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Abstract

Controlling illumination can generate high quality infor-
mation about object surface normals and depth discontinu-
ities at a low computational cost. In this work we demon-
strate a robot workspace-scaled controlled illumination ap-
proach that generates high quality information for table top
scale objects for robotic manipulation. With our low angle
of incidence directional illumination approach, we can pre-
cisely capture surface normals and depth discontinuities of
monochromatic Lambertian objects. We show that this ap-
proach to shape estimation is 1) valuable for general pur-
pose grasping with a single point vacuum gripper, 2) can
measure the deformation of known objects, and 3) can es-
timate pose of known objects and track unknown objects in
the robot’s workspace.

1. Introduction
Imagine the following task: you are trying to find a tiny

screw on the ground, but the color contrast between the
screw and the ground is poor, or the floor has a complex
texture. You might turn to a flashlight to aid you in this task,
illuminating part of the floor with a low angle of incidence,
looking for shadow cues as you hunt for the screw.

Now consider the task of examining the quality of ex-
amining the quality of stucco [48] or putty applied to a sur-
face; here, a low angle of incidence light (as in the first task)
can highlight high spatial frequency surface discontinuities
such as surface roughness and features like creases. A di-
rectional source of light (e.g. sunlight throughout the day),
meanwhile, can highlight low spatial frequency information
such as the curvature of the wall.

This work is motivated by the observation that changing
the direction of illumination can often highlight object sur-
face features and depth discontinuities on the object surface
and between the object and its surroundings. These sur-
face features often lead to shadows and illuminated patches
when viewed with a camera. Shading and shadows along
with an illumination model can aid in reasoning about the
surface properties of an object and help us decide how to in-
teract with it. Although classical techniques in multi-view

(a)

(b) (c) (d)

Figure 1. We demonstrate the value of controlled illumination ap-
proaches for robot manipulation workspaces. Our setup (Fig. 1a) con-
sists of 2 machine vision cameras (C1 mounted to the robot and C2) over-
looking a robot’s workspace. The illumination of the workspace is con-
trolled using 7 directional lights – six low angle of incidence light sources
L1:6 placed on the table and one overhead light source L7. We capture
seven images of the object (Fig. 1b), use standard photometric stereo to
calculate object surface normals (color coded in Fig. 1c), and optionally
derive a 3D representation of the object’s surface (Fig. 1d) from calculated
normals (Fig. 1c).

geometry [41], shape from texture [3,45], high performance
area scanners [1,2] and tactile sensing [18,55] exist for solv-
ing similar problems, multi-modal sensing adds complexity
to the problem by requiring the camera poses and object fea-
tures to be tracked across views and sensors. Coordinating
tactile sensing with vision [14] adds the additional complex-
ities of discovering correspondences between cameras and
tactile sensor data and accounting for tactile sensor drift.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Our experiments focus on precise and effective sensing in a
robot manipulation setup [28, 30].

To that end, this paper proposes using actively controlled
illumination and tries to address a simplified version of
the motivating question: How can controlled illumination
be used to estimate surface properties of objects to make
robotic manipulation easier? The simplifications include
painting objects with matte paint to remove highlights due
to specularities, and using only one color of paint (white) to
make the reflectance function uniform over the object.

Active control of sensing parameters is a classical topic
in robotics research – [4, 6, 7] define “active perception” as
controlling environment parameters (e.g. illumination), ex-
trinsic (e.g. sensor location) and intrinsic (e.g sensor gain,
focal length) sensor parameters for better perception. Our
work can be classified as a subset of active perception re-
search where the scene illumination, camera poses, and
some of the camera intrinsic parameters are actively con-
trolled to solve the perception task at hand.

Although we will handle more general reflectance func-
tions in future work, for this work, we assume that all ob-
jects have monochromatic Lambertian surface reflectances,
i.e. they do not have specularities and changes in re-
flectances due to colored patches on the object. We enforce
this assumption by coating all objects with matte white
paint1 when necessary. All of our objects are single rigid
bodies with no articulations and when needed, we assume
that we have 3D models available to us. We show that:

• Controlling illumination of a robot’s workspace yields
high quality information about surface normals and
discontinuities – significantly better than commer-
cially available 3D sensors for table top scale objects
(≤20cm3).

• The computed normals and surface discontinuity infor-
mation can aid in robot grasping tasks.

• A controlled illumination approach can help us es-
timate deformation of known objects, and estimate
poses of known and unknown objects.

Additional details and results from our work,
video demonstrations of robot tasks and sum-
maries of this research can be found at
https://arkadeepnc.github.io/projects/active workspace/index.html.

2. Related Work
Shape from shading, introduced by Horn [23] and

Woodham [49], is a classical problem in computer vision
which involves obtaining the shape and surface reflectance
of an object by varying either the viewing direction, or
the scene illumination or both. Several versions of this
problem have been proposed where the researchers have
recovered the shape, reflectance and shading of the ob-
ject from learned priors [9], proposed accurate methods for

1we use RustOleum 7790830 Flat White spray paint

recovering object shapes as a collection of algebraic sur-
faces [50], and more recently have demonstrated highly ac-
curate frameworks for recovering object shape, reflectance
and geometry by refining multi-view RGB-D data captured
by commercial sensors [33].

Although a large portion of recent work [12, 21, 34, 43]
advocates learning implicit representations of objects from
multiple views and then using them for robotics tasks [53,
54], there has been increasing interest in research on infer-
ring object geometry from its interactions with controlled
directional illumination. Recent work has demonstrated the
capture of object surface normals and reflectances using
multi-view photometric stereo [51], explicitly recovering
object shape and reflectance from images taken with cam-
eras equipped with flashes [15, 33] and have demonstrated
cameras paired with an ensemble of projectors and flashes
to capture scene properties [22, 40]. Other notable efforts
include learning implicit scene representations from multi-
ple directionally illuminated images [52], estimating object
geometry from shadows cast by the object under directional
illumination [44], and reconstructing surface depth and nor-
mals from images under directional illumination [5]. Al-
though a large portion of these works demonstrate impres-
sive accuracy for a selected set of objects, it is unclear how
appropriate any of these are as a perception system for ma-
nipulation tasks. [27] were the first to demonstrate the use
of photometric stereo as a metrically accurate sensor and
smaller versions of the setup [25, 26] have been shown to
be useful for several manipulation tasks. Our work draws
inspiration from [27] as we demonstrate the applicability of
object geometry capture for different robotic manipulation
tasks using techniques from classical computer vision.

3. Methods
It is well known from the shape from shading litera-

ture [9, 23] that the measured intensity through an imaging
device is a function of three major quantities – the shape and
reflectance of the object and the illumination of the environ-
ment. In this work, we focus on recovering surface normals
as a proxy for the object shape. We use controlled lighting
in addition to ambient illumination. Further, we simplify
the shape from shading problem by exclusively considering
Lambertian objects – painting the objects with matte white
paint so that the reflectance is known (Lambertian).

As shown in Fig. 1a, we illuminate the workspace with
a low angle of incidence with approximately parallel light
rays l, emulating a light source at infinity. Objects are also
indirectly illuminated by the ambient light and we model
the illumination as a combination of a linear model [10]:

Iki =
ρ

π
⟨nk, li⟩ ∀i ∈ 1..., 6 (1)

and a quadratic model M using second order spherical har-
monic functions [27, 36]:

Iki = nk
TMink ∀i ∈ 1..., 6 (2)
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At inference time, given measured pixel intensities Iki and
albedo ρ, and per-channel linear and quadratic illumination
models li, Mi, we obtain the surface normals nk by in-
verting the models sequentially for L1:6 in Fig. 1a, while
accounting for shadows on the object. Optionally, we spa-
tially integrate the surface normals to get a depth map of the
object’s surface. As our perception pipeline builds upon tra-
ditional techniques from photometric stereo, we defer a de-
tailed discussion of our methods to the supplementary ma-
terial.

4. Experiments and Results
In this section we describe our experiments on using our

sensing system for common manipulation tasks. We start
by quantifying the performance of our approach and then
demonstrate the use of our approach in three sub-tasks re-
lated to manipulation – general purpose object picking, esti-
mating object deformation with vision, and pose estimation.
We focus the paper on the results of our experiments, defer-
ring details of the methods to the supplementary material.

4.1. Performance of our sensing approach
4.1.1 Quality of normals versus true depth sensors

The commercial depth sensors widely used for robot ma-
nipulation tasks are fundamentally different from our sen-
sor because the primary measurement in those sensors is
the depth of the visible surface from the sensor calculated
either through stereo matching (first 3 rows of Tab. 1), or
through time-of-flight (rows 4, 5 of Tab. 1). For these depth
sensors, we calculate the normals as spatial derivatives of
the captured depth. Our sensing approach infers object sur-
face normals from shaded images and optionally calculates
a depth map that best explains the observed normals when
the whole object is visible from the cameras’ viewpoint. We
also note that the commercial depth sensors we used (except
for the D405) are designed to operate in room scale environ-
ments and are not necessarily suited for measuring surfaces
of the objects we used. To focus on the quality of the esti-
mated surface normals we measure the statistical similarity
of the normals measured across all the sensors on the same
object patches. We image flat and textured surfaces at two
orientations – facing the camera’s projection axis and at an
inclination of 45◦ to the projection axis at the closest pos-
sible distance. We use the earth movers distance [31, 38]
to compare the normals captured by our approach and the
commercial sensors to the ground truth.

We also note that the stereo-based depth sensors rely on
visual textures which our objects lack. To address this, we
follow the recommendations for imaging textureless sur-
faces from [29] by projecting visible (D405) or infrared
(D435, D455) patterns on the objects as applicable. Ad-
ditionally, to reduce the noise in the measurements, for the
stereo sensors (rows 1 through 3 in Tab. 1), we calculate
the measured depth as a trimmed mean (we remove 10% of
smallest and largest outliers) of all the depths at each pixel
for 50 consecutive frames (acquired over 1.5 - 2 seconds).

Sensor Flat 0◦ Flat 45◦ Texture 0◦ Texture 45◦

D455 0.12 0.12 0.27 0.12
D405 0.09 0.04 0.21 0.15
D435 0.09 0.23 0.22 0.22
L515 0.06 0.05 0.20 0.15
Kinect II 0.24 0.14 0.19 0.16

Ours 0.02 0.01 0.18 0.10

Table 1. Comparison of our approach with commercial depth sensors
(lower is better). The metric value indicates the dissimilarity of the mea-
sured normals with ground truth which in the case of flat surfaces is related
to the standard deviation of the angles of the normals with respect to the
mean. Representative normal maps corresponding to the next best per-
forming sensor have been provided in Fig. 2a along with the data captured
by our sensor in those categories.

Normals (△◦) Surface (△mm)

Object name µ(σ) < 20◦ (%) µ(σ) max

Pyramid 13.31 (12.89) 93.06 1.31 (0.93) 4.17
Star 18.85 (14.04) 86.73 0.80 (0.60) 3.65
Bent Cyl. 18.81 (15.08) 86.19 0.50 (0.36) 2.03
Octagon I 16.23 (12.53) 83.45 0.87 (0.85) 4.50
Octagon II 17.17 (12.09) 82.52 1.20 (0.90) 5.05
Spot 17.38 (10.42) 83.55 0.54 (0.48) 2.82
Bas-relief 18.24 (10.01) 76.24 0.87 (0.94) 4.26
Bunny 20.07 (14.80) 75.88 1.60 (1.27) 8.12
Text. Pyramid 19.19 (17.52) 61.75 1.74 (1.31) 7.30
Happy Budd. 29.19 (20.52) 54.29 1.54 (1.22) 7.66

Table 2. Quantitative measurements of our approach in estimating ob-
ject shape. The measurements in the first set of columns are the deviations
of measured normals from ground truth normals in degrees. The measure-
ments in the second set of columns are the deviation of the reconstructed
surface from the ground truth mesh in millimeters. Please visit the project
website for a qualitative visualization of the results.

For the time of flight sensors (rows 4 and 5 in Tab. 1) we
use a 3 × 3 pixel window median filter to smooth the cap-
tured depths at each pixel after temporally filtering the data
using trimmed means. We present our quantitative results
in Tab. 1 and our qualitative results in Fig. 2a. We out-
perform all the commercial sensors in imaging surfaces as
normals in each category, often by significant margins. Our
approach is much better at detecting that a surface is actu-
ally smooth and flat, and in measuring local surface orienta-
tion. Unsurprisingly, we also note that the D405 and L515
sensors outperform the other sensors because they were de-
signed for (or support) close range imaging which is rele-
vant to the task we tested the sensors on.

4.1.2 Accuracy of our approach

To quantify the accuracy of our sensor, we 3D printed a
set of objects of footprint less than 12cm2 using a stan-
dard 3D printer. The objects were imaged with our setup
in Fig. 1. The surface normal quality measurement is per-
formed by finding the object pose that aligns the measured
surface normals to the ground truth surface normals gener-
ated with a renderer imaging the ground truth mesh. We
used photometric stereo to calculate the normals and the
method described in Sec. 4.4 to align the captured object
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(a)

(b)

Figure 2. Our approach compared to commercial depth sensors. In Fig. 2a we compare the quality of normals computed by our sensor with the
processed data from the best performing commercial depth sensor (Tab. 2). Figure 2b shows the normals of the bunny and octagon II from Tab. 2 as sets of 3
images each. In each set from left to right, we overlay the normals calculated by our approach (right of black line) on the ground truth normals (left of black
line), the per pixel deviations of the normals from ground truth (in degrees) and the deviations of the measured surface from the ground truth mesh in mm.

to the ground truth mesh model. We then calculated the an-
gle between the measured normal and the rendered ground
truth normals at every pixel and reported the statistics of
the angles as a quantitative measure of the quality of the
normals estimated by our approach. Our pose estimation
pipeline (Sec. 4.4.1) aligned the simulated and the real data
up to a maximum error of 5 pixels, making the per pixel
error calculation meaningful. In Tab. 2 under the label ‘nor-
mal quality’ we report the mean and the standard deviation
of the per pixel angle error in degrees. We also report the
percentage of pixels with angle error less than 20◦. This
metric was influenced by our observation during vacuum
picking experiments (see Sec. 4.2) that with the choice of
a more compliant gripper, our gripping pipeline was toler-
ant of surface normal errors up to 20◦. Notwithstanding the
errors introduced due to warps on some 3D printed models
(see e.g. high error pixels around the edges of insets 2 and
5 in Fig. 2b), the quality of our normal and depth estimates
are similar to classical methods [9, 50] and are marginally
worse than recent deep learning based methods [5, 51, 52].

To measure the surface quality, we generated a surface
depth map by spatially integrating the normals of the scene
calculated using photometric stereo (more details in the sup-
plementary materials). We then registered the integrated
depth map to the ground truth mesh using point-to-plane
ICP [39] and calculated the Hausdorff distance [16] be-
tween the recovered depth map and the ground truth mesh
of the object. The mean, standard deviation and the maxi-
mum point-wise distance of the recovered depth map from
the ground truth meshes are reported under the surface qual-
ity column of Tab. 2. For both the experiments, we observe
that the objects with large planar faces or smoothly vary-
ing curvatures worked the best while, objects with undercut
surfaces performed poorly – especially the happy Buddha
object which had several undercut faces (see Fig. 5a). We
present a qualitative result in Fig. 2b. More qualitative re-

sults can be viewed on our project website.

4.2. Controlled illumination for pickup tasks
To perform immobilizing grasps with a single suction

cup vacuum gripper, we need to identify a portion of the
object that is large enough for the suction cup to fit and
flat enough for the suction cup to be effective. Addition-
ally, we have to localize the point of grasp with respect to
the gripper and identify the local surface orientation so that
the gripper can approach along the surface normal with the
face of the suction cup perpendicular to the surface to best
execute the grasp. We have described pipelines to identify
surface normals, demonstrated our system’s performance in
measuring surface discontinuities, and we have a stereo sys-
tem (C1 and C2 in Fig. 1) for triangulating a world point in
the robot’s frame. In this section, we describe our pipeline
to detect arbitrarily oriented flat objects that can be grasped
with a suction cup gripper of a given size. We also demon-
strate how low angle of incidence directional illumination
can help identify and pick up thin flat objects when segmen-
tation is difficult using color or depth contrasts with conven-
tional sensors.

We divide the problem of picking up 3D objects into two
major steps – identifying the largest geometrically flat patch
in the workspace across two views and executing the robot
motion to grasp the identified face. To identify the largest
corresponding flat patch across the camera views, we mod-
ified the well-known CAMShift algorithm [13] to filter out
image patches not graspable with a vacuum gripper.

With geometrically corresponding grasping locations
identified across two views, we use camera poses and in-
trinsics of the two views C1 and C2 to triangulate the po-
sition of the gripper in the robot’s coordinate frame. For
the orientation of the gripper – we calculate the normal at
the grasp location by averaging the normals at the identified
grasp location in the two views. We then generate and exe-
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Figure 3. Our pipeline for grasping objects in a robot’s workspace. Figures 3a and 3b respectively show two distinct grasps selected by the camera C1

along X and Y directions respectively. On the top rows of Figs. 3a and 3b we show the detected grasps projected on the scene normals and, on the bottom
row, we show the detected grasps projected onto the occlusion edge pixels of the scene. We note that our selected grasps do not have occlusion edges.
Figures 3c and 3d shows our pipeline for picking up thin objects in absence of obvious depth or texture segmentation cues. Figure 3c shows the images of a
plastic disc (50mm diam., 3.15mm thick) captured with C1 placed vertically above the disc, using the directional lights L1:6. Figure 3d shows our detection
of the center of the discs overlaid on the image captured with cameras C1 (top) and C2 (bottom) with L7 and ambient light illuminating the scene.

cute a minimum jerk trajectory [19] which moves the robot
to make contact with the selected object, picks the object up
and, places it in a bin in the robot’s workspace.

For picking up thin objects without color contrast fol-
lowing Raskar et al. [37], we observe that image brightness
variations due to occlusion are more prominent than bright-
ness differences due to color texture. We use this intuition
to identify thin and flat objects from the background. For
this experiment we pick a plastic disc of 50mm diameter,
and 3.15mm thickness with a random pattern (pixel values
sampled uniformly between 0 to 255) printed on the surface
of the disc from a flat plane with the same visual texture. As
is obvious from Figs. 3c and 3d, there isn’t enough intensity
or color texture to segment the object from the background.
However, looking along the light direction (see Fig. 3c), we
note that the shadows due to occlusion are more prominent
than the visual textures on the object and the background –
as imaged in Figs. 3c and 3d.

This shadow cue was sufficient for our edge detection
procedure (see supplementary materials for details) to iden-
tify occlusion edge pixels in the scene. We then estimated
the center of the disc by fitting a minimum enclosing cir-
cle [35] to the occlusion edge pixels across the two views
C1 and C2. We visualize this in Fig. 3d – the centers of
the circles have been projected onto the images captured by
the two views with the ambient and overhead light (L7 in
Fig. 1a). To pick up the disc, we approached the center of
the disc along the surface normal of the tabletop by triangu-
lating the object from the two views in Fig. 3d. None of the
commercial depth sensors we used (see Tab. 1) detected the
disc reliably.

We performed 35 grasp experiments with 3D objects and
ten experiments with flat textured objects (5 with the disc,
and 5 with an irregular octagon inscribed by a 50mm diam-
eter circle and of 3.15mm thickness). Movies of our exper-
iments can be viewed on the project website. Across all the
experiments we failed four times while picking up the tex-
tured pyramid (Fig. 3a) due to the gripper failing to attach

or colliding with the object due to triangulation errors.

4.3. Measuring deformation
Our approach can be used to perceive the deformation

of objects by tracking the change of local normals on the
object’s surface. In this section, we describe our method
for measuring the buckling deformation of a 0.76 mm thick
rectangular PVC card of size 86×54mm. We measure the
deformation in a typical analysis-by-synthesis fashion – we
explain the change in the surface normals of the deformed
card by calculating the deformation of the card geometry.

Figure 4b shows a qualitative result of our pipeline –
the first image shows the reconstructed shape before the
onset of buckling and the second image shows the recon-
structed mesh overlaid on the deformed object. In both
cases, we show the local change in surface normals of the
reconstructed shape as the color of the mesh. An exter-
nal view of the objects is also provided as the inset to the
images. During our experiments we observed that skewed
viewing directions of the cameras C1 or C2, e.g. the inset
views in Fig. 4b, significantly reduced the performance of
our pipeline due to the decrease in the effective number of
pixels imaging the object across the two views. This led us
to generally use C1 and C2 to capture frontal views. More
qualitative results of our experiments can be viewed on the
project website. Detailed explanation of our pipeline can be
found in the supplementary materials.

To verify that we indeed captured the physical process
behind the card buckling under vertical loads, we com-
pared our predictions with theoretical values calculated us-
ing solid mechanics. The theoretical data showed a linear
trend in the mean change in surface normals and the verti-
cal deformation of the card. A line with a slope of 1.78◦
and offset of 0.114 fits the theoretical data with a r2 score
of 0.975. We repeated the experiment of deforming the card
five times with five different PVC cards and different cam-
era positions (C1 and C2 in Fig. 4a) and obtained 23 data
points as shown in Fig. 4c with five different markers cor-
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Figure 4. Our results of measuring the deformation of known objects. Figure 4a shows a schematic diagram of our procedure, Fig. 4b shows the
estimated shape of the card overlaid on a camera image. The insets of the images in Fig. 4b provide an external view of the state of the cards. Figure 4c
summarizes the quantitative results of result of our experiment to show we were able to estimate the physical process behind the deformation of the card.

Method Scale Error µ(σ) Max Sample size

VIRDO [46] 89× 56 1.12 (- - -) – 5.6k
VIRDO++ [47] 89× 56 1.04 (0.35) – 5.6k

Ours 86× 54 0.78 (0.52) 4.57 100k

Table 3. Comparison of our method of measuring deformation (cham-
fer distance) against baselines [46, 47]. Our experiment (single view) was
carried out in simulation because we do not have access to a sensor accu-
rate enough to measure ground truth deformations, and we are comparing
the performance of Wi and colleagues’ results during inference on sim-
ulated data with a single camera view. Our experiment captures the de-
formed card at a simulated endpoint deflection of 12 mm corresponding
to a mean change in surface normals of 0.41 radians. All length measure-
ments are in mm. and all the experiments assume full visibility of the
object.

responding to the experiments. The experimental data also
showed a linear trend – a line with slope of 1.9◦, offset of
0.055 fit the data with a r2 score of 0.966. Disregarding the
difference in the offset due to the baseline noise in our mea-
surements and the slight violation of a geometric bound-
ary condition due to slipping of the card at the base, from
Fig. 4c we can conclude that our pipeline is repeatable and
can capture the physical process of the buckling deforma-
tion of the card due to vertical loads.

We note that in this work we exclusively use vision. We
do not factor in the force that is causing the deformation
in the object. In related work by Wi et al. [46, 47] the au-
thors combine visual measurements with forces measured
by a force torque sensor coupled to the deforming object to
infer its deformation. For objects of similar scale, we com-
pare our performance with the works of Wi and colleagues
in Tab. 3. Although we perform better in reconstructing
shapes, we require nearly full visibility of the object in both
views which is not a limitation for Wi et al. in [47].

We also note that our “analysis-by-synthesis” procedure
works better than integrating the captured normal map (see
supplementary for details) to reconstruct the surface of the
card. This is due to the strong view dependence of the shape
reconstruction, which prevents us from trivially incorporat-
ing multiple views to reconstruct the bent object. Using two
camera views and an initial mesh of the object to predict the
shape of the deforming card makes our pipeline more robust
to shadows and slight occlusions in camera views.

4.4. Controlled illumination for localization

4.4.1 Estimating poses of known objects

When an object model is available, we estimate its pose by
aligning the measured surface normals, depth edges, and
object silhouettes of the object with their simulated counter-
parts. We improve on commonly employed pipelines in the
pose estimation literature [14, 24, 32] by generating good
initial pose estimates through discovery of object patch cor-
respondences between the observed and simulated surface
normals (inset 1 of Fig. 5a). We describe our method in
detail in the supplementary material.

We present a qualitative result in Fig. 5a – the second in-
set overlays the normal images with measured normals NR

on the left of the black line and rendered normals NS on
the right. In the third inset of Fig. 5a, we visualize our per-
pixel pose estimation costs overlaid on the observed image
silhouette MS on an arbitrary scale between 1 to 100. We
note that the under-cut parts of the geometry, highlighted
by green circles, have large local costs, but we do not incur
large costs due to silhouette misalignment or scaling as seen
by the absence of high cost patches at the object edges or
background. For all the objects tested, our multi-scale and
multi-modal pose estimation pipeline reliably converges to
the correct pose within a 5.5 pixel error (7 px/mm) even
with high local errors in the measured data – the model in
Fig. 5a has ∼50% of pixels with erroneous normals (> 20◦

deviation from ground truth).

We present quantitative measurements of our pose esti-
mation approach for all the objects in Tab. 2 and Tab. 4.
Our experiments were done with C1 imaging a 227mm ×
129mm area at a resolution of 7 pixels/mm. We placed
each of the objects at a random position and orientation and
used the pipeline described in this section to align the 3D
model to the observed data. After the alignment, we over-
laid the simulated and measured data and manually mea-
sured the pixel misalignment between the real and simu-
lated data around the object edges. We repeated this exper-
iment five times for each object and report the mean and
standard deviations of the pixel misalignment in Tab. 4.
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(a) (b)

Figure 5. Estimating object pose in the robot workspace. Figure 5a shows our steps in estimating object poses when a 3D model of the object is available
apriori. From left to right in Fig. 5a we calculate the pixel-wise correspondences between captured data and the available geometry, overlay the captured
surface normals (right of black line) onto the ground truth object normals (left of black line) and show our pixel-wise pose estimation costs about an arbitrary
scale. The green circles indicate areas with high local costs due to errors in estimating normals. Figure 5b shows our pipeline for tracking object pose when
a 3D model is not available a priori. From left to right, we show our captured data, calculated normals, calculated depth edges, calculated 3D representation
of the surface with salient point-features overlaid on the points in red and, initial and final stages of our estimation of the object’s pose.

Object Bounding Box (mm) Px. Errors µ(σ)

Pyramid 100× 100× 55 2.50 (1.70)
Star 110× 110× 15 3.62 (1.03)
Bent Cylinder 116× 48× 13 5.50 (2.12)
Octagon I 100× 100× 29 3.35 (0.88)
Octagon II 100× 100× 29 2.85 (1.83)
Spot 52× 15× 53 1.50 (0.23)
Bas-relief 83× 110× 7 0.80 (0.20)
Bunny 93× 94× 43 4.06 (1.19)
Text Pyramid 100× 100× 55 4.02 (0.96)
Happy Buddha 115× 45× 37 3.10 (0.69)

Table 4. Performance of pose estimation for known objects. All the
experiments were done with a resolution of ∼7 pixels/mm. Qualitative
results for the objects happy Buddha, bunny and octagon II can be found
in Fig. 5a and the first and fourth insets of Fig. 2b respectively. More
qualitative results can be found on the project website.

4.4.2 Estimating the pose of unknown objects

If a 3D model of an object is not available, the pose esti-
mation problem, defined classically, is ill-posed. In those
cases, we can estimate the object’s change in pose through
rigid registration of the 3D representations of the same ob-
ject as it moves. For our 3D representation, we choose
the point cloud obtained by integrating the surface normal
maps, factoring in the camera intrinsics (see supplementary
for details). As noted before, this representation is not met-
rically correct for parts of the object that are not fully visible
by the camera (e.g. full profile of the belt clip of the knife in
Fig. 5b), however, the relative surface depth changes and the
overall scale of the object are captured accurately which lets
us estimate the change in pose between two measurements
of the same object. We pictorially describe our pipeline for
tracking unknown objects in Fig. 5b, which involves captur-
ing the image of the object, measuring its surface normals
and depth edges, generating a point cloud of the observed
surface and registering two instances of the point clouds to
obtain the change in pose. We describe our pipeline in detail
in the supplementary material.

Object Bounding Box (mm) △X(mm) △Y (mm) △θ(◦)

Knife 172× 30× 20 1.02 1.66 0.36
Monkey 46× 64× 8 1.67 0.97 0.22
Circuit 13× 21× 33 3.28 2.40 1.28
IO shield 120× 39× 21 1.48 1.86 0.25

Table 5. Performance of our tracking pipeline for unknown objects.
All the experiments were done with a resolution of approximately 7 pix-
els/mm. Qualitative results for the knife is shown in Fig. 5b, to view results
of the other objects, please visit the project website.

To evaluate our pipeline for estimating pose changes
of unknown objects, we imaged four objects of different
scales twice, while introducing a known pose perturbation
between two measurements and recovered the pose pertur-
bation using the method described in this section. We re-
peated this experiment six times for each of the objects in
Tab. 5 and report our pipeline’s uncertainty in recovering
the pose perturbations. We present our quantitative results
in Tab. 5 – our approach has a tracking uncertainty of about
2◦ in planar rotation and about 4 mm in translation.

Counter-intuitively, we also noted that generating a mesh
of the object from the captured 3D representation and then
using the mesh in the pipeline discussed in Sec. 4.4.1 ac-
tually led to poorer pose estimation because the successive
processing steps (normal calculation, integration, and mesh-
ing) reduced the quality of the mesh input. Since the 3D
representation generated is strongly dependent on the view-
point of the camera during the experiment meant that the
3D model was metrically incorrect for novel views.

4.5. Application to generic objects

Our previous experiments focused on Lambertian ob-
jects with diffuse, white paint in calibrated environments.
Extending these techniques to more general objects is pos-
sible using off-the-shelf methods for intrinsic image decom-
position. Intrinsic image decomposition separates natural
color images into a reflectance image and a shading image.
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Figure 6. Our photometric stereo on colored, non-Lambertian objects
using intrinsic image decomposition [17] on a dataset [42]. Sec. 4.5.

These shading images can be used as input to any typical
photometric stereo method, as they estimate the isolated
impact of lighting across the surface. There are many ap-
proaches to intrinsic image decomposition, including clas-
sic priors [8] and data-driven learning methods [11, 20].
In our experiments, we use a recent method called PIE-
Net [17] to perform the intrinsic image decomposition.

We show the results of this approach on three exam-
ples from the DiLiGenT [42] dataset, which contains sev-
eral objects that include not only color but also general
non-Lambertian materials. We show the results of a simple
pipeline, using the pretrained PIE-Net model to obtain shad-
ing images. Photometric stereo is solved using the global,
linear model that assumes distant point light sources and
Lambertian shading. For each scene, DiLiGenT provides a
single view of the scene with 95 different illumination con-
ditions. We used 30-40 lighting directions for our recon-
structions, each at PIE-Net’s 2562 image resolution.

Our results are shown in Fig. 6. While this pipeline pro-
duced good results for some objects (bear, buddha), it strug-
gled with the glossy, dark, and self-occluding harvest ob-
ject. Nonetheless, considering that our pipeline used an off-
the-shelf network and classic photometric stereo (without
explicit handling of shadows or specularities), the results
are promising. While this approach is far from the metric
quality of our robotics setup in Secs. 4.1.2, 4.4.1 and 4.4.2,
we believe this quality of normals is potentially promising
for vaccum gripper tasks such as those in Sec. 4.2 or the
deformation estimates in Sec. 4.3. While we focused on the
high end of precision in photometric stereo, this type of off-
the-shelf pipeline enables generalization to generic objects,
and produces potential utility in less demanding tasks.

5. Discussion and Future Work
Having a Lambertian reflectance requirement for our ob-

jects is restrictive and can be a barrier for our methods to ap-
ply to many manipulation tasks – future work can build on
Sec. 4.5 to enroll general objects into our pipeline. During
this work, we observed that although we do well in inferring
the cumulative shape of the object we often have high local

errors – see e.g. the second inset of Fig. 2b, and third inset
of Fig. 5a. We believe that these local errors are due to shad-
ows that could not be resolved by our proposed method of
inferring shape at a single pixel level with lights that are not
co-incident with the camera. Further research is required
on multiplexing the illumination sources to reduce the ef-
fect of shadows and to determine a better combination of
light and camera locations. Lights collocated with cameras
and on the robot workspace will possibly address some of
the limitations of our work. Further research is also required
for selecting alternative object representations. Current lit-
erature indicates that a triangle-based representation [33] or
locally smooth patch-based representations [50] may work
but will need a plethora of hand-tuned regularizers, hyper-
parameters and a significant amount of computational ef-
fort to converge to a meaningful representation. Volumetric
representations [21,34] have certain advantages over patch-
based representations in the context of robotic manipula-
tion. Integrating volumetric representations with a robot
workspace scaled controlled illumination approach is future
work. In this work, we achieve a higher fidelity of measure-
ment than some commercial depth sensors by imposing pri-
ors on object reflectances and controlling illumination. A
natural extension of the current work would be to augment
the performance of a commercial depth sensor by using it
in conjunction with our approach.

6. Conclusions
In this work we demonstrated the application of classical

techniques from photometric stereo to robotic manipulation
through a robot workspace scaled controlled illumination
system. We showed that, by enforcing a reflectance prior
on the objects, reasoning about observed object intensities
conditioned on the direction of illumination can yield accu-
rate surface normals and identify surface depth discontinu-
ities with very little computation. We also showed that the
normals captured by our approach are significantly better
than the ones derived from measurements with commercial
depth sensors and we also evaluated the accuracy of our ap-
proach in capturing surface depth and normals. With the
surface representations generated using our approach, we
demonstrated three common manipulation tasks – picking
up objects of arbitrary shape with a single point vacuum
gripper, estimating bending deformation of a known object
and estimating poses of Lambertian objects.
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