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Abstract
Human performance capture from RGB videos in un-

constrained environments has become very popular for ap-
plications that require generating virtual avatars or digi-
tal actors. SOTA methods use neural network (NN) tech-
niques to estimate the shape directly from photos, yield-
ing a simplified model of the human body. While effective,
NN techniques frequently fail under challenging poses and
do not preserve temporal consistency. On the other hand,
optimization-based methods like shape-from-silhouette can
produce more precise reconstruction; however, they typi-
cally require a good initialization and are computationally
more intensive than NN. To address issues of previous meth-
ods, this work proposes a learning-based approach for opti-
mizing fine-grained shape representation from a monocular
RGB video. Our main idea is to sequentially recover dif-
ferent shape details (i.e. average shape, clothing, wrinkles)
using separate neural networks. At each level, our network
takes the sparse/noisy gradients of body mesh vertices w.r.t.
the shape, and predicts dense gradients to update the body
shape. Despite being trained on synthetic data, these net-
works have surprisingly good generalization to real images.
Experimental validation shows that our approach outper-
forms NN approaches in recovering shape details while also
being an order of magnitude faster than optimization-based
methods and robust across varied poses and novel views.

1. Introduction

Capturing high-fidelity human shape is essential for
many modern applications, including virtual/augmented re-
ality, telepresence, gaming, and digital actors in movies.
To address these demands, capturing individuals and their
clothes from RGB images [30, 49] or videos [41, 44] with
the goal of creating 3D virtual humans has become a promi-
nent field of research. Popular 3D shape estimation tech-
niques use the SMPL body model or its variations [16,23] to
successfully estimate 3D body shapes from images/video.

However, estimating fine-granular shape such as clothing or
wrinkles from images or monocular videos is a challenging
task due to the depth ambiguities and the highly deformable
nature of clothing.

Several approaches estimate the detailed shape using op-
timization techniques. Particularly, the 3D clothing shape
is optimized based on the contour of the person by progres-
sively reducing the disparity between the rendered and de-
tected silhouette images. Due to the ambiguity caused by
the single-view silhouette loss, these methods rely on ei-
ther highly constrained priors of mesh smoothness [2], cloth
shape models [41], highly constrained scenarios of self-
rotating video [2, 15, 47], or a pre-scanned avatar [22, 44].
Further, the runtime of the aforementioned optimization is
frequently unacceptable for many relevant applications. Al-
ternatively, other researchers, including [9, 13, 14, 30, 31,
42, 43, 48], extend the capability of deep learning to recon-
struct the 3D human body with clothing in a data-driven
way. A deep neural network takes a single RGB image
as an input to learn pixel-aligned features for predicting an
implicit function of a 3D person with intricate textile ge-
ometry. These learning-based approaches offer a fast in-
ference speed and a surprising generalization to in-the-wild
pictures. However, existing algorithms lack accuracy and
robustness in presence of difficult poses, textures, or per-
spectives. Moreover, when applied to video, there is no
consistency on the temporal smoothness of the 3D output.

To improve the efficiency of the optimization methods
and the accuracy of the NN methods, this paper proposes
a sequential shape recovery method, where a set of net-
works learn different shape details. Fig.1 illustrates how we
are able to estimate the shape in a coarse-to-fine manner.
Given an input image, we first estimate the underlying body
shape using the SMPL model (Fig.1(a)). Later, two inde-
pendent networks estimate the average clothing shape and
pose-dependent clothing deformations (Fig.1(b-c)). Lastly,
the wrinkles are extracted by the final network (Fig.1(d)).

Our approach follows the learning to optimize frame-
work that learns a mapping from image features to shape
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Figure 1. Given a monocular RGB video in the wild, we propose a sequential shape estimation method. The method recovers different
shape details sequentially. First, we estimate a naked SMPL body (a), then an average clothing shape (b) is estimated from multiple frames
sampled from sequence. (c) represents a frame-dependent shape estimation based on (b). Finally, (d) uses surface normals to estimate the
wrinkles. (b-c) uses a gradient rectified network (GRN) to robustly estimate each shape deformation.

deformations in a linear iterative fashion [36] or through
non-linear regression with neural networks [7,8,32,45]. For
each sequential step to improve the shape, the gradient rec-
tification network (GRN) takes the sparse/noisy gradient of
the cost function w.r.t. the shape and estimates a dense rec-
tified per-vertex gradient to reliably update the vertices. We
learn these GRN using synthetic 3D dynamic human mo-
tion datasets. More importantly, we just need the 3D ge-
ometry to replicate the input gradient, and no high-quality
texture data are required. Compared with dense optimiza-
tion algorithms, our predicted gradient is more accurate and
converges within a few iterations, which greatly accelerates
the inference time. Extensive results under different set-
tings show the improved accuracy and effectiveness of our
approach for 3D human performance capture from monocu-
lar video. Our contributions can be summarized as follows:

• We propose the gradient rectification network (GRN)
which takes as input a sparse and noisy gradient and
outputs a robust and dense gradient that is much more
informative of shape deformation. Despite the fact that
the GRN is trained with 3D synthetic dynamic human
data, it shows robustness to generate tracked 3D hu-
man models from videos under a variety of scenarios.

• We propose a human performance capture method
from monocular video that sequentially recover differ-
ent shape details (i.e. average shape without clothes,
clothing, wrinkles) using a group of neural networks.
The technique achieves SOTA results while drasti-
cally reducing the optimization runtime, potentially
enabling real-time execution.

2. Related Works

This section examines the work on predicting body shape
from video, with a focus on the effective clothing modeling.

2.1. Human Pose and Shape Estimation

Initially, human pose estimation refers to localize 2D [6,
38] or 3D [26, 29] keypoints from humans in images. Be-
yond locating 2D or 3D keypoints, recent models [16,23,28]
are able to fit high-dense mesh reconstructions into im-
ages. While these methods have performed great results,
they are typically not robust and efficient. With the rise of
deep learning, inference methods that regress pose param-
eters [17, 19, 21, 34] led to faster inference and robustness
to pose initialization. Among all 3D human model fitting
approaches, a recently trend called “learned gradient de-
scent” [7, 8, 32, 45] that iteratively refines SMPL parame-
ter prediction, is closer to our idea of sequential clothing
shape fitting. However, our emphasis on fine-grained shape
recovery by estimating per-vertex clothing deformation is
more challenging compared with estimating SMPL control-
ling parameters, due to the large degree of freedom brought
by non-rigid cloth motion. Other researchers [20, 35] align
body/hand mesh by regressing a per-vertex “offset map”
from image. We argue that gradient features that we take as
input from 2D image alignment loss are more robust for de-
tailed mesh refinement than taking image features directly.

2.2. Optimization-based Clothing Capture

Traditional human clothing capture approaches model
the task as an optimization problem, where a non-rigid de-
formation of the body is estimated repeatedly to best suit
the input image. Since directly estimating per-vertex off-
sets from silhouette image is highly unstable, early meth-
ods [12,44] start with a pre-scanned template and support a
small range of deformation. For in-the-wild videos, such as
videos taken from commercial cameras, researchers impose
different constraints to obtain plausible cloth shape. Par-
ticularly, VideoAvatar [2] hand-crafts multiple regulariza-
tion terms and decomposes the clothing shape into a global
consensus shape and a frame-wise deformation. SelfRe-
con [15] and Video2Avatar [11] proposed to jointly opti-

3515



mize cloth geometries with textures by leveraging a back-
end neural renderer. Another popular trend is to parameter-
ize the non-rigid deformation using Principal Component
Analsyis [41], a deformation graph [10], or garment param-
eters [33]. These methods typically converge and provide
spatial-temporal coherence. Unfortunately, they only work
in constrained cases and are not computationally efficient.

2.3. Learning-based Clothing Capture
Inspired by the success of deep neural networks, pio-

neer works [5, 49] start to predict 3D human model with
cloth directly from input RGB image. Concretely, Bhatna-
gar et al. [5] regress PCA controlling parameter of multiple
types of garments, and Zheng et al. [49] predict a coarse 3D
volume of clothed human then refines the surface normal
in the frontal view. The main drawback of these methods
is due to the incapability of the global feature to describe
highly complex geometry details of the cloth. As implicit
function becomes the new fashion of 3D representation,
PiFU [14, 30, 31] generates implicit 3D human shape lever-
aging pixel-aligned features and thereby performs more re-
alistic cloth geometry and wrinkle details. However, due to
the lack of large-scale 3D human scans, the generalization
ability of these methods are challenged by novel poses and
views. Following works [9, 13, 43, 48] greatly alleviate this
problem by adding SMPL shape prior. Overall, these meth-
ods allow fast inference speed with plausible reconstruction
results; however, the performance of these methods are still
limited under challenging poses, and typically it is hard to
impose spatial-temporal consistency.

3. SMPL and SMPL+D Models
The SMPL model [23] is a parametric model for naked

body shapes. It is parameterized by two groups of param-
eters � 2 R10 and ✓ 2 R24⇥3 to control the naked body
shape and pose respectively. Once the parameters, �, ✓ are
estimated, the canonical human shape is deformed from a
template shape T̄ , by adding the body pose and shape de-
pendent deformation BP (✓), BS(�). On top of the naked
body, we follow SMPL+D [23] model that provides extra
degrees of freedom D 2 R6890⇥3 to deform the canonical
body vertices and generate clothing. We use X in Eq. 1 to
denote the total human body and clothing shape in canoni-
cal space:

X = T (�,✓,D) = T̄ +BS(�) +BP (✓) +D. (1)

Then, we transform the T-pose shape X to the posed space
M using Linear Blend Skinning (LBS), driven by the pose
parameter ✓ and body joint J(�) following [23]. Formally,

M = M(�,✓,D) = W (X, J(�),✓,W). (2)

SMPL Body Pose and Shape Estimation from Video:
As shown in Fig. 1(a), given a video with L frames, the

first stage of our pipeline estimates the SMPL parameters
�̄, {✓}L1 , the camera intrinsics K and global translations
{t}L1 . We first use the deep neural networks [18] to pro-
vide an initial estimate of SMPL parameters �̄, {✓}L

1 , then
jointly refine them with camera intrinsics K and global
translations {t}L1 using gradient methods [41]. Please re-
fer to Appendix A for details.

In the following sections, we introduce our sequential
approach to reconstruct the clothing shape D.

4. Learning-to-Optimize Clothing Vertices
This section introduces our main contribution, which is

a learning-based method to compute accurate gradients to
optimize over the vertices in the SMPL+D model [23].

Classic optimization-based methods (e.g. shape from sil-
houette) reconstruct 3D garments by minimizing the dispar-
ity between the rendering output of predicted 3D shape and
the input image. However, capturing the 3D clothing shape
from monocular video is an ill-posed problem due to the
scale ambiguity and non-linear projection. Therefore, the
previously proposed optimizations [2, 44] are highly non-
convex and typically lead to inconsistent 3D solutions. A
major issue is that the gradient of the 2D cost function w.r.t.
the visible vertices (X) is sparse, noisy, and the gradient
w.r.t. vertices that are not observed (in the image) is in-
existent. To address this issue, we propose a gradient recti-
fication network F , that is learned from synthetic 3D data.
At inference time, F will provide robust directions for all
vertices (including the unobserved ones) to minimize the
2D disparity between the 3D render model and the image.

The general training and inference scheme of our
learning-to-optimize framework is shown in Fig. 3. In each
iteration ⌧ , the T-posed shape X(⌧) is deformed by the es-
timated SMPL parameters ✓ and translation t to the posed
space M , Eq. 2. With the camera parameters K, we used a
rasterizer to render a silhouette map in Rh⇥w and a normal
map in Rh⇥w⇥3 from the mesh M, see Fig. 1. Off-the-
shelf methods provide reliable silhouette and surface nor-
mal map prediction given the input image. Our method tries
to minimize a cost function, Ec , that generally minimizes
the difference between the image features (e.g. silhouette,
surface normals) and the rendered 3D shape. To minimize
Ec through gradient descent, we first compute the derivative
of Ec w.r.t. the canonical shape X , thus obtain an initial
gradient. Like the classical optimization methods, this gra-
dient from solely the 2D energy term Ec is sparse (only val-
ues in observed vertices), noisy, and ambiguous. Given the
initial gradient as input, our proposed gradient rectification
network (GRN) F predicts a dense and smooth gradient to
update the canonical shape X. Eq. 3 describes the “gradient
descent” in ⌧ -th step with step size ↵.

X(⌧+1) = X(⌧) � ↵F(X(⌧),
@Ec

@X(⌧)
) (3)
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Figure 2. Generation of target silhouette/surface normal map in
training and inference phase.

Fig. 2 illustrates the differences in training and testing
phases with GRN. Particularly, during the inference time,
we obtain the target silhouette/normal map prediction via
off-the-shelf segmentation and normal estimation methods.
Instead, we leverage a SMPL+D registered 3D human scan
dataset in training time. Each 3D human shape X has a
paired ground truth 3D scan XGT . The rendering output
of XGT is considered as target silhouette/surface normal
map. GRN learns to update the clothing shape X such that
it could minimize the disparity between the rendered and the
target silhouette/surface normal map. To train this network
F , we propose a loss function L that supervises X to align
with ground truth shape XGT .

5. Sequential Human Performance Capture
Our goal is to have an accurate estimation of clothing

deformation D from a monocular video. In this paper, we
follow a sequential approach to optimize this very high-
dimensional deformable shape. Sequential optimization,
that progressively provides at each step an additional con-
straint with a better initialization, has provided better results
that jointly optimize all the constraints at once starting from
random initializations. We propose to decompose the to-
tal clothing shapes into three separate parts and leverage a
sequential pipeline as shown in Fig.1.

For the n-th frame, the clothing deformation can be rep-
resented as the combination of three deformations:

Dn = D̄+ D̂n + eDn. (4)

where D̄ is a personalized clothing template that is esti-
mated from all the frames in the video (Sec. 5.1). D̂ is a
frame-dependent clothing deformation (Sec. 5.2). Finally,
eD represents the high-frequency wrinkle details (Sec. 5.3).
In each subsection, we describe the data, the formulation of
the 2D energy term Ec and training loss L to train GRN F .

5.1. Consensus Clothing Shape Estimation
This section describes the consensus shape estimation

(D̄) that uses all frames in the sequence, as shown in
Fig. 1(b). In this stage, we compute one clothing shape that
can minimize the rendering error in the silhouette across all
sampled frames in the sequence. Recall that with the esti-
mated pose {✓}L1 in Sec. 3, we can deform the consensus
shape in T-pose to target poses in different frames.
2D Energy Function The energy function of the consen-
sus shape aggregates the single-frame silhouette energy.
Specifically, for each vertex of the mesh in the posed space
X , we count the per-frame silhouette energy Ec

sil. The total
energy is the average of a silhouette terms from all L frames
that are sampled.

Ec =
1

L

LX

n=1

Ec
sil n (5)

Ec
sil =

X

i

||yj �⇧(Mi)||2 (6)

Ec
sil describes the disparity between the rendering output

and target silhouette image. Particularly, we align two sil-
houette maps via searching the correspondences i ! j
between pixels of segmented image silhouette yj and pro-
jected mesh silhouette ⇧(Mi), and minimize the distance
between corresponding pixels. Differentiable renderer is
able to find correspondence for pixels in the rendered sil-
houette, but converges after dense iterations. As we target
on an instant estimation of cloth shape within a few itera-
tions, we design an ICP algorithm to directly align boundary
pixels, but adapt to corner cases when the boundary of a sil-
houette map degenerates due to self-occlusion. Please refer
to Appendix B for our correspondence searching algorithm.
Training Loss for the Gradient Rectification Network:
In the training phase, the network learns to predict gradi-
ents that correct the naked body shape to the average cloth-
ing shape. We make use of an existing dynamic 3D hu-
man dataset [25] with ground truth SMPL fitting to simu-
late the silhouette images of naked people and people with
clothes in a temporal sequence. Given 2D silhouette obser-
vations from multiple frame, we aim at recovering the aver-
aged clothing shape XGT . Therefore, the output of the net-
work, i.e. the rectified gradient, is supervised by the ground
truth deformation from canonical clothing shape X to target
clothing shape XGT . We define the data term Edata in Eq.
7 as a L-2 distance between predicted gradient and ground
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Figure 3. General training and inference procedure of our gradient rectification network in iteratively estimating the consensus shape,
frame-dependent deformation and wrinkle details of the clothing. The thin red arrows denote the direction of input/output gradient.

truth gradient.

Edata = ||XGT �X(⌧) � F(X(⌧),
@Ec

@X(⌧)
)||2 (7)

Additionally, we add a 2D energy term E2d equivalent to
Ec in Eq. 5 that supervises the updated mesh to align silhou-
ette maps. E2d reinforces the consistency between the input
gradient @Ec

@X(⌧) and the output gradient F(X(⌧), @Ec

@X(⌧) ) of
the network for visible vertices and thus prevents the over-
fiting. The loss function is formulated as:

L = Edata + !2dE2d. (8)

where !2d is the weight parameter to balance two terms.

5.2. Frame-dependent Clothing Shape Estimation
The consensus shape D̄ (Sec. 5.1) provides a good av-

erage (over frames) estimation of the shape. However, we
miss frame-dependent details, recall that when the person
moves slightly over time, the clothing shape also changes.
In this section, we introduce a method to predict a frame-
dependent cloth motion D̂i for each frame. Another GRN is
separately trained with a similar scheme as Sec. 5.1. Com-
pared with the consensus shape, in this section, the 2D en-
ergy term Ec only counts the single frame silhouette loss
Ec

sil in Eq. 6.

Ec = Ec
sil =

X

i

||yj �⇧(Mi)||2 (9)

With temporal 3D human scans dataset, we simulate the
input gradient of the training data as in Sec. 5.1, but use

our estimated consensus shape as initial shape. Given a sil-
houette observation in a single frame, the GRN corrects the
clothing shape of this frame from the average shape predic-
tion in Sec. 5.1. Since single frame refinement introduces
more ambiguity, extra regularizations including a L-2 term
El2 and a Laplacian term Elap on X prevent the gradient
predictions of invisible vertices from overfitting the train-
ing data. We reweight the data term, 2D silhouette term and
regularization terms with !sil,!reg,!smooth.

L = Edata + !silEsil + !regEl2 + !smoothElap (10)

5.3. Wrinkle Extraction
In previous section, we provided an estimation of the

clothing shape to match the silhouette. However, the silhou-
ette does not convey information to model wrinkles. This
section introduces a separate GRN F to extract wrinkle de-
tails for the clothing shape from Sec. 5.2.

Traditional Shape from Shading methods [1, 39] for
wrinkle extraction require complicated albedo and illumi-
nation interaction, which become problematic to apply in
our in-the-wild scenario. Recently, [37, 43] propose deep
learning approaches for robust cloth normal estimation from
monocular image. With the predicted normal map as a su-
pervisory signal, researchers [41, 43] are able to achieve
plausible wrinkle generation by aligning the normal map of
the generated clothing shape to the target normal map.

Though directly minimizing the distance of two normal
maps results in plausible 3D wrinkle details, one severe
problem is the runtime of the optimization process, due
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to the heavy use of a differentiable renderer. Motivated
by [27, 31, 49], we exploit the potential of neural networks
in generating realistic wrinkle details from flat clothing sur-
faces and benefit from NN inference speed. However, un-
like PiFUHD [31] that recovers wrinkles from a target 2D
normal map, we follow our framework in Sec. 4 and take
the gradient of normal energy w.r.t. 3D vertices as an input.
By taking the derivative of Ec w.r.t. clothing shape X in
canonical space, the input gradient is invariant to poses and
rotations, which allows us to train the network with a small
set of data and generalize to the testing scenario.
2D Energy function The 2D energy term aligns the ren-
dered normal map of our predicted clothing shape with tar-
get normal map. Specifically, we formalize the normal en-
ergy term Ec in this stage as Eq.11.

Ec = Enorm =
X

i

||ni � Ii||2 (11)

where ni is the surface normal of vertex i and Ii is its cor-
responding surface normal sampled from the ground truth
normal map. In practice, ni is gathered by a bilinear inter-
polation on the target normal map N(·).

Ii = N(⇧(Mi)) (12)

Training loss for the GRN To train this network, we sim-
ulate the wrinkle extraction process from static 3D human
scans. Given 2D normal signals, the network learns the high
frequency deformations from a Laplacian smoothed mesh
to a target clothing mesh with wrinkles. The supervision
of the network is composed of L-2 distances El2 (in Eq. 7)
and a normal distance Enorm (in Eq. 11) between corre-
sponding vertices from the predicted mesh and ground truth
mesh. Enorm ensures the reconstructed mesh to generate
visually plausible wrinkles (i.e. accurate surface normals of
the clothing shape).

L = Edata + !normEnorm (13)

5.4. Training Data Synthesis
The main challenge to apply our learning-to-optimize

clothing shape recovery is the domain gap between syn-
thetic training data and in-the-wild videos. This subsection
describes our sequential training data synthesis that mimics
the input of GRN at each stage of our inference pipeline.
For consensus shape estimation in Sec. 5.1, we leverage
a temporal 3D human clothing sequence and sample 20
frames per sequence and aggregate individually computed
gradients from silhouette energy. The scan under A-pose
with minimal pose-dependent deformations is considered
as the target consensus shape of the sequence. For frame-
dependent deformation estimation, the network learns to
deform our learned consensus shape to target scans in a

sampled frame. For these two stages, since the 2D silhou-
ette loss is insufficient to guide the wrinkle generation, we
smoothen the target shape with a Laplacian filter to elimi-
nate wrinkles. Sec. 5.3 is separately trained on the Tailor-
net dataset [27] to recover wrinkle details of ground truth
clothing shape from a smoothed input shape, since [27] con-
tains higher resolution SMPL registered 3D scans. As train-
ing data contains SMPL registrations, in the training phase,
we compute the silhouette/normal energy Ec directly from
2D projection of corresponding vertex pairs, instead of the
correspondence searching in Sec. 5.1. All target silhou-
ette/normal maps in the training phases are rendered from
3D geometry data without the need of texture information.

The concrete network architecture (in Fig. 3) and our im-
plementation details are described in Appendix C.

6. Experiments
This section provides the accuracy and computational cost
evaluation of our proposed method on public benchmarks
and self-captured videos against optimization-based and
learning-based methods.

6.1. Experimental Setting
Dataset: We evaluate quantitatively the performance of
our method on the Pablo sequence from the MonoPerfCap
dataset [44]. This sequence contains a 156-frame multi-
view (8 camera) video and reconstructed 3D scan sequence
as ground truth. Following the previous work [41, 44], we
selected a single view of the Pablo sequence as the input
for testing. Besides, we collected a set of online and smart-
phone shot videos for qualitative results. Our methods do
not impose any assumption on the input video including
visibility, body pose, and garment type (except outfits e.g.
dress, hoodie which SMPL+D model could not represent).
We also synthesize testing videos by rendering mesh se-
quence from BUFF dataset [46] into different views for ex-
tra quantitative comparison.
Baselines: We make comparisons with both optimization-
based video human performance capture methods [41, 44]
and learning-based single image 3D human reconstruction
methods [3,30,31,48,49]. In particular, [3] generates cloth-
ing shape via a UV displacement map. [30, 31, 43, 48] pre-
dict an implicit function for the body and clothing from
pixel aligned features. Both optimization based meth-
ods [41] and most recent learning-based methods [43, 48]
integrate a SMPL fitting procedure to obtain an accurate
naked body shape as a prior for garment reconstruction.
Evaluation Metrics: We align the predictions of base-
line methods to ground truth scans and report the average
point-to-surface distance following the evaluation protocol
in MonoClothCap [40]. Concretely, since different meth-
ods have different camera settings, we first center and scale
the predicted scans according to the height. Then we use
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Input MonoClothCap [41] Ours Input MonoClothCap [41] Ours

Figure 4. Qualitative results on human performance capture from the pablo sequence [44] and a video taken by smartphone. Note that we
consider [41] as the best-performing baseline since [44] cannot be applied to wild scenario without a pre-scaned template.

Methods Point-to-Surface Error (mm)
MonoPerfCap [44] 14.7†

MonoClothCap [41] 17.9
Tex2Shape [3] 27.7

DeepHuman [49] 24.2
PIFu [30] 30.5

PIFuHD [31] 26.5
PaMIR [48] 28.3

ICON-filter [43] 24.5
Ours 17.4

Table 1. Quantitative comparisons with SOTA methods in the
pablo sequence [44]. The first two methods are optimization-
based methods and the rest are neural network predictions.
†MonoPerfCap leverages a pre-scaned template mesh of the video.

ICP [4] to register the predicted scans to clothing regions
of ground truth scans. The point-to-surface error is defined
as the minimal distance between the estimated clothing ver-
tices and the surface of ground truth scans (after alignment).

6.2. Evaluation on in-the-wild Videos
Table 1 illustrates our performance compared with all

learning-based single image human shape reconstruction
techniques [3,30,31,43,48,49], including methods [43,48]
that take the SMPL pose as a prior. While producing
reasonable visual results in the frontal view, PiFU meth-
ods [30,31,48] generate noisy outliers due to the depth am-
biguity, which results in a large quantitative error. We even
outperform [41] without dense optimizations, and approach
the performance of [44] that leverages a pre-scanned tem-
plate. Compared with [41], for invisible vertices, we reg-
ularize the frame-dependent deformation to predict a more
compact and flat shape. We visualize our clothing capture
result on both the Pablo sequence and smartphone captured

View Point PaMIR [48] ICON-filter [43] Ours
front 31.6 30.7 29.5

frontleft 29.68 31.20 22.10
left 39.33 33.8 29.58

Table 2. Quantitative comparisons in the synthetic sequence short-
long hip from BUFF [46] dataset. We report Point-to-Surface Er-
ror (mm) as described in Sec.6.1.

video in Fig. 4. With less iterations (see Table 3), we gener-
ate a similar amount of details as MonoClothCap, and per-
forms a more robust tracking for the flying cloth under a
challenging pose and view (in the right video).

Besides, we conducted experiments on challenging on-
line videos with fast body motion and loose long sleeve
cloth, which is not supported by MonoClothCap [41]. In
Fig. 5, we demonstrate the robustness of our approach
against novel poses and even inaccurate 2D segmentation
result thanks to our sequential human capture pipeline.
In contrast, image-based human reconstruction methods
[43,48] are sensitive to the pose and viewpoint with no guar-
antee on temporal consistency, which results in the failure
reconstructions such as bodies with missing arms and legs.

6.3. Evaluation on synthetic data

Due to the lack of realistic full body capture sequence de-
spite the training data, we conduct experiments on synthetic
video sequence rendered from BUFF dataset [46] to fur-
ther test the performance of our method especially for ro-
bustness under different view point. We exclude Mono-
ClothCap [41] from comparison since they use ground truth
BUFF scans to train the PCA model. As shown in Table 2,
our method outperforms all image-based 3D human recon-
struction baselines [43, 48] under all perspectives. Partic-
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Input PaMIR [48] ICON-filter [43] Ours

Figure 5. Qualitative results on human performance capture from challenging YouTube video with fast body motion and loose sleeves.

Stage MonoClothCap
[41]

PaMIR
[48]

ICON
[43] Ours

Consensus
Shape Estimation 89 7.5 1.9 0.06

Frame Refinement 1
Wrinkle Extraction 327 22 0.17

Total 416 7.5 23.9 1.23

Table 3. Per-frame runtime comparison between our method and
baselines (in seconds). I/O and pose estimation times are excluded.

ularly, our method does not encounter severe performance
downgrading under challenging side views.

6.4. Runtime Analysis

This section performs a runtime comparison with Mono-
ClothCap [41], PaMIR [48] and ICON [43] on the 253-
frame pablo sequence. These three baselines were selected
as the representatives for optimization-based and PiFU-

based approaches. In Table 3, our approach can achieve
result faster than other baselines. 1) in inference time, our
GRN converges within 3 iterations, 2) we avoid using the
differentiable renderer, which consumes a huge amount of
time and memory to render a high-res image, and 3) we
directly predict a 3D mesh instead of an implicit function,
without an extra Marching-Cube [24] step to extract mesh.

7. Conclusion
We present a human performance capture approach, which
generates a temporal 3D human sequence by sequentially
predicting the consensus shape, the frame-dependent cloth-
ing deformation and wrinkle details. At each stage, we
leverage a learning-to-optimize technique to iteratively cor-
rect the clothing shape given the gradient of 2D energy w.r.t
3D clothing vertices. Trained on synthetic data, the net-
work shows fast convergence speed and strong generaliza-
tion ability to in-the-wild videos. Experiments demonstrate
the accuracy, robustness and efficiency of our model in re-
constructing clothing shape from a monocular RGB video.
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