. Moreover, on the small-scale model DeiT-S, we
can also earn 1.4x more FLOPs improvement and a com-
pelling 50% FLOPs savings in total. Thus, FLORA pro-
vides a new perspective that is orthogonal to the previous
compression methods. By applying multiple compression
techniques, ViT can be compressed to an appealing ratio
with less than 50% of the original FLOPs and less than 1%
accuracy drop.
5.3. Benefit of Non-Uniform Rank Setting

In this section, we study the impact of employing fine-
grained, non-uniform rank configurations on the model’s
performance. We utilize DeiT-B as the backbone and pro-
ceed with training a low-rank supernet. To ensure fair com-
parison, all considered low-rank architectures are derived
from this trained supernet. As illustrated in Fig. 4, the ad-
vantages of a non-uniform rank configuration become ap-
parent. When comparing under the same accuracy level,
a non-uniform rank configuration can achieve up to 33%
additional FLOPs reduction relative to its uniform counter-

2488



33% (extra)

Figure 4. Performance difference of using different rank config for
Low-rank approximation on DeiT-B.

part [37]. These findings underscore the value of layer-wise
non-uniform rank configurations in the low-rank approxi-
mation for ViT and further emphasize to the proficiency of
FLORA in uncovering these configurations.

8 9 10 11 12
FLOPs (G)

78.5

79.5

80.5

81.5

82.5

Im
ag

eN
et

 To
p-

1 
Ac

cu
ra

cy

SPOS (150 epochs, #params = 347M)
SPOS + CF (150 epochs, #params = 347M)
LRAT + CF (75 epochs, # params = 108M)
LRAT + CF (150 epochs, #params = 108M)

Figure 5. Pareto frontier of subnetworks sampled from low-rank
supernet of DeiT-B with different strategies. #params denote the
number of trainable parameters of the supernet. CF: Low-Rank
Aware Candidate Filtering, LRAT: Low Rank Aware Supernet
Training Paradigm

5.4. Ablation Study
In this section, we conduct an ablation study to analyze

the impact of our Low-Rank Aware Candidate Filtering and
the proposed Low-Rank Aware Training Paradigm on en-
hancing supernet quality. The results are visualized using
Pareto frontier analysis in Fig. 5. Our experiments are
based on the DeiT-B backbone. As a baseline, we employ
the well-established One-Shot NAS method, SPOS [14],
which was originally designed for CNN search spaces. We
have adapted SPOS to accommodate the low-rank search
space, while preserving its original settings. In the course
of supernet construction, each low-rank module within the
choice blocks is treated as an independent entity. We train
the SPOS supernet under the same hyperparameters as ours.
During the supernet’s training phase, architectures are se-
lected through uniform sampling.
Efficacy of Low-Rank Aware Candidate Filtering As
elaborated in Section Sec. 4.2, our low-Rank aware can-

didate filtering focuses on pinpointing weaker architectural
components and then uses this insight to generate the re-
fined search space. The marked benefits of our filtering
technique on supernet performance are illustrated in Fig.
5. Using the same training approach as the SPOS baseline,
the performance of subnetworks across diverse FLOP lev-
els sees a notable boost with the incorporation of our filter-
ing approach. Notably, for subnetworks operating around
the 8G FLOP mark, we observe a nearly 1% enhancement
in Top-1 accuracy. This considerable enhancement under-
scores the proficiency of our low-rank aware candidate fil-
tering in pinpointing and eliminating subpar architectures,
effectively reducing the training interference from such sub-
optimal configurations.

Efficacy of Low-Rank Aware Training Paradigm Our
approach to low-rank aware supernet training combines the
Weight Inheritance technique with Low-Rank Aware Sam-
pling, both specifically designed for low-rank scenarios.
Notably, our supernet, trained for only 75 epochs using this
approach, performs as well as the SPOS paradigm which
requires 150 epochs, emphasizing a faster convergence.
When trained for the full duration, our results sit on the
Pareto frontier, demonstrating the efficacy of our paradigm.

6. Conclusion
In this work, we focus on the rank selection problem,

exploring the integration of low-rank approximation into
the Vision Transformer (ViT) architecture. We observe
a notable similarity and alignment between the processes
of rank selection and One-Shot NAS. Motivated by this
observation, we introduce FLORA—an end-to-end frame-
work based on NAS—to autonomously search for the fine-
grained low-rank configurations. To bolster the effective-
ness of this approach, we also introduce a series of special-
ized techniques tailored to enhance the quality of the low-
rank supernet. Extensive experiments from our research
demonstrates the potential of low-rank approximation as
a effective compression technique for the optimization of
transformers. For instance, on DeiT-B, with fine-grained
rank configuration up to 55% FLOPs can be saved without
performance drop. This discovery holds immense implica-
tions, particularly considering the current void in methods
that automate rank selection for ViT.

Acknowledgements
This work was supported in part by NSTC Grant No.

NSTC 112-2218-E-A49-019 (Taiwan), NSF CCF Grant
No. 2107085 (US), ONR Minerva program, and iMAGiNE
— the Intelligent Machine Engineering Consortium at UT
Austin. We thank to National Center for High-performance
Computing (NCHC) of National Applied Research Labo-
ratories (NARLabs) in Taiwan for providing computational
and storage resources.

2489



References
[1] George Adam and Jonathan Lorraine. Understanding neu-

ral architecture search techniques. CoRR, abs/1904.00438,
2019. 4

[2] Andrew Brock, Theodore Lim, James M. Ritchie, and
Nick Weston. SMASH: one-shot model architecture search
through hypernetworks. In ICLR, 2018. 3

[3] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize it
for efficient deployment. In ICLR, 2020. 3

[4] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. In
ICLR, 2019. 3

[5] Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra,
and Christopher Ré. Scatterbrain: Unifying sparse and low-
rank attention. In NeurIPS, 2021. 3

[6] Boyu Chen, Peixia Li, Chuming Li, Baopu Li, Lei Bai, Chen
Lin, Ming Sun, Junjie Yan, and Wanli Ouyang. Glit: Neural
architecture search for global and local image transformer.
In ICCV, pages 12–21, 2021. 3

[7] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin
Ling. Autoformer: Searching transformers for visual recog-
nition. In ICCV, pages 12250–12260, 2021. 3, 6

[8] Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang,
and Zhangyang Wang. Chasing sparsity in vision transform-
ers: An end-to-end exploration. In NeurIPS, pages 19974–
19988, 2021. 1, 6

[9] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Re-
thinking evaluation fairness of weight sharing neural archi-
tecture search. In ICCV, pages 12219–12228. IEEE, 2021.
4

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, pages 248–255, 2009. 6

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 1

[12] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. J. Mach. Learn. Res.,
2019. 3

[13] Angela Fan, Edouard Grave, and Armand Joulin. Reducing
transformer depth on demand with structured dropout. In
ICLR, 2020. 2

[14] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot
neural architecture search with uniform sampling. In ECCV,
pages 544–560, 2020. 2, 3, 6, 8

[15] Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen,
and Qun Liu. DynaBERT: Dynamic BERT with adaptive
width and depth. In NeurIPS, 2020. 2

[16] Zejiang Hou and Sun-Yuan Kung. Multi-dimensional vi-
sion transformer compression via dependency guided gaus-
sian process search. In CVPR, pages 3668–3677, 2022. 2

[17] Yerlan Idelbayev and Miguel Á. Carreira-Perpiñán. Low-
rank compression of neural nets: Learning the rank of each
layer. In CVPR, 2020. 3

[18] Ding Jia, Kai Han, Yunhe Wang, Yehui Tang, Jianyuan Guo,
Chao Zhang, and Dacheng Tao. Efficient vision transform-
ers via fine-grained manifold distillation. arXiv preprint
arXiv:2107.01378, 2021. 1

[19] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim
Choi, Lu Yang, and Dongjun Shin. Compression of deep
convolutional neural networks for fast and low power mobile
applications. In Yoshua Bengio and Yann LeCun, editors,
ICLR, 2016. 1

[20] Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Wei
Niu, Mengshu Sun, Bin Ren, Minghai Qin, Hao Tang, and
Yanzhi Wang. Spvit: Enabling faster vision transformers via
soft token pruning. CoRR, abs/2112.13890, 2021. 1

[21] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan V.
Oseledets, and Victor S. Lempitsky. Speeding-up convolu-
tional neural networks using fine-tuned cp-decomposition. In
Yoshua Bengio and Yann LeCun, editors, ICLR, 2015. 1

[22] Dongsoo Lee, Se Jung Kwon, Byeongwook Kim, and Gu-
Yeon Wei. Learning low-rank approximation for cnns.
CoRR, 2019. 1

[23] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. ICLR, 2019. 3

[24] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In ICCV,
pages 2755–2763, 2017. 2

[25] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, pages 9992–10002, 2021. 1, 6

[26] Zhenhua Liu, Yunhe Wang, Kai Han, Wei Zhang, Siwei Ma,
and Wen Gao. Post-training quantization for vision trans-
former. Advances in Neural Information Processing Systems,
34:28092–28103, 2021. 1

[27] Xiuqing Lv, Peng Zhang, Sunzhu Li, Guobing Gan, and
Yueheng Sun. Lightformer: Light-weight transformer using
svd-based weight transfer and parameter sharing. In Anna
Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki, edi-
tors, ACL, pages 10323–10335, 2023. 2

[28] Sachin Mehta and Mohammad Rastegari. Mobilevit: Light-
weight, general-purpose, and mobile-friendly vision trans-
former. In ICLR, 2022. 2

[29] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. DynamicViT: Efficient vision
transformers with dynamic token sparsification. In NeurIPS,
pages 13937–13949, 2021. 1, 2, 6

[30] Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios
Lymberopoulos, Bodhi Priyantha, Jie Liu, and Diana Mar-
culescu. Single-path NAS: designing hardware-efficient con-
vnets in less than 4 hours. In Ulf Brefeld, Élisa Fromont,
Andreas Hotho, Arno J. Knobbe, Marloes H. Maathuis, and
Céline Robardet, editors, ECML PKDD, 2019. 2, 3, 6

[31] Cheng Tai, Tong Xiao, Xiaogang Wang, and Weinan E. Con-
volutional neural networks with low-rank regularization. In
Yoshua Bengio and Yann LeCun, editors, ICLR, 2016. 3

2490



[32] Yehui Tang, Kai Han, Yunhe Wang, Chang Xu, Jianyuan
Guo, Chao Xu, and Dacheng Tao. Patch slimming for ef-
ficient vision transformers. CoRR, abs/2106.02852, 2021. 2

[33] Yi Tay, Mostafa Dehghani, Vamsi Aribandi, Jai Prakash
Gupta, Philip Pham, Zhen Qin, Dara Bahri, Da-Cheng Juan,
and Donald Metzler. Omninet: Omnidirectional representa-
tions from transformers. In ICML, 2021. 3

[34] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, pages 10347–10357, 2021. 1, 6

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NIPS, pages 5998–
6008, 2017. 1

[36] Yixuan Wei, Han Hu, Zhenda Xie, Zheng Zhang, Yue Cao,
Jianmin Bao, Dong Chen, and Baining Guo. Contrastive
learning rivals masked image modeling in fine-tuning via
feature distillation. CoRR, abs/2205.14141, 2022. 1

[37] Genta Indra Winata, Samuel Cahyawijaya, Zhaojiang Lin,
Zihan Liu, and Pascale Fung. Lightweight and efficient end-
to-end speech recognition using low-rank transformer. In
ICASSP, pages 6144–6148, 2020. 2, 3, 8

[38] Kan Wu, Jinnian Zhang, Houwen Peng, Mengchen Liu,
Bin Xiao, Jianlong Fu, and Lu Yuan. Tinyvit: Fast pre-
training distillation for small vision transformers. CoRR,
abs/2207.10666, 2022. 7

[39] Jinqi Xiao, Chengming Zhang, Yu Gong, Miao Yin, Yang
Sui, Lizhi Xiang, Dingwen Tao, and Bo Yuan. HALOC:
hardware-aware automatic low-rank compression for com-
pact neural networks. In Brian Williams, Yiling Chen, and
Jennifer Neville, editors, AAAI, pages 10464–10472. AAAI
Press, 2023. 3, 4

[40] Yuhui Xu, Yuxi Li, Shuai Zhang, Wei Wen, Botao Wang,
Yingyong Qi, Yiran Chen, Weiyao Lin, and Hongkai Xiong.
TRP: trained rank pruning for efficient deep neural networks.
In Christian Bessiere, editor, IJCAI, 2020. 3

[41] Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya,
Jan Kautz, and Pavlo Molchanov. A-vit: Adaptive tokens for
efficient vision transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2022. 1

[42] Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu,
and Li Cui. Width & depth pruning for vision transformers.
In AAAI, pages 3143–3151, 2022. 2, 6

[43] Jiahui Yu and Thomas S. Huang. Universally slimmable net-
works and improved training techniques. In ICCV, pages
1803–1811. 6

[44] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas S. Huang,
Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scal-
ing up neural architecture search with big single-stage mod-
els. In Andrea Vedaldi, Horst Bischof, Thomas Brox, and
Jan-Michael Frahm, editors, ECCV, pages 702–717, 2020. 6

[45] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas S. Huang. Slimmable neural networks. In ICLR,
2019. 3, 6

[46] Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao
Tan, Sen Yang, Ji Liu, and Zhangyang Wang. Unified visual
transformer compression. In ICLR, 2022. 1, 2, 6

[47] Zhewen Yu and Christos-Savvas Bouganis. SVD-NAS: cou-
pling low-rank approximation and neural architecture search.
In IEEE/CVF Winter Conference on Applications of Com-
puter Vision, WACV 2023, Waikoloa, HI, USA, January 2-7,
2023, pages 1503–1512. IEEE, 2023. 3

[48] Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu,
and Guangyu Sun. Ptq4vit: Post-training quantiza-
tion framework for vision transformers. arXiv preprint
arXiv:2111.12293, 2021. 1

[49] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lu-
cas Beyer. Scaling vision transformers. CoRR, 2021. 1

[50] Mingjian Zhu, Kai Han, Yehui Tang, and Yunhe Wang. Vi-
sual transformer pruning. arXiv preprint arXiv:2104.08500,
2021. 1, 2

2491


	. Introduction
	. Related Work
	. Transformer Compression
	. Low-Rank Approximation
	. Neural Architecture Search

	. Preliminary
	. Methodology
	. Mappging Rank Selection into NAS
	. Low-Rank Aware Candidate Filtering
	. Boosting Low-Rank Supernet

	. Experiments
	. General Comparison
	. Generality and Orthogonality
	. Benefit of Non-Uniform Rank Setting
	. Ablation Study

	. Conclusion

