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Abstract

Event cameras asynchronously measure brightness
changes in a scene without motion blur or saturation, while
frame cameras capture images with dense intensity and fine
details at a fixed rate. The exclusive advantages of the
two modalities make depth estimation from Stereo Asym-
metric Frame-Event (SAFE) systems appealing. However,
due to the inevitable information absence of one modality in
certain challenging regions, existing stereo matching meth-
ods lose efficacy for asymmetric inputs from SAFE systems.
In this paper, we propose a divide-and-conquer approach
that decomposes depth estimation from SAFE systems into
three sub-tasks, i.e., frame-event stereo matching, frame-
based Structure-from-Motion (SfM), and event-based SfM.
In this way, the above challenging regions are addressed
by monocular SfM, which estimates robust depth with two
views belonging to the same functioning modality. More-
over, we propose a dual sampling strategy to construct cost
volumes with identical spatial locations and depth hypothe-
ses for different sub-tasks, which enables sub-task fusion at
the cost volume level. To tackle the occlusion issue raised
by the sampling strategy, we further introduce a temporal
fusion scheme to utilize long-term sequential inputs with
multi-view information. Experimental results validate the
superior performance of our method over existing solutions.

1. Introduction
Event cameras, based on bio-inspired neuromorphic sen-

sors, output an asynchronous stream of events. An event is

triggered by a pixel intensity change above a certain thresh-

old and characterized by the corresponding pixel location,

timestamp, and polarity. Due to the unique working prin-

ciple, event cameras present several attractive advantages,

including high dynamic range (>120 dB), high temporal

resolution (in the order of microsecond), etc [6]. These

advantages make event cameras a promising alternative to

conventional frame cameras in challenging scenarios, such
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as challenging illumination or high-speed situations. How-

ever, event cameras primarily report events at the edges of

objects, where brightness changes typically occur. They

are incapable of outputting dense intensity, which makes

it challenging to extract sufficient contextual information

from event streams alone. On the other hand, frame cameras

capture images with abundant information, such as color

and texture, but they suffer from motion blur and severe

saturation in challenging environments. Considering the

complementary characteristics of two imaging principles,

there is emerging research interest in constructing Stereo

Asymmetric Frame-Event (SAFE) camera systems, consist-

ing of an event camera and a frame camera, to solve long-

standing challenges in various applications, including de-

blur [23], HDR imaging [10], SLAM [30], etc.

Recently, depth estimation from SAFE systems [32, 42]

has also been explored, which aims to estimate accurate

depth in various conditions. To conduct stereo matching

from a pair of frame and event images (converted from event

streams) with significant asymmetry, existing methods pro-

pose to normalize [32] or transform [15] different modali-

ties to a unified form. However, modality asymmetry can

not be eliminated or even mitigated in certain challenging

regions due to the inevitable information absence of one

modality, e.g., high dynamic range regions for frame cam-

eras and regions inside object contours for event cameras.

Therefore, these methods are prone to fail in such condi-

tions. We argue that depth in these regions can be inferred

by monocular Structure-from-Motion (SfM)1 in two con-

secutive views with the same functioning modality where

high-quality signals are ready to estimate correspondence.

In this paper, we propose a divide-and-conquer approach

to robustly estimate depth in various scenarios. Instead of

only relying on frame and event images at the current time

step, we utilize past information and decompose depth esti-

mation from SAFE systems into three sub-tasks, including

Frame-Event Stereo Matching (FE-StM), Frame-based SfM

(F-SfM), and Event-based SfM (E-SfM). Concretely, for

regular regions (i.e., symmetric features can be extracted),

1Given that SAFE systems aim at robotics and autonomous driving ap-

plications, it is reasonable to assume sequential inputs.
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we resort to FE-StM in current stereo inputs. For challeng-

ing regions with information absence, we solve them by the

SfM sub-task based on the functioning modality.

Moreover, we propose a dual sampling strategy to fuse

different sub-tasks. Instead of re-projecting and merging

the depth estimates of different sub-tasks, we fuse their ag-

gregated cost volumes, which are deliberately aligned in

terms of both spatial locations and depth hypotheses. In the

strategy, the cost volumes of different sub-tasks are all con-

structed in the spatial locations and depth hypothesis planes

of the same reference view. Specifically, to fuse the sub-task

that does not involve the reference view, we dual sample

pairs of candidates from two source views with the loca-

tions and depth planes of the reference view to construct a

cost volume aligned to the others. The dual sampling strat-

egy intuitively works for most regions without occlusion.

For regions with occlusion, given that currently occluded

regions may be correctly matched previously, we propose

to utilize long-term sequential inputs. To this end, we intro-

duce a temporal fusion scheme that caches the previous cost

volume embeddings of different sub-tasks and propagates

them to the current ones through 3D ConvLSTM cells.

To evaluate the performance of our method, we process

the widely used stereo event camera dataset DSEC to for-

mulate a SAFE dataset. Our method demonstrates distinct

improvements compared with (i) the variants of represen-

tative stereo matching methods, (ii) existing asymmetric

frame-event depth estimation methods, and (iii) potential

solutions using the same sequential inputs as ours.

Contributions of this paper are summarized as follows:

• A novel divide-and-conquer approach to adequately uti-

lize the complementary characteristics of SAFE systems.

• A dual sampling strategy to fuse different sub-tasks at the

cost volume level without re-projection.

• The SoTA performance of asymmetric frame-event depth

estimation on the DSEC dataset.

2. Related Works
Symmetric Stereo. As a classical computer vision task,

stereo matching, conducted with symmetric stereo frame

cameras by default, has been extensively studied for

decades [11, 26] and substantially advanced by deep learn-

ing techniques recently [3,14,19]. Given the widely known

limits of frame cameras in challenging scenarios, e.g. tex-

tureless or HDR scenarios, researchers have initiated ex-

ploration into alternative camera systems, such as active

or passive stereo systems with near infrared (NIR) cameras

[37, 39] and stereo event camera systems [1, 8, 28, 36, 40].

However, these systems with a single modality are still lim-

ited in certain scenarios. More recently, cross-modal sym-

metric stereo systems with cameras of different modalities

on both sides have been proposed and demonstrate distinct

performance in various scenarios [4, 20, 21].

(a) Typical Scenario

(b) High Dynamic Range Scenario

/ / 

Figure 1. The complementary characteristics of SAFE systems.

Frame cameras capture fine details in typical scenarios (a) while

event cameras report high-quality signals in HDR scenarios (b).

Depth in these regions should be inferred by the correspondence

of two consecutive views, i.e., ILt and ILt−1 or ER
t and ER

t−1.

Asymmetric Stereo. Compared with cross-modal symmet-

ric stereo systems, asymmetric stereo systems with a single

modality on one side, e.g., frame-event [9,32,42] and RGB-

NIR [16,38] systems, possess the same sensing capabilities

and come with half costs. For stereo matching based on

asymmetric stereo, one key challenge is to handle asymme-

try in different modalities in either handcrafted or learning-

based ways. For example, edge images and temporal gra-

dient images are adopted to normalize frame and event im-

ages [15, 32], while transformation networks are proposed

to make up the photometric inconsistency of RGB and NIR

images [16, 38]. However, there always is cross-modality

information in asymmetric stereo that can not be normal-

ized or translated and is thus overlooked. In this paper,

we introduce monocular SfM to exploit the complementary

information of SAFE systems, which exists in consecutive

views with the same functioning modality.

Multi-View Stereo. In MVS, multiple images from differ-

ent views are used to estimate the geometry of a scene or an

object [27]. Typically, to boost the estimation of one refer-

ence view, multiple source views are matched with the ref-

erence jointly [34, 35] or respectively [12, 18]. Our method

estimates depth based on the reference view and its depth

plane hypotheses similar to MVS, but we exclusively match

two source views with a dual sampling strategy to utilize

the complementary information of different modalities.

3046



Depth Plane 
Sweeping

Disparity Plane 
Sweeping

Variance Metric
Fusion

Frame-based 
Structure-from-Motion

Event-based 
Structure-from-Motion

Frame-Event
Stereo Matching

Cost Volume Fusion and 
Disparity Regression

3D ConvLSTM

Cost Volume Regularization 
with Temporal Fusion

Dual Sampling

Figure 2. The proposed depth estimation method with a divide-and-conquer approach that decomposes depth from SAFE systems into

three sub-tasks, i.e., FE-StM, F-SfM, and E-SfM. With a dual sampling strategy, we fuse different sub-tasks at the cost volume level (i.e.,
CVEI

Re , CVE
Re, and CVI

Re). Long-term sequential inputs are propagated by the temporal fusion scheme with 3D ConvLSTM.

3. Motivation

In a SAFE system, a frame camera and an event camera

are used to perceive scenes with different modalities. Depth

estimation from SAFE systems is expected to be accurate in

various scenarios, because the event camera provides high-

quality signals even in high dynamic range or high-speed

regions while the frame camera provides clear intensity sig-

nals in most regions. However, these high-quality outputs

may exist in only one modality due to the inherent limits

of respective imaging principles. For example, in typical

scenarios, the frame camera captures diverse information,

e.g., color, brightness, and texture, while the event camera

only reports at object contours (see Fig. 1(a)). Under chal-

lenging illumination, the event camera maintains the output

quality, while the frame camera suffers from severe satura-

tion (see Fig. 1(b)). In these challenging regions with infor-

mation absence, existing stereo matching methods may lose

efficacy since symmetric features can not be extracted from

such extremely asymmetric inputs from SAFE systems.

Instead of only relying on the current frame and event

images, previous information from SAFE systems should

be utilized. As can be seen in Fig. 1, high-quality sig-

nals exist in two views with the same functioning modal-

ity yet at different time steps, e.g., the cables and the trees

are consistently reported by the event camera in HDR sce-

narios. Given that SAFE systems aim at applications with

frequent movement, intra-modality SfM, which infers depth

by the correspondence of two consecutive views, should be

a promising remedy for fragile inter-modality stereo match-

ing in the above challenging regions.

4. Depth from SAFE Systems
Fig. 2 illustrates the proposed method working on SAFE

systems. Without loss of generality, we take the frame cam-

era as the left view and the event camera as the right view.

Our depth estimation network Φ predicts depth D̂t at the

current time step t, i.e.,

D̂t = Φ(ILt , I
L
t−1, · · · , ILt−δ,Tt,Tt−1, · · · ,Tt−δ,

ER
t ,E

R
t−1, · · · ,ER

t−δ,TRL,K; θ),
(1)

with sequential inputs, including the camera intrinsic matrix

K, the transformation matrix from the left view to the right

TRL ∈ T (3), left view frame images IL ∈ R
H×W×3 and

camera poses T ∈ SE(3), and the right view event stream

ξtt−δ = {(xi, ti, pi)|t − δ ≤ ti ≤ t}. The event stream

is converted into event images ER ∈ R
H×W×B accord-

ing to the event representation proposed by Zhu et al. [41].

The supervised learning problem for depth estimation from

SAFE systems can be formulated as

θ� = argminθ l
(
D̂t,Dt

)
, (2)

where l(·, ·) is the loss between D̂t and the ground truth Dt.
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Figure 3. Dual sampling strategy produces uni-modal depth prob-

ability distributions to infer correct depth at most regions (a). The

occlusion regions (b) with multi-modal distributions are handled

by the temporal fusion scheme with long-term sequential inputs.

4.1. Dual Sampling

Originally, there are multiple reference views for differ-

ent sub-tasks, i.e., ILt for FE-StM and F-SfM and ER
t for

E-SfM. In other words, the outcomes of different sub-tasks

are misaligned in terms of both spatial locations and depth

(or disparity) plane hypotheses, and thus vulnerable re-

projection with roughly estimated depth is required to fuse

sub-tasks. To tackle this issue, we propose a dual sampling

strategy to fuse sub-tasks at the cost volume level without

any re-projection. Specifically, we choose the frame image

at the current time step ILt as the only reference view and

adopt a unified set of regularly discretized disparity plane

hypotheses P = {1, 2, · · · , N}, where N is the maximum

disparity value. For SfM sub-tasks, we convert P into equiv-

alent depth plane hypotheses D = {di = bf/pi|pi ∈ P},

where b and f are the baseline distance and focal length

of the SAFE system respectively. To construct the cost

volumes of different sub-tasks, we sample candidates from

source views, i.e., ER
t , ER

t−1, and ILt−1, according to their

camera pose transformations Tsrc←ref with regard to the

reference view ILt and the hypothesized depth di (or dis-

parity pi). Given a point in the reference view xref .
=

[u, v, 1]T , its corresponding candidate in a certain source

view xsrc
i is determined as

xsrc
i ∼ K[R | t]

[ (
K−1xref

)
di

1

]
, (3)

where R and t are the corresponding rotation matrix and

translation vector of Tsrc←ref .

In MVS, whether the hypothesized di is the actual depth

or not is inferred by the similarity of xref and xsrc
i . In-

stead, our dual sampling strategy infers depth by the sim-

ilarity of two candidate source points xsrc1
i and xsrc2

i for

SfM sub-tasks. The strategy intuitively works in most re-

gions as illustrated in Fig. 3(a). Specifically, for a point

xref (a green circle), its two pairs of candidate points at

the ith and ground-truth depth planes are xsrc1
i (a yellow

star) with xsrc2
i (a blue triangle) and xsrc1

gt with xsrc2
gt (two

green circles), respectively. Apparently, only one unique

pair of candidate points on the ground-truth depth planes

(i.e., xsrc1
gt and xsrc2

gt ) that can be correctly matched be-

cause they correspond to the same scene point. In other

words, the similarity of candidate pairs sampled according

to the dual sampling strategy produces a uni-modal depth

probability distribution to infer the correct depth. One ex-

ception is where more than one object is located in the ray

from xref , i.e., scenarios with occlusion. In these regions,

there are “pseudo” matched candidate pairs to interfere with

depth estimation, e.g., xsrc1
i with xsrc2

i (two yellow stars)

and xsrc1
j with xsrc2

j (two blue triangles), as can be seen

in Fig. 3(b). We solve these regions by infusing long-term

temporal information, which is explained in Sec. 4.3.

4.2. Divide-and-Conquer

As aforementioned, to enable robust stereo depth estima-

tion in challenging regions by utilizing the complementary

information of SAFE systems, we explicitly decompose the

task into three branches, including FE-StM between ILt and

ER
t , F-SfM between ILt and ILt−1, and E-SfM between ER

t

and ER
t−1. Before constructing the cost volumes for dif-

ferent branches, we extract features F ∈ R
H
4 ×W

4 ×C1 from

frame and event images by two feature extractors ΦFE
I and

ΦFE
E with the same architecture and independent weights,

FI = ΦI
FE(I

L), FE = ΦE
FE(E

R) (4)

Frame-Event Stereo Matching. FE-StM conducts stereo

matching using the reference view ILt and a source view

ER
t . After feature extraction, the 4D cost volume CVEI ∈

R
H
4 ×W

4 ×N
4 ×C2 of FE-StM is constructed by the disparity

plane sweeping, i.e., concatenating and matching FI
t with

corresponding shifted FE
t for each disparity pi in P (N is

scaled by 4 since we sweep at the downsampled features):

CVEI(u, v, pi, ·) = ΦEI
M (⊕{FI

t (u, v, ·),FE
t (u−pi, v, ·)}),

(5)

where ⊕ stands for concatenation at the feature channel di-

mension and ΦEI
M is a 2D convolutional matching module
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to extract compact 3D features from the concatenated input,

similar to those of [3,29]. Then, CVEI is aggregated by an

hourglass-like cost regularization module ΦEI
Re consisting of

multiple 3D convolutional layers, i.e.,

CVEI
Re = ΦEI

Re(CVEI). (6)

Event-based Structure-from-Motion. E-SfM with two

source views (ER
t and ER

t−1) could be recognized as a two-

view SfM problem [31] with known camera poses (e.g.,
from the inertial measurement unit, IMU). According to the

proposed dual sampling strategy, both ER
t and ER

t−1 are re-

quired to be sampled by Eq. (3) with transformation ma-

trices TRL and TRLT
−1
t−1Tt respectively. Note that the

camera intrinsic matrix K is required to be scaled. With the

depth plane sweeping, the cost volume CVE of E-SfM is

formulated as:

CVE(xI
t , pi, ·) = ΦE

M (⊕{FE
t (x̃

E
t , ·),FE

t−1(x̃
E
t−1, ·)}),

(7)

where x̃E
t and x̃E

t−1 is the sampled source points of ER
t and

ER
t−1 corresponding to the reference point xI

t of ILt at dis-

parity plane di = bf/pi (f is required to be scaled), and

ΦE
M is the matching module of the E-SfM branch. We use

differentiable bilinear interpolation [13] to sample points

since the transformed coordinates are not integers. Similar

to the FE-StM branch, a regularization module ΦE
Re aggre-

gates the cost volume and output CVE
Re.

Frame-based Structure-from-Motion. To construct the

cost volume CVI , F-SfM samples points x̃I
t−1 from ILt−1

with T−1
t−1Tt according to Eq. (3), i.e.,

CVI(xI
t , pi, ·) = ΦI

M (⊕{FI
t (x

I
t , ·),FI

t−1(x̃
I
t−1, ·)}),

(8)

and matches them with reference points xI
t from ILt by a

matching module ΦI
M . The aggregated cost volume CVI

Re

is then generated by ΦI
Re.

Cost Volume Level Fusion and Disparity Estimation.
After aggregation by regularization modules, the 4D ag-

gregated cost volumes of different branches, i.e., CVEI
Re ,

CVE
Re, and CVI

Re, not only contain abundant contextual

information in different modalities but also implicitly en-

code depth probability distributions in different branches

[14]. Although depth (disparity) can already be estimated

from these cost volumes and then merged, a more flexible

and reasonable fusion (i.e., considering the pros and cons

of different modalities in various regions) could be realized

by a learning-based module with the information and depth

hints in the cost volumes. Therefore, instead of clumsily

merging their depth estimates, we propose to fuse at the cost

volume level. In specific, we adopt the variance-based cost

metric [34] to obtain a compact cost volume CVvar. Then

CVvar is further processed by a fusion module ΦFu
Re to ob-

tain the final cost volume CVFu
Re , i.e.,

CVFu
Re = ΦFu

Re (CVvar), (9)

where ΦFu
Re consists of an hourglass-like 3D convolutional

network to fuse and two 3D transposed convolutional lay-

ers to upsample. We obtain depth estimate D̂t with the

sub-pixel maximum a posteriori approximation proposed

by [29] that computes the expectation around the hypothe-

sized depth with minimum matching cost as the final depth.

4.3. Temporal Fusion

In our method, the outcomes of different branches are

fused without depth re-projection thanks to the proposed

dual sampling strategy. In non-occlusion regions that

occupy the majority, the effectiveness of the strategy is

demonstrated intuitively. In regions with occlusion, there

are “pseudo” matched candidate pairs to interfere with

depth estimation. Specifically, although these “pseudo”

matched candidate pairs indeed reveal the exact geometry

of certain 3D scene points (e.g., the yellow star and the blue

triangle in Fig. 3(b)), they can not infer the ground-truth

depth for the reference view since the 3D scene points they

represent are occluded by the scene points closer to the ref-

erence camera plane (e.g., the green circle). In this way, the

depth probability distributions in these regions are inher-

ently multi-modal and may not indicate the correct depth.

To address this issue, we propose a temporal fusion

scheme to utilize the long-term sequential inputs of SAFE

systems given that currently occluded regions might be

matched in previous time steps. Instead of explicitly prop-

agating the previously estimated depth D̂t−1, we choose to

propagate the intermediate features of different branches at

the previous time step t−1 to those at the current time step t
by ConvLSTM cells following [5]. Specifically, we use the

bottleneck features X ∈ R
H
32×W

32× N
32×C3 of regularization

modules as the inputs of 3D ConvLSTM cells, which are

the variants with 3D convolutional layers to process the 4D

features. The 3D ConvLSTM cells fuse the past scene ge-

ometry encoded at the previous hidden state Ht−1 and cell

state Ct−1 with the current geometry encoded at Xt and

output the current states Ht and Ct:

Ht,Ct = cell(Xt,Ht−1,Ct−1). (10)

The detailed logic inside 3D ConvLSTM cells is as follows:

it,ft,ot = split(sigmoid (wx ∗Xt +wh ∗Ht−1))

gt = ELU (layernorm (wxg ∗Xt +whg ∗Ht−1))

Ct = layernorm (ft �Ct−1 + it � gt)

Ht = ot � ELU (Ct) ,

(11)

where ∗ and � denote 3D convolution and Hadamard prod-

uct while it, ft, and ot are the gates of the 3D ConvLSTM

cells. After temporal fusion, the hidden states Ht with en-

hanced scene geometry are fed into the decoder part of reg-

ularization modules as illustrated in Fig. 2. Such a temporal

fusion scheme is conducted in the regularization modules of

different sub-tasks and the final fusion module.
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Table 1. Comparison of different methods on the DSEC dataset. The best results are highlighted with bold fonts.

Method
Disparity Metrics Depth Metrics

MAE ↓ RMSE ↓ 1PE ↓ 2PE ↓ 3PE ↓ MAE ↓ MAErel ↓ RMSE ↓ Δ < 1.051 ↑ Δ < 1.052 ↑ Δ < 1.053 ↑
RAFT-Stereo [17] 0.6263 1.2120 15.38 3.59 1.64 1.0689 0.0395 2.1439 77.83 92.38 96.39

AANet [33] 0.6555 1.3243 15.28 3.92 2.01 1.1119 0.0416 2.2804 77.62 91.94 95.85

PSMNet [2] 0.5886 1.1968 13.15 2.87 1.40 1.0063 0.0374 2.0437 79.38 93.44 96.91

E2VID [24] + RAFT-Stereo [17] 0.7788 1.4640 21.95 5.78 2.56 1.3165 0.0484 2.5197 70.03 88.7 94.41

E2VID [24] + AANet [33] 0.7757 1.4376 22.08 5.70 2.44 1.2987 0.0480 2.4529 70.30 88.74 94.65

E2VID [24] + PSMNet [2] 0.6971 1.3085 18.55 4.38 1.92 1.1997 0.0446 2.3105 73.25 90.54 95.52

HDES [42] 0.6978 1.3074 19.02 4.97 2.14 1.1617 0.0432 2.2675 74.38 80.48 95.43

DCNet [32] 0.5869 1.1927 13.05 2.85 1.38 1.0052 0.0373 2.0378 79.43 93.47 96.93

Ours 0.5434 1.1751 10.97 2.23 1.09 0.9548 0.0353 2.0028 81.54 94.03 97.26

5. Experiments
5.1. Dataset and Evaluation Metrics

To evaluate the performance of our method, we opt for

the DSEC dataset [7], which comprises a pair of frame and

event cameras on both left and right sides. DSEC is a large

scale stereo dataset collected by driving in various challeng-

ing scenarios. It provides high-quality ground-truth dispar-

ity for the development and evaluation of different stereo

methods. We choose the left frame camera and the right

event camera to formulate a SAFE system. The left frame

images with the resolution of 1440 × 1080 are downsam-

pled to the resolution of the event camera (640× 480). We

conduct stereo rectification for the SAFE system with the

provided camera intrinsic and extrinsic matrices and distor-

tion coefficients. The disparity of DSEC is provided in the

coordinate of the original left frame camera. We re-project

the disparity data with higher resolution into the rectified

left camera of the SAFE system. Note that we do not submit

estimated disparity to the benchmark website of DSEC, be-

cause it requires estimated disparity maps in the view of the

original left camera but re-projecting disparity maps from

those with the same resolution would suffer from grid-like

artifacts. Moreover, the disparity of the original test set is

not released. Therefore, we randomly split 35 sequences of

the original training set (41 sequences) on DSEC as the new

training set and the others as the new test set.

Our method is evaluated by standard metrics in terms

of both disparity and depth. The standard disparity met-

rics include mean absolute error (MAE), root mean squared

error (RMSE), and N-Pixel-Error (NPE). The standard

depth metrics include MAE, mean absolute relative error

(MAErel), RMSE, and inlier ratios with threshold 1.05,

1.052, and 1.053 (Δ < 1.05n). All these metrics are the

lower the better except for the inlier ratios.

5.2. Implementation Details

We set the resolution of inputs as 640×480 and the max-

imum disparity as 96. We use the event representation in

[41] to convert events within a duration of 50 ms into an

event image with the number of time bins B = 15. We first

train our network Φ without the temporal fusion scheme

with a learning rate of 0.0001 and use pre-trained weights to

initialize Φ except for 3D ConvLSTM cells. Φ is then fine-

tuned with an initial learning rate of 0.0001 and a decreased

learning rate of 0.00005 after the 50, 000th iteration. The

loss of both stages l(·, ·) is the sub-pixel cross-entropy pro-

posed in [29] with the diversity of the Laplace distribution

b = 2. We use the ADAM solver (β1=0.9, β1=0.99) and set

batch size as 2 and subsequence length δ as 3.

5.3. Comparison on SAFE systems

Methods. We adopt three categories of comparison meth-

ods. The first category includes three representative stereo

matching networks with different cost volume aggrega-

tion ideas, i.e., PSMNet [2] with 3D convolutional layers,

AANet [33] with 2D deformable convolutional layers, and

RAFT-Stereo [17] with 2D convolutional GRUs. We use

two feature extractors with the same architecture and in-

dependent weights for them to extract features from frame

and event images. The second category uses E2VID [24]

to reconstruct intensity images from event streams and then

conduct stereo matching with the methods adopted in the

first category. The methods in the third category are specif-

ically designed for SAFE systems, including DCNet [32]

(a depth completion network that combines the dense esti-

mate of PSMNet and the sparse estimate computed with the

edge maps of frame and event images), HDES [42] (a depth

estimation network with pyramid attention), and ours.

Quantitative Results. Table 1 shows the quantitative re-

sults of different methods on the DSEC datasets. Among

the methods from the first category, PSMNet demonstrates

the best performance. It is different from the results of

symmetric frame-based stereo matching where AANet and

RAFT-Stereo are the more advanced network architectures

than PSMNet. We attribute the discrepancy to the diffi-

culty of asymmetric stereo matching. The 3D cost volumes

of AANet and RAFT-Stereo constructed by the correlation

of asymmetric features are insufficient to reveal the actual

geometry of scenes, while the 4D cost volume of PSM-

Net contains more contextual information and benefits the

cost aggregation with asymmetric inputs. The performance

of the second category degrades severely since the E2VID

framework loses efficacy and generates unsatisfactory in-
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E2VID+RAFTStereoPSMNetAANetRAFT-Stereo

Figure 4. Disparity maps of two exemplar scenes on the DSEC dataset. Our method produces the best results in regions with complex

geometry (e.g., the railings and trunks in the first scene) and regions with challenging illumination (e.g., the chains in the second scene).

tensity images, exacerbating the difficulty of matching. For

the third category, HDES does not construct cost volume

to capture correspondence and thus presents inferior perfor-

mance, while DCNet obtains negligible improvements over

PSMNet indicating that the asymmetry caused by the infor-
mation absence of a certain modality can not be mitigated

by the edge maps. In contrast, our method introduces SfM

sub-tasks to estimate reliable depth from two consecutive

views with the same functioning modality, thus outperform-

ing all comparison methods by a large margin in all metrics.

Visual Results. The visual results of two exemplar scenes

are shown in Fig. 4. In these scenes, comparison methods

that only rely on the inputs at the current time steps can not

present the correct disparity, since a certain modality fails

to report high-quality signals in some challenging regions,

e.g., the railing and the trunks in the first scene for event

cameras and the chains in the second one for frame cam-

eras. In contrast, our method obtains more robust results,

indicating the effectiveness of our divide-and-conquer ap-

proach that solves these regions by SfM sub-tasks.

5.4. Comparison with Symmetric Systems

To demonstrate the advantages of SAFE systems over

stereo symmetric frame-based (FF) and event-based (EE)

systems, we adopt two representative methods proposed for

these systems, including PSMNet [2] and DDES [28] (de-

noted as FF-PSMNet and EE-DDES). Instead of a quanti-

tative comparison, we conduct a qualitative comparison on

Frame Image

Event Image

FF-PSMNet

SAFE-DCNet SAFE-Ours

EE-DDES

Frame Image

Event Image SAFE-Ours

FF-PSMNetEE-DDES

SAFE-DCNet

Figure 5. Visual comparison of SAFE systems with stereo sym-

metric event-based (EE-DDSE) and frame-based (FF-PSMNet)

systems. SAFE-Our estimates robust depth in various scenarios

while the others fail in certain scenarios (e.g., EE-DDSE in the

flickering light region and FF-PSMNet in the low-light region).

the DSEC dataset, because three system setups on DSEC

have considerably different baseline distances and focal
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Table 2. Comparison of the dual sampling strategy with other possible solutions using the same sequential inputs of SAFE systems.

Method
Disparity Metrics Depth Metrics

MAE ↓ RMSE ↓ 1PE ↓ 2PE ↓ 3PE ↓ MAE ↓ MAErel ↓ RMSE ↓ Δ < 1.051 ↑ Δ < 1.052 ↑ Δ < 1.053 ↑
Depth Re-projection (Forward Warping) 0.6555 1.3734 15.18 3.98 2.08 1.1111 0.0410 2.2281 76.96 91.54 95.68

Depth Re-projection (Backward Warping) 0.6628 1.3744 15.80 4.09 2.04 1.1088 0.0411 2.2291 76.82 91.41 95.73

MVSNet [34] 0.5993 1.3176 12.85 2.69 1.33 1.0288 0.0392 2.1748 79.95 93.28 96.88

Dual Sampling (w/o Temporal Fusion) 0.5627 1.2307 11.56 2.40 1.17 0.9710 0.0364 2.0382 81.15 93.85 97.10

Table 3. Ablation study of different components in our method.

E-SfM F-SfM
Temporal

Fusion

Disparity Metrics

MAE ↓ RMSE ↓ 1PE ↓ 2PE ↓ 3PE ↓
(A) 0.6084 1.3556 13.26 2.97 1.50

(B) 0.5802 1.2934 12.05 2.70 1.41

(C) 0.5780 1.2560 11.91 2.49 1.22

(D) 0.5627 1.2307 11.56 2.40 1.17

(E) 0.5434 1.1751 10.97 2.23 1.09

lengths. As can be seen in Fig. 5, our method in SAFE sys-

tems overcomes the limits of both modalities and presents

high-quality results in these scenes. On the one hand, ex-

cess events are triggered in the flickering light region and

event images suffer from “saturation” (i.e., the first scene

in Fig. 5). EE-DDES predicts over-smooth disparity, while

our method in SAFE systems obtains sharper results similar

to those of FF-PSMNet. On the other hand, frame cam-

eras suffer in low-light scenarios and present rare details in

dark regions compared with event cameras (i.e., the second

scene in Fig. 5). Therefore, FF-PSMNet can not reveal the

3D geometry in these regions as accurately as SAFE-Ours

and EE-DDES. In short, our method realizes robust depth

estimation in challenging scenarios by effectively leverag-

ing the complementary characteristics of two modalities.

5.5. Ablation Study

Dual Sampling. To demonstrate the effectiveness of the

dual sampling strategy, we compare our method with other

possible solutions using the same sequential inputs of SAFE

systems. The first solution is to re-project disparity or depth

from the FE-StM, F-SfM, and E-SfM branches (without the

sampling strategy). Specifically, the re-projection solution

uses ILt as the reference view of FE-StM and F-SfM while

using ER
t as the reference of E-SfM. The estimate from E-

SfM is re-projected to the coordinate of ILt by either dif-

ferentiable forward [22] or backward warping [13]. The

estimates of FE-StM and F-SfM and the re-projected esti-

mate of E-SfM are fed into a U-Net [25] to obtain the final

estimate. The second solution follows the spirit of MVS-

Net [34] which uses ILt as the reference view and the others

as the source views and constructs a cost volume to aggre-

gate by matching the reference view with the source views

separately. As can be seen in Table 2, our method without

the temporal fusion scheme (to guarantee equal input infor-

mation) consistently outperforms these solutions in terms of

all metrics. It clearly demonstrates the distinct advantage of

the dual sampling strategy which avoids depth re-projection

and enables the cost volume level fusion. In contrast, the re-

Frame Image Ours (E)Ours (D) Frame Image Ours (E)Ours (D)

Figure 6. Visual comparison of our method with (E) and without

(D) the temporal fusion scheme in regions with occlusion.

projection solutions conduct independent matching in dif-

ferent branches and can only fuse the final depth estimates,

thus overlooking the abundant contextual information and

encoded depth or disparity probability distributions in the

cost volumes. Although MVSNet aggregates information

in a unified cost volume, it does not conduct matching be-

tween ER
t and ER

t−1 to make full use of the exclusive infor-

mation in event streams, indicating the inferior performance

compared with our method.

Divide-and-Conquer. To validate the effectiveness of dif-

ferent SfM sub-tasks in our method, we conduct ablation

studies as can be seen in Table 3. When both SfM sub-tasks

are ablated (i.e., (A) in Table 3), our method degrades to

asymmetric stereo matching and presents performance sim-

ilar to PSMNet due to the consistency of cost aggregation.

Both F-SfM ((B) vs. (A)) and E-SfM ((C) vs. (A)) contribute

to the distinct performance of our method, demonstrating

the effectiveness of our divide-and-conquer approach to ex-

ploit the exclusive advantages of both modalities.

Temporal Fusion. Compared with our method without the

temporal fusion scheme (D), our full method (E) obtains

considerate performance gains in all metrics (see Tab. 3),

indicating the benefit of utilizing long-term temporal infor-

mation. It is also demonstrated by the visual results in Fig. 6

where our full method estimates better geometry than that

without temporal fusion for occlusion regions.

6. Conclusion
This paper aims to utilize the complementary character-

istics of SAFE systems and realize robust depth estimation

in scenarios that challenge the stereo symmetric systems

with a single modality. As validated by experiments, our

divide-and-conquer approach with a dual sampling strategy

and a temporal fusion scheme demonstrates superior per-

formance over various comparison methods. We expect our

method could generalize to other stereo asymmetric sys-

tems and leave it as a future work.
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