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Abstract

In this work, we introduce our method of outdoor scene
relighting for Neural Radiance Fields (NeRF) named Sun-
aligned Relighting TensoRF (SR-TensoRF). SR-TensoRF of-
fers a lightweight and rapid pipeline aligned with the sun,
thereby achieving a simplified workflow that eliminates the
need for environment maps. Our sun-alignment strategy is
motivated by the insight that shadows, unlike viewpoint-
dependent albedo, are determined by light direction. We
directly use the sun direction as an input during shadow
generation, simplifying the requirements of the inference
process significantly. Moreover, SR-TensoRF leverages the
training efficiency of TensoRF by incorporating our pro-
posed cubemap concept, resulting in notable acceleration
in both training and rendering processes compared to exist-
ing methods.

1. Introduction

Recently, Neural Radiance Fields (NeRF) [26] has
achieved a breakthrough in the novel view synthesis task,
sparking significant interest within the academic commu-
nity in implicit 3D reconstruction. While NeRF’s impres-
sive performance is undeniable, numerous challenges re-
main for further enhancement and research, such as re-
constructing materials with various properties like trans-
parency, translucency, or reflectiveness [12, 13, 38, 43, 47],
reconstructing dynamic scenes [1, 21, 30, 40] or scenes
with varying scales [3, 37, 42], efficient training and infer-
ence [8,9,11,27,49], and more. In addition to the aforemen-
tioned challenges, another area of interest lies in the editing
of reconstructed scenes [15, 52]. One aspect of such edit-
ing involves manipulating lighting conditions [32, 36, 39],
which is referred to as relighting.

Relighting is a classical task in computer vision that en-
hances the realism and versatility of visual content, bene-
fiting applications like virtual environments, entertainment
media, and architectural visualization. Due to the intrinsic
difference in lighting between indoor and outdoor scenes,

(a) training

(b) inference

Figure 1. Our requirements. Instead of using environment maps,
we propose a simplified relighting pipeline that relies on time and
location information, making the requirements much simpler.

researchers have treated them as separate domains and cat-
egorized the relighting problem into indoor and outdoor
scene relighting. In this study, we focus on the daytime
outdoor setting which can be characterized as; 1) Sunlight
stands as the most dominant light source. 2) Outdoor set-
tings lack the ability to control light sources contrary to in-
door settings utilizing controllable light conditions. 3) Out-
door scenes are inherently unbounded so that they are pro-
foundly influenced by the surrounding objects and build-
ings while consistently dealing with infinite potential light
sources. 4) Training images might have varying white bal-
ances, even within the same timeframe.

Recently, with the purpose of achieving the dual ob-
jectives of novel view synthesis and relighting, NeRF-
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OSR [32], which decomposes the implicit scene using shad-
ows, albedo, and an illumination model based on spherical
harmonics, has been proposed. While the approach gener-
ated plausible outputs with their relighting dataset, confirm-
ing its alignment with the aforementioned outdoor scene
features is challenging. Moreover, during the inference pro-
cess, it requires the transformation of environment maps to
spherical harmonics. To attain a specific lighting condition,
it might be necessary to capture an environment map tai-
lored exclusively to that particular condition. While NeRF
is progressing towards becoming a more lightweight and
faster model, employing environment maps hinders the effi-
ciency of the combined task of NeRF and relighting. Hence,
particularly for daytime outdoor scenes, we present the fea-
sibility of relighting without environment maps.

In this paper, we leverage the fact that sunlight is the
most dominant light source in outdoor scenes. Therefore, an
effective approach to relighting in outdoor settings involves
accurately generating shadows cast by the sun. In our pur-
suit of simultaneous novel view synthesis and relighting, we
organize the synthesis process into three core components:
albedo (color), shadow, and tone (brightness). The acqui-
sition of albedo closely resembles the learning process for
color in existing NeRF methods. Shadows, governed by the
sun direction and the surrounding geometry, are learned by
taking the sun direction and shadow features as input, allow-
ing the training of time-dependent shadows. While albedo
and shadow already form the foundational elements of re-
lighting, it is important to note that training images may
exhibit varying tones even within the same time frame. To
disentangle the influence of tone on the learning of albedo
and shadows, we introduce a latent vector that deals with
tone throughout the training process.

Another key aspect of our model lies in its foundation ar-
chitected atop TensoRF [8], which is known for its efficient
training capabilities. However, since TensoRF was not orig-
inally intended for relighting, its performance in relighting
datasets falls short of satisfaction. To address this limitation,
we have devised an architecture based on TensoRF to the
specific demands of the relighting task to achieve fast and
effective relighting. This tailored approach endows both our
training and rendering procedures an appreciable accelera-
tion, surpassing NeRF-OSR [32] by a substantial margin.

We summarize our contributions as follows:
• No need of environment map Our model performs re-

lighting based primarily on the sun direction, thereby
eliminating the complexity of using an environment map
in training and inference processes (see Fig. 1).

• Handle unbounded scene Our model employs cube-
map based on TensoRF to successfully model unbounded
scenes.

• Fast relighting and rendering Our model achieves a
speedup of around tenfold in training and inference pro-
cesses compared to previous research.

2. Related Works
2.1. Neural Radiance Field

Neural Radiance Field (NeRF) [26] has been main-
stream for the novel view synthesis task thanks to its sim-
ple architecture and splendid quality of rendered images.
NeRF utilizes a Multi-Layer Perceptron (MLP) to depict
a scene by associating 3D coordinates and viewing angles
with colors and volume densities, and generates a novel
view using the volume rendering technique. Since its in-
troduction, NeRF has been actively studied toward vari-
ous directions, e.g., a multi-scale representation [2, 4, 17],
data efficiency [28, 33, 34, 50], dynamic scene reconstruc-
tion [1,21,30,40], and so on. Furthermore, there has been a
line of research to address the challenging problems result-
ing from the fundamental limitations of NeRF’s architec-
ture, e.g., lengthy training time per scene [8, 9, 11, 27, 49],
incapacity to handle unbounded scenes [3, 37, 42], novel il-
lumination conditions [6, 22, 32, 36, 39], and so on. Among
them, TensoRF [8] represents a scene with a voxel feature
grid decomposed into several low-rank tensor components,
achieving a more compact scene representation. In this pa-
per, we address the representative bottlenecks altogether
and propose SR-TensoRF, which performs relighting suc-
cessfully for unbounded outdoor scenes with a significantly
reduced training time compared to other baselines.

2.2. Editing Neural Radiance Field

While NeRF achieves notable performance in generat-
ing photo-realistic novel views, editing them remains quite
challenging since the 3D scene is represented by MLP pa-
rameters in its framework, which are hard to interpret and
manipulate. There exist various lines of research with re-
gard to editing NeRF, e.g., scene stylization [15,16,45,53],
object-level editing [19, 35, 48], and so on. Among them,
a series of studies [18, 24, 36, 39] have addressed the task
of controlling attributes of objects or scenes, e.g., illumi-
nation, material, and so on. TensoIR [18] expanded upon
TensoRF [8] to enable material editing and relighting with
high-quality rendering. However, it assumed a set of rela-
tively simple scenes with controlled lighting or simple ob-
jects, which are far from real-world scenarios. Our proposed
SR-TensoRF empowers controlling on more complex un-
bounded outdoor scenes, all while leveraging the effective
representation of TensoRF.

2.3. Outdoor Scene Relighting

There have been various studies on outdoor scene
relighting, emphasizing its importance in graphics and
VR/AR. Traditional researches [10, 14, 41] optimized and
computed variables without training. Duchêne et al. [10]
used a 3D reconstruction with sun direction to segregate im-
ages into reflectance and shading, requiring manual shadow
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Figure 2. Overview. SR-TensoRF comprises three tensors: Gσ , Ga, and Gc, among which Gσ learns features of density, Ga is for both
albedo and shadow, and Gc is for cubemap, respectively. These components, along with the viewing direction d, sun direction dsun, and
latent vectors, are processed through shallow MLPs to generate albedo, shadow, and cubemap backgrounds. These generated components
are then used in volumetric rendering to produce the final output, where the ⊙ operator denotes pixel-wise multiplication. The green ray
depicts the standard volumetric rendering, while the blue ray represents a case where the accumulated transmittance of sampled points on
the ray is low (small σ over the entire ray-marching), necessitating the cubemap.

clicking to determine sun direction. After the advent of deep
learning, researches [7,23,29,51] leveraged neural networks
to achieve relighting. Yu et al. [51] used a self-supervised
method with a neural renderer and a dedicated network for
shadow prediction, but it lacked accurate color representa-
tion due to the absence of color correction.

After NeRF’s introduction, NeRF-OSR [32] extended a
novel view synthesis framework to handle outdoor scene
relighting, which augmented NeRF’s pipeline for learning
shadow and normal decomposition. However, it does not
consider the characteristics of outdoor scenes and requires
a lengthy training time. Unlike the previous methods, we
enable a much more efficient pipeline by using solar infor-
mation in the training process, skipping the pre-processing
step of creating an environment map.

3. Method

In this section, we present our approach, SR-TensoRF, to
efficiently achieve simultaneous relighting and novel view
synthesis in outdoor scenes, as shown in Figure 2. SR-
TensoRF is designed based on TensoRF [8], which employs
4D tensor decomposition to model voxel grids (Sec. 3.1).
Instead of environment maps, we leverage sun direction
directly, accounting for its variation across time and lo-
cation, to facilitate relighting (Sec. 3.2). For unbounded
scenes not encompassed within TensoRF’s architecture, we
incorporate cubemaps (Sec. 3.3). Furthermore, we utilize
latent vectors to disentangle the non-uniform color tones
present in the training images (Sec. 3.4). We optimize SR-
TensoRF using reconstruction loss, TensoRF’s training loss,
and shadow regularization loss (Sec. 3.5).

3.1. Preliminary

3.1.1 Neural Radiance Field

NeRF [26] employs a neural network to depict a 3D scene
with the 3D coordinates of a point x and the viewing direc-
tion d as input, producing the color c and density σ of the
points as output. The input 3D points are sampled along a
ray r(t) = o + td, and each ray is cast toward a pixel in
training images. The outputs, namely the color c and den-
sity σ, are then utilized to render a pixel color Ĉ(r):

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci =

N∑
i=1

wici

wi = Ti(1− exp(−σiδi)), Ti = exp(−
i−1∑
j=1

σjδj)

(1)

where N is the number of sample points, and δi and Ti are
the step size of a ray and the accumulated transmittance at
each sampled point r(ti), respectively.

3.1.2 Tensorial Radiance Fields (TensoRF)

TensoRF [8] represents a 3D scene with a 3D geometry
tensor Gσ and a 4D appearance tensor Ga, where an addi-
tional dimension corresponds to the 3D point’s 1D appear-
ance feature. The element at each 3D position x of Gσ is a
density σ(x) while that of Ga is a 1D feature vector. This
feature vector, along with the viewing direction d, is fed
into a shallow MLP or a spherical harmonics function M ,
ultimately generating the color c:

σ, c = Gσ(x),M(Ga(x),d). (2)
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Figure 3. Calculating the sun direction from time and location
information. Using PyEphem [31], we get the sun directions from
the local observer’s coordinates and subsequently align them with
the first camera’s coordinates.

The key advantage of TensoRF lies in its lightweight
model architecture and rapid training speeds. This is
achieved by employing an alpha mask for densities below a
specific threshold, ensuring that only the minimum required
number of remaining voxels is retained. The voxel-wise al-
pha value is computed as α = 1 − exp(−σδ). For more
architectural details, kindly refer to the paper of TensoRF.

3.2. Sun Light Direction as Input

For successful daytime outdoor relighting, it is essential
to generate shadows caused by sunlight accurately. These
shadows are primarily determined by the sun direction and
are influenced by the surrounding geometry while remain-
ing independent of the viewing direction. Taking these as-
pects into consideration, we organize the process of gener-
ating shadows in two steps: the first involves learning ge-
ometry using a shadow feature from a 4D appearance ten-
sor, and the second is using the sun direction as input of the
shading process.

We implement the first step by making the 4D appear-
ance tensor Ga incorporate not only the albedo but also
the shadow, i.e., Ga(x) = Galbedo(x) ⊕ Gshadow(x). The
shadow tensor Gshadow is intended to depict intricate shad-
owing conditions influenced by the surrounding geometry.
Later, in the second step, the shadow feature, Gshadow(x),
is input into the shadow MLP Mshadow alongside the sun

direction dsun as follows:

σ = Gσ(x)

c = Malbedo(Galbedo(x),d)

s = Mshadow(Gshadow(x),dsun)

(3)

where s ≥ 0 indicates the strengh of shadow at 3D sam-
pled point x. The σ, c, and s obtained from Eq. (3) are used
to volume render albedo A(r) with (σ, c) and similarly, to
render shadow S(r) ∈ [0, 1] with (σ, s) as in Eq. (1). Subse-
quently, the two results are multiplied pixel-wise to generate
the final output Ĉ(r).

The sun direction dsun can be computed from the date,
time, and location coordinates of the captured images using
PyEphem [31] as in Fig. 3. Once determined, this sun di-
rection, being in the horizontal coordinates, which uses the
observer’s local horizon as the x-z plane, must be aligned
with the world coordinates of the training images. Given
the convention of the NeRF camera pose where the camera
pose of the first training image serves as the world coordi-
nate, the sun direction is rotated along the y-axis based on
how much the first training image deviates from the south.

3.3. Cubemap to Handle Unbounded Scenes

TensoRF encounters two types of challenges when re-
constructing unbounded scenes due to its limited ability
to effectively utilize alpha masks. When alpha masks do
not mask out densities sufficiently, it can lead to an elon-
gated training time, the unintentional learning of extrane-
ous densities, and, consequently, the emergence of artifacts.
On the other hand, when alpha masks function excessively,
it can result in cracks in the necessary background regions
of unbounded scenes. Hence, we incorporate the concept
of cubemaps in computer graphics to handle backgrounds
into TensoRF. Cubemaps are beneficial at capturing miss-
ing background information, resembling the role of back-
ground networks, especially as seen in prior NeRF research
like NeRF++ [54]. However, since TensoRF parametrizes
scenes using cuboid shapes, cubemaps offer a more seam-
less and suitable background.

To integrate our proposed cubemap, we add background
to the volume rendering equation (1):

Ĉ(r) =

N∑
i=1

wici + (1− wi)b

b = Mcubemap(Gc(r),dsun),

(4)

where b is the cubemap background, Mcubemap is a shallow
MLP, and Gc(r) is the cubemap feature bilinearly interpo-
lated from where the ray intersects with one of the six 3D
cubemap tensors Gc. Mcubemap is conditioned by the sun
direction since background colors might vary based on it.
Furthermore, to address the inherent TensoRF’s inability to
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model unbounded scenes, we have integrated the ray con-
traction technique from MipNeRF-360 [3].

3.4. Latent Vector for Tone Disentanglement

In outdoor scenes, it is infeasible to capture training im-
ages under controlled conditions, resulting in variations in
tone, i.e., white balance and brightness, across shots. The
presence of such variations in the training images could
lead to inconstancy in the ground truth during training, po-
tentially leading to failed training and artifacts. To miti-
gate this, we integrate these variations into a latent vec-
tor, thereby encouraging the training process to disentan-
gle albedo and tone. As in [25], we pretrain the latent vec-
tors using the approach of Generative Latent Optimization
(GLO) [5]. This ensures that each image is assigned to a la-
tent vector l, which is used as an input to Malbedo and c in
Eq.(3) is replaced with Eq. (5):

c = Malbedo(Galbedo(x), l,d). (5)

3.5. Loss Function

Our SR-TensoRF is optimized based on Mean Squared
Error (MSE) loss, L1 loss for density tensor, and Total Vari-
ation (TV) loss for all tensors we use. Additionally, a reg-
ularization loss is incorporated to constrain shadow values
from approaching 1. Please refer to the supplementary ma-
terials regarding the weights of the loss terms.

4. Experiments
4.1. Experimental Details

Implementation details. We implement our model based
on TensoRF [8]. We utilize shallow MLPs for all three M
components (Malbedo,Mshadow and Mcubemap). The num-
bers of voxels for the density and appearance tensors are
the same as in the original TensoRF. The number of ele-
ments for the cubemap tensor is fixed at 128×128 for a sin-
gle facet. For optimization, we use the Adam optimizer [20]
with a learning rate of 0.01 and a decay of 0.2 for tensor
parameters, while the MLPs employed an initial learning
rate of 0.001. To prevent overfitting of the cubemap during
training, we withhold from integrating the cubemap for the
initial 5,000 iterations.

Datasets and metrics. We evaluate our approach on
NeRF-OSR dataset [32], which contains eight outdoor
scene images in total. We show our results for three of them,
as in [32]. For the evaluation metrics, we adopt PSNR,
Structural Similarity index (SSIM) [44], Mean Absolute
Error (MAE), and Mean Squared Error (MSE) of entire
test images. For quantitative evaluation, since NeRF-OSR
dataset does not include masks, we generate them using the
segmentation model SegFormer [46] and exclude the sky

Method PSNR ↑ SSIM ↑ MSE ↓ MAE ↓
Site 1

Yu et al. [51] 17.87 0.378 0.017 0.097
Philip et al. [29] 16.63 0.367 0.023 0.113
NeRF-OSR [32] 18.72 0.468 0.014 0.090
NeRF-OSR† [32] 18.32 0.623 0.019 0.091
NeRF-OSR‡ [32] 13.33 0.524 0.059 0.177
Ours 17.30 0.542 0.021 0.096

Site 2

Yu et al. [51] 15.28 0.385 0.032 0.138
Philip et al. [29] 12.34 0.272 0.065 0.2
NeRF-OSR [32] 15.43 0.517 0.029 0.133
Ours 15.63 0.632 0.030 0.111

Site 3

Yu et al. [51] 15.17 0.376 0.033 0.133
Philip et al. [29] 12.28 0.319 0.062 0.179
NeRF-OSR [32] 16.65 0.501 0.024 0.114
Ours 16.74 0.653 0.024 0.093

Table 1. Quantitative Results. Our SR-TensoRF is competitive
with other methods. † use the same 104 training images as ours
for training, and ‡ use the test set environment map for evalua-
tion. The results of NeRF-OSR are taken from the original paper,
while those of † and ‡ are computed following the methodology in
the NeRF-OSR paper. Note that the reported metrics may exhibit
slight variations due to the absence of publicly available masks.

and tree regions from them. Also, we follow the metric com-
putation as in NeRF-OSR. Regarding the latent vectors, as
in [25], we optimize them on the left half of each image in
the test set and compute the metrics both on the right half
(Tab. 2) and the whole image (Tab. 1).

Baselines. We compare our approach with NeRF-
OSR [32], the state-of-the-art model and the only exist-
ing model to handle novel view synthesis and relighting
simultaneously. We also compare with the relighting mod-
els [29,51] that do not perform novel view synthesis. These
values are from the NeRF-OSR [32] paper. Note that, in the
case of Site 1, only 104 out of 160 training images have in-
formation on capture time, thus we trained our model with
those 104 images. For a fair comparison, we also trained
NeRF-OSR with this image set.

4.2. Analysis of SR-TensoRF

Benefit of sun direction input. Unlike methods that uti-
lize environment maps for relighting, our approach elimi-
nates the need for preprocessing steps like environment map
creation and, if necessary, its conversion to spherical har-
monics (as shown in Fig. 1). Additionally, even the captured
coordinates, time, and date are readily available metadata in
mobile environments, incurring minimal associated costs.
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NeRF-OSR [32]
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(a) Site 1

NeRF-OSR [32]

Ours

GT

(b) Site 2

NeRF-OSR [32]

Ours

GT

(c) Site 3

Figure 4. Qualitative Results. We visualize novel view synthesis results from four different views. Regarding the lighting of the test set
images, our method aligns the time and utilizes a latent vector extracted from the left half of the images. In contrast, NeRF-OSR utilizes
default lighting and only conducts novel view synthesis without applying relighting to the test set images. Hence, in these results, the color
of the sky remains consistent across all views. Additionally, the shadows cast by buildings on the ground or themselves are much more
distinct in our results, highlighting the enhanced clarity in our rendering.
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Method PSNR ↑ SSIM ↑ MSE ↓ MAE ↓ Time

Site 1

NeRF-OSR [32] 18.30 0.627 0.018 0.089 32h
Ours 17.60 0.557 0.020 0.092 1h 11m

Site 2

NeRF-OSR [32] 16.16 0.691 0.029 0.107 61h
Ours 15.83 0.641 0.032 0.114 3h 41m

Site 3

NeRF-OSR [32] 16.49 0.707 0.025 0.095 58h
Ours 17.27 0.667 0.022 0.087 2h 46m

Table 2. Results on Half Images. Evaluation on the right half,
which is not used for the latent vector optimization, yields similar
quantitative results.

(a) w/o cubemap (b) ray contraction (c) ours

Figure 5. Cubemap Ablation. SR-TensoRF extends its rendering
capabilities to the sky. As we progress from (a) a model without
cubemap and ray contraction to (b) a model with only ray contrac-
tion, and finally to (c) a model with both, the training efficiency
also increases, masking out unnecessary voxels.

Benefit of TensoRF. As shown in Tab. 2, SR-TensoRF
achieves notably faster training than NeRF-OSR [32]
thanks to our foundation on the TensoRF [8] framework.
This extends to the inference process as well. While this
relative time efficiency is not directly transferrable to un-
bounded scenes, we successfully leverage the benefits of
TensoRF with the assistance of cubemaps.

Benefit of cubemap. As shown in Fig. 5a, without con-
sidering unbounded scenes, there are problems: artifacts ap-
pear in a place where they should not be (sky, void areas,
etc.), or holes are formed. While ray contraction in Fig. 5b
mitigates this to some extent, the alpha mask of TensoRF
still leads to hole formation. However, upon the incorpora-
tion of cubemaps as in Fig. 5c, the holes disappear, result-
ing in a more natural depiction of the sky. Moreover, this
enables better utilization of the alpha mask, consequently
reducing training time.

4.3. Comparion with Other Methods

Our quantitative results, as shown in Tab. 1, demonstrate
that our model generally outperforms previous studies on
Site 2 and 3 across various metrics. However, our model’s
performance is relatively lower on Site 1, which can be at-
tributed to the prevalence of cloudy training images in this
particular scene, hindering proper learning of the sun effect.
The results of NeRF-OSR [32] are obtained by applying

a default environment map to all scenes during evaluation.
Since NeRF-OSR dataset includes spherical harmonics ex-
tracted from environment map images of the test set only for
Site 1, we applied this environment map lighting to Site 1 as
well. Despite the higher accuracy of the test set environment
map compared to the default one for test set images, the re-
sults show a decline, highlighting NeRF-OSR’s reliance on
lighting for scene reconstruction. Our model, on the other
hand, achieves competitive results with NeRF-OSR, even
without depending on test set environment maps, and effec-
tively applies lighting to the test set.

In Fig. 4, we show our qualitative results. The rendered
images of NeRF-OSR [32] display uniform colors across all
scenes and views in the test set due to the use of consistent
lighting. The outcomes obtained by individually applying
environment maps corresponding to each ground truth can
be seen in Fig. 6 (only for Site 1). Fig. 4b demonstrates
that building shadows, which are not well-reconstructed in
NeRF-OSR, are successfully generated in our model. Fur-
thermore, in Fig. 4c, it is evident that the buildings are ren-
dered with varying brightness based on the direction of sun-
light, whether it is facing the front or rear of the structures.

4.4. Relighting Results

Fig. 6 shows the qualitative results of relighting. Every
first row showcases the results of applying the test set envi-
ronment map on NeRF-OSR [32] (NeRF-OSR‡ of Tab. 1).
It is evident that the quality is notably compromised com-
pared to the results where the same default environment
map was applied to all scenes, as observed in Fig. 4a. The
second row presents the results of our SR-TensoRF, with
different sun directions and latent vectors applied to the
same viewing direction as in the first row. In this case, the
latent vectors were randomly selected from the left-half im-
ages of the test set. Noticeable variations in lighting, dis-
tinct from the reconstructions in Fig. 4a, can be observed.
The third row depicts the shadows utilized in the rendering
process of the second row.

Fig. 7 shows the shadows rendered for relighting. Given
the same viewing direction, it is evident that SR-TensoRF
successfully generates shadows that vary over time. For in-
stance, in the case of the buildings in Site 1, which face east,
the shadows are appropriately generated as the sun transi-
tions from the southern direction in Fig. 7a, moving towards
the southwest in Fig. 7b, and further tilting westward in
Fig. 7c. Such results are achievable by directly utilizing the
sun direction. Further relighting results for various scenes
can be found in the supplementary material.

4.5. Ablation Study

To validate the effectiveness of our SR-TensoRF, we con-
duct an ablation study as in Tab. 3. When comparing the
results of experiments where shadow, cubemap, and latent
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NeRF-
OSR [32]

Ours

Shadow

Figure 6. Relight Rendering. SR-TensoRF is capable of producing plausible relit images without using environment maps. Even under
new lighting conditions, our approach maintains the reconstruction quality without degradation.

Method PSNR ↑ SSIM ↑ MSE ↓ MAE ↓ PSNR ↑ SSIM ↑ MSE ↓ MAE ↓ PSNR ↑ SSIM ↑ MSE ↓ MAE ↓
Site 1 Site 2 Site 3

TensoRF [8] 15.32 0.511 0.034 0.123 13.43 0.583 0.050 0.145 14.35 0.626 0.039 0.122

Ours 17.30 0.542 0.021 0.096 15.63 0.632 0.030 0.111 16.74 0.653 0.024 0.093
(-) shadow 17.21 0.543 0.021 0.097 15.46 0.631 0.031 0.114 16.48 0.651 0.026 0.097
(-) cubemap 16.66 0.541 0.027 0.105 15.46 0.623 0.032 0.114 16.66 0.653 0.024 0.093
(-) latent vector 15.34 0.525 0.035 0.126 14.92 0.623 0.041 0.126 15.83 0.643 0.030 0.106

Table 3. Ablation. SR-TensoRF demonstrates a performance drop when individually removing each component.

(a) AM 11:40 (b) PM 12:40 (c) PM 14:40

Figure 7. Relight by time. Results when keeping other factors
constant and only changing the sun direction. SR-TensoRF can
generate varying forms of shadows that change over time.

vector are individually omitted, our full SR-TensoRF, which
integrates all the components, exhibits the highest perfor-
mance. The most substantial decrease in performance oc-
curs when the latent vector is removed, primarily due to the
significant impact of tone on quantitative metrics. This is
particularly evident for Site 1, where many training images
exhibit cloudy weather, accordingly the effects of sunlight
are minimal and only the tones tend to vary. Latent vectors,
however, alone cannot enable our time-varying relighting
capabilities. In addition, small holes in the sky may not have
a significant impact on quantitative metrics, yet they can be
visually prominent. Addressing this issue with a cubemap
solution results in more visually appealing results.

5. Conclusion
We propose a sun-aligned outdoor scene relighting

model SR-TensoRF, which consists of appearance, den-

sity, and cubemap tensors. Our model utilizes the sun di-
rection for relighting, bypassing the need for environment
maps. Additionally, it employs latent vectors to disentan-
gle various tones of images. Our proposed cubemap ten-
sor efficiently combines the fast training speed of TensoRF
while effectively handling unbounded scenes. With our SR-
TensoRF, we demonstrate that the sun direction can be a
viable alternative to environment maps, particularly for out-
door scene relighting. SR-TensoRF not only simplifies the
relighting pipeline but also enables the generation of dy-
namic shadows over time.

Future work. Our research can be extended in various
directions. As we tackle unbounded scenes, there is po-
tential to model shadows cast by surrounding objects such
as trees that might not have been captured in the training
images. Furthermore, relighting methods that account for
cloudy weather conditions could be explored. Additionally,
our approach, initially designed for daytime scenes, could
be extended to nighttime scenarios by adapting the lighting
direction, similar to sun direction utilization.
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