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Abstract
Existing few-shot image classification networks aim to

perform prediction on images belonging to classes that were
not seen during training, with only a few labeled images,
which are randomly picked from the same image pool as
the support set. However, this traditional approach has
two main issues: (i) in real-world applications, since sup-
port images are randomly picked, the angle they were cap-
tured from can be very different from that of the query im-
age, causing the images to look very different and making it
hard to match them; (ii) since support and query images, for
both training and testing, are sampled from the same image
pool, models can overfit the dataset, especially if the image
pool contains images with similar color, texture or view an-
gle. Thus, good performance on a dataset does not reflect
a model’s real ability. To address these issues, we propose
a novel few-shot learning approach referred to as the 3D
guided 2D (3DG2D) few-shot image classification. In our
proposed approach, the queries are 2D images, and the sup-
port set is composed of 3D mesh data, providing different
views of an object, in contrast to randomly picked images
providing a single view. From each 3D mesh, 14 projec-
tion images are generated from different angles. Thus, these
projections have significant variance among themselves. To
address this challenge, we also propose the Angle Inference
Module (AIM), which is used to infer the view angle of a
query image so that more attention is given to projection
images corresponding to the same view angle as the query
image to achieve better prediction performance. We per-
form experiments on ModelNet40, Toys4K and ShapeNet
datasets with 4-fold cross validation, and show that our
3DG2D few-shot classification approach consistently out-
performs the state-of-the-art baselines.

1. Introduction
Recent years have witnessed significant developments in

supervised learning tasks, such as 2D image classification,
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Figure 1. (a) Traditional few-shot image classification approach,
wherein support and query images are randomly sampled from the
same image pool; (b) our proposed 3DG2D few-shot image clas-
sification approach. Instead of randomly picking 2D images as
support data, for each 3D mesh sample, we generate 14 projection
images from different angles.

object detection and segmentation, thanks to Convolutional
Neural Networks (CNNs). However, to perform well, these
supervised-learning networks need to be trained with large
amounts of labeled data. Annotation of large datasets re-
quires significant amount of human time and labor, and de-
pending on the application, very large amounts of data may
not be available or may be hard to collect.

On the other hand, humans have more advanced learn-
ing abilities, considering that they can learn to recognize
never-before-seen objects from only a few examples. Hu-
mans perceive the world and interact with objects in 3D,
and this plays an important role in building ‘prior’ knowl-
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edge [5,7]. Seeing an object in 3D allows observing it from
different views, and eliminates the need for seeing a large
number of 2D images of this object taken from different an-
gles. Moreover, humans are very good at learning and iden-
tifying similarities and differences between objects, which
is one of the main ideas behind few-shot learning.

In N -way K-shot Q-query image classification task, all
classes in the dataset are split into two sets of classes:
Ctrain and Ctest, for training and testing, respectively.
Since few-shot learning (FSL) aims to perform prediction
on objects belonging to never-before-seen classes, Ctrain ∩
Ctest = ∅. For both the training and testing stages, N
classes are randomly selected from Ctrain and Ctest, re-
spectively. Then, for each class, K samples are picked and
deposited into the support set, and Q samples are picked
and placed into the query set. The labels of query samples
are then predicted by matching the samples in the query set
with the labeled samples in the support set.

Existing few-shot image classification approaches [10,
11, 13, 15, 20, 23] only use 2D images as support and query
images, which are chosen from the same image pool. This
traditional approach, which is illustrated in Fig. 1 (a), has
two main issues: (i) since support images are randomly
picked, in a real-world application, the angle they were cap-
tured from can be very different from that of the query im-
age, causing the images to look very different and making it
hard to match them; (ii) since support and query images, for
both training and testing, are sampled from the same image
pool, models can overfit the dataset, especially if the image
pool contains images with similar color, texture or view an-
gle. Thus, good performance on a dataset does not reflect a
model’s real ability.

The aforementioned issues with the existing few-shot
image classification have not been sufficiently explored by
incorporating 3D knowledge. Thus, to address these is-
sues and motivated by the strengths of humans’ learning
abilities, which are mentioned above, we propose a novel
few-shot learning approach referred to as the 3D guided
2D (3DG2D) few-shot image classification. As shown in
Fig. 1(b), in our proposed approach, the queries are 2D im-
ages, and the support set is composed of 3D mesh data.
From each 3D mesh sample, we generate 14 projection im-
ages from different view angles. To make things more real-
istic and challenging, we make sure that the query 2D pro-
jection image comes from a mesh sample that is different
from the mesh samples used for the support set. In addition,
projection images in the support set and query images have
different foreground and background colors, and texture and
are from different view angles. Since the 14 projections in
the support set provide a more complete information about
an object, if the query and support images belong to objects
from the same class, a match will be much more likely to
one of these 14 projections. Initially, without loss of gener-

ality,we use the same 2D query images as in [14], since data
is already available. As shown in our supplementary mate-
rial, we also performed experiments, wherein the user only
provides 2D RGB images as queries, and we use an exist-
ing set of 3D meshes to form a support library of projection
images from different angles.

Our proposed approach of using 3D meshes and obtain-
ing 14 projection images for guidance brings up new chal-
lenges of its own. Since these 14 projections are generated
from different angles, they have significant variance among
themselves, and many of these projections will look very
different from the query image despite belonging to the
same object class. Thus, treating all the shots of a class
equally will introduce noise and corrupt the representation.
To address this challenge, we also propose the Angle Infer-
ence Network (AINet), which is used to infer the view angle
of a query image so that more attention is given to projec-
tion images corresponding to the same view angle, as the
query image, to achieve better prediction performance. The
main contributions of this work include the following:
• To address the issues with the traditional few-shot learn-

ing approaches, we propose a 3D Guided 2D (3DG2D)
few-shot image classification method, which, to the best
of our knowledge, is the first work that uses 3D data as
the support set to perform 2D image classification.

• We perform experiments to show how the angle variety
and shape variety affect the few-shot image classification
performance. Angle variety refers to having images of the
same object from different viewing angles in the support
set, while shape variety refers to objects from the same
class with different shapes (e.g. different shaped planes,
birds, etc.)

• We perform detailed analysis showing that projections
generated from different view angles contribute differ-
ently to the classification of query images during testing.

• We propose AINet. Different from most existing meth-
ods, which treat all images in the support set equally,
AINet first infers the query images’ view angle, and then
places more attention on support projections obtained
from the same angle.

• Experiments performed on ModelNet40, Toys4k and
ShapeNet datasets, with 4-fold cross validation, show that
our proposed 3DG2D approach using AINet consistently
outperforms SOTA methods in terms of average accuracy.

The code is avaliable in https://github.com/
jiajingchen113322/3DG2D.git.

2. Related Work

Existing few-shot image classification models can be
broadly classified into three categories [11]:

i) Learning Feature Embeddings: These methods fo-
cus on designing networks that can learn similarities and
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differentiating features, which can generalize well to un-
seen classes. Siamese Network [2], which is an earlier
work, consists of two sub-networks with identical network
structures and shared parameters. Matching Network [18]
obtains support and query features by using different net-
works, and introduces episodic training for few-shot image
classification. Stojanov et al. [14] use 3D data to guide a
2D backbone network and learn better support and query
embeddings for final prediction. Although this approach
makes use of 3D data, it still follows a traditional few-shot
image classification flow, and performs query image clas-
sification by using 2D images in the support set. Other
works [8,19,26] adopt a data augmentation strategy to learn
better feature embeddings.

ii) Learning Class Representations: Methods in this
category propose to use class prototypes, which serve
as reference features, for query image classification. Pro-
toNet [13], a classical few-shot classification method, ob-
tains prototypical features by averaging the support fea-
tures, which are obtained from the 2D support images be-
longing to the same class. In other words, ProtoNet treats all
the support images belonging to the same class equally. Infi-
nite Mixture Prototypes (IMP) [1], different from ProtoNet,
form multiple clusters representing each class. Ravichan-
dran et al. [12] present an approach, wherein a prototype is
a learnable, parameterized function of feature embedding.

iii) Learning Distance/Similarity Measures: Models in
this category employ different metrics to measure the sim-
ilarity between support and query features. DeepBDC [24]
adopts Brownian Distance Covariance [16, 17] as a simi-
larity measure. FRN [21] reconstructs query features from
support features, instead of calculating the distance be-
tween support and query features. DeepEMD [25] uses
Earth Mover’s Distance (EMD) as the distance metric.

3. Motivation

We first study the effect and importance of angle and
shape variation for few-shot image classification in Sec. 3.1.
Motivated by the observations in Sec. 3.1, we propose our
3DG2D few-shot image classification approach. Then, we
show how the support projection images obtained from dif-
ferent view angles contribute differently to classification
performance in Sec. 3.2. Based on this observation, we pro-
pose the AINet in Sec. 4.2, to give more weight to the pro-
jections images in the support set, which were obtained
from similar view angles as the query images. All the ex-
periments in this section are performed by using ResNet as
the backbone. Similar to ProtoNet, the average of all pro-
jection features, in the support set of a class, is computed
to obtain the class ‘prototype’. The query label is predicted
by finding the most similar prototype feature to the query
feature.

3.1. Angle and Shape Variation Analysis

We perform a set of experiments on the ShapeNet dataset
to study how the angle and shape variety affect the few-
shot image classification performance. Angle variety refers
to having images of the same object from different view-
ing angles in the support set, while shape variety refers to
having objects from the same class with different shapes.
(e.g. different shaped planes, birds, etc.) ShapeNet contains
52K 3D mesh samples from 55 categories. For each cate-
gory, we pick 50 mesh samples to build a 3D support pool.
Fig. 2 (a) shows how projections images are obtained from
a 3D mesh. H1 refers to the projection obtained from a cam-
era placement in front of the object. Each time, the camera
is rotated by 90°on the horizontal plane to obtain H2, H3

and H4. Ti and Bi are obtained by moving the camera up
and down for 45°, respectively, from the Hi position, where
i ∈ {1, ...4}. To have more coverage of the 3D object, an
additional top view T5 and bottom view B5 are obtained,
bringing the total number of projections to 14 for each 3D
mesh. As for the query image pool, instead of generating
the images ourselves, we use the images from ShapeNet-
LS [14]. To simulate a more realistic scenario, the sup-
port projections and query images are generated from sepa-
rate 3D object sets with no overlap, and they have different
color, texture and view angle. Sample query images are
shown in the 2D Image Pool in Fig. 1 (b).

55 classes in ShapeNet are first sorted by their class ID,
and then divided into four folds, with 14, 14, 14 and 13
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Figure 2. (a) 14 camera positions are used to generate the projec-
tion images shown in (b).
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classes in each fold. Classes in the first fold are used for
testing while the rest is used for training. We perform 5-
way K-shot 10-query experiment with projections used as
support images. To analyze the effects of angle and shape
variety, the following strategies are used to pick the projec-
tion images for the support set:
• S1. Angle variety for a fixed shape: A 3D object is picked

first. Then, K projections belonging to this object are used
as support images. As K is increases, more angle variety
is covered in the support set.

• S2. Shape variety for a fixed angle: An angle is picked
first. Then, K projections taken from that angle but for
different samples from the same class are used as support.

• S3. Mixed variety: K projections are randomly picked
from the projection pool resulting in images representing
different view angles and as well as different shapes.
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Figure 3. (a) Sample support projections under three different
strategies; (b) The plot of accuracy versus number of images in
the support set for different strategies of building the support set.

Fig. 3.1(a) shows the sample support images chosen with
strategies S1,S2 and S3. We perform the few-shot image
classification experiment with different K values. From the
accuracy plots, shown in Fig. 3.1(b), following conclusions
can be drawn: (i) Increasing the angle variety (blue curve)
improves the accuracy in general. Same is true for the shape
variety (orange curve); (ii) If only angle variety or shape va-
riety is increased, when K is 9-12, the accuracy converges
on a similar peak value (53%-55%); (iii) Having shape va-
riety seems to contribute more to final accuracy than angle
variety (orange curve is always above the blue one), and
this is expected considering different shapes an object class
can take; (iv) When support set has more variety (increas-
ing K) both in terms of angles and shape (green curve), the
accuracy is further boosted.

Existing few-shot learning approaches pick up 2D sup-
port images randomly, without paying special attention to
having angle variety or shape variety in a support set. Shape
variety can only be achieved by increasing the shot number.
However, angle variety can be obtained from different pro-
jections of just one 3D mesh sample.

3.2. Analysis of View Angle Contribution

A 3D object can look different from different view an-
gles. For example, in Fig. 2 (b), projections H1 and H3 look

very different from other projections. A query image will be
a closer match to one of these projections. In other words,
contribution of different view angles is different, and depen-
dent on view angle distribution of the query set. To analyze
this, we perform a 5-way 1-shot/projection 10 query exper-
iment on ModelNet40 and ShapeNet datasets. ModelNet40
contains 3D mesh data from 40 categories. For both Mod-
elNet 40 and ShapeNet (see Sec.3.1), we sort the classes by
their class ID, and then divide them into four folds. The
classes in the first fold are used as testing, and the rest of
the classes are used for training. Instead of using all 14 pro-
jections generated from a mesh sample, in each experiment,
we only use projections belonging to Bi, Hi or Ti during
training and testing. Intersection over Union (IoU) of each
class is shown in Table 1. As can be seen, for each class, the
accuracy varies considerably depending on whether the sup-
port images come from Bi, Hi or Ti, and the standard de-
viation of IoU value becomes as high as 12.18% and 9.33%
for ModelNet40 and ShapeNet datasets, respectively. Mo-
tivated by these observations, we propose AINet (described
in Sec. 4.2, which infers a query image’s view angle, and
then gives more weight to the support projections, taken un-
der similar view angles, during the testing phase.

Class Name Bi Hi Ti Stdev Class Name Bi Hi Ti Stdev
Airplane 75.74% 64.89% 67.86% 5.61% Bottle 58.14% 64.51% 54.55% 5.04%
Bathtub 22.41% 27.15% 23.83% 2.43% Bowl 50.01% 38.93% 25.68% 12.18%

Bed 30.31% 30.87% 30.66% 0.28% Car 37.10% 45.59% 38.06% 4.65%
Bench 30.45% 37.44% 27.74% 5.01% Chair 49.43% 46.57% 44.95% 2.27%

Bookshelf 38.41% 45.75% 46.69% 4.53% Cone 46.39% 51.35% 36.20% 7.72%

(a)
Class Name Bi Hi Ti Stdev Class Name Bi Hi Ti Stdev

Airplane 62.80% 59.31% 60.35% 1.79% Birdhouse 14.92% 14.22% 12.78% 1.09%
Trash Bin 38.18% 37.02% 34.28% 2.00% Bookshelf 23.29% 21.72% 25.11% 1.69%

Bag 16.33% 15.80% 16.32% 0.31% Bottle 51.98% 53.90% 51.73% 1.19%
Basket 15.53% 14.81% 16.83% 1.02% Bowl 51.78% 50.06% 34.83% 9.33%
Bathtub 22.38% 19.53% 18.10% 2.18% Bus 47.45% 31.14% 40.69% 8.20%

Bed 24.50% 28.68% 23.02% 2.94% Cabinet 23.56% 30.59% 27.73% 3.54%
Bench 32.76% 28.43% 27.68% 2.74% Camera 17.35% 14.93% 15.06% 1.36%

(b)

Table 1. (a) and (b) show the IoU value for different classes, for a
5-way 1-shot 10 query experiment on ModelNet40 and ShapeNet
datasets, respectively. Only Bi (Bottom), Hi (Horizontal) or Ti

(Top) views are used as support images. Stdev is the standard
deviation of IoU for each class.

4. Proposed Method
We first explain our pretraining method in Sec. 4.1. For

fair comparison, the same well-trained backbone is used for
all models in all the experiments. We provide the details of
our proposed Angle Inference Network (AINet) in Sec. 4.2.

4.1. Pretraining

In fully-supervised learning, a backbone is usually pre-
trained by using the ImageNet [6], which is a very large
dataset containing objects in different color, scale, orienta-
tion etc. for each class, so that backbone sees many differ-
ent variations of objects. In contrast, with few-shot learn-
ing, a network should be able to identify the similarities
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Figure 4. Flow chart of the pretraining of a ResNet backbone.

between support and query images belonging to the same
never-before-seen class, instead of learning features of spe-
cific objects from different classes. Pretraining a backbone
on a large dataset is conflicting for the evaluation of a few-
shot model, since class(es) used for testing might have been
seen by the backbone during pretraining, and this might re-
sult in a misleading, high performance.

Instead, to make the backbone robust to variations in ro-
tation, scale, color, etc., we adopt the strategy in [4] for
pretraining. Fig. 4 shows the flow of pretraining, which
is performed only on the support projection images ob-
tained from the 3D mesh data of training classes. ResNet
is used as the backbone. Since the view angle of each
projection is known, we pick a set of {Bi, Hi, Ti} for the
sane i ∈ {1, 2, 3, 4}. As shown in Fig. 2, {Bi, Hi, Ti}
are the projections taken from the same side of an object,
thus sharing some similarities. Then, two images I1 and
I2 are randomly picked from {Bi, Hi, Ti}. A data trans-
formation is applied to I1, and the transformed image I ′1
is fed into the backbone together with I2. Then, feature
vectors F1 and F2, corresponding to inputs I ′1 and I2 are
obtained, and the agreement between these feature vectors
are maximized. Please refer to [4] for more details. Since
I ′1 and I2 correspond to images with different color, rotation
etc., and agreement between them is maximized, the well-
pretrained backbone should be robust to image variances,
and has initial ability to find similarities between two im-
ages. In Sec. 5, when different few-shot heads are tested,
the same well-trained backbone is used for fair comparison.

4.2. Angle Inference Network

In our proposed 3DG2D approach, 14 projection images
taken under different angles have a great variance, and a
query image may be similar to only some of these projec-
tions. Thus, treating these different-looking support images
equally, which is a common practice in most existing ap-

proaches [10, 11, 13, 15, 21, 23], may cause issues. To ad-
dress this, and motivated by our findings in Sec. 3.2, we
propose the Angel Inference Network (AINet), whose struc-
ture is shown in Fig. 5. If a query image’s view angle is
known, model can put more attention on projections shar-
ing the similar view angle as the query image, and achieve
better performance. Yet, during both training and testing,
query images’ angle is unknown. AINet infers the view an-
gle of a query image first.

We first divide 14 projections into three angle sets (Bot-
tom, Horizontal, Top) based on a projection’s view angle.
We introduce an angle inference loss, and during training,
we not only minimize the image classification loss, but also
the angle inference loss. When AINet performs prediction
during testing, instead of measuring the similarity between
the support and query samples directly, the view angle of a
query image is first estimated by the marginal distribution:

P (A) =
∑
C

P (A,C) =
∑
C

P (A|C) ∗ P (C), (1)

where A and C denote angle category and image class of a
query image, respectively. According to Eq. (1), to infer the
view angle distribution, P (A), a loss function needs to be
designed to optimize P (C) and P (A|C).

Optimization of P (C): As shown in Fig. 5 (a), support
projections and query images are first fed into the shared
ResNet backbone to obtain their features. Then, we take
the average of all the projection features belonging to class
j, to obtain the class prototype Sj . Then, the classification
loss LC is calculated as shown on the left of Fig. 5(b). The
distance vector V ∈ RN is obtained by calculating the Eu-
clidean distance between each class prototype Si and the
query feature, Where N is the number of ways/classes. If
the prototype and query come from the same class, the cor-
responding distance is minimized by using the classification
loss LC , which is the cross-entropy loss.

Optimization of P (A|C): Since a query image’s view
angle is not known during training, P (A|C) cannot be op-
timized directly. Instead, we have

P (A|C) =
P (C|A) ∗ P (A)

P (C)
. (2)

Thus P (A|C) ∝ P (C|A), and instead of optimizing
P (A|C) directly, we can optimize P (C|A), e.g. by letting
P (C = target|A) > P (C ̸= target|A), for each angle
category of bottom (B), horizontal (H) and top (T). The de-
tails of the optimization of P (C|A) are shown on the right
block of Fig. 5 (b). For each class, the angle prototypes
PrH , PrB and PrT are obtained by averaging the pro-
jection features belonging to each angle category of H,B
and T, respectively. The distance matrix D ∈ RN×3 is ob-
tained by calculating the Euclidean distance between each
angle prototype and query feature, where N is the number of
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Figure 5. (a) The network architecture. Support projections and query images are fed into the ResNet backbone to obtain their features;
(b) In the left block, class j’s prototype Sj is obtained by averaging features of all projections belonging to class j. Classification loss LC

is the cross entropy loss. In the right block, angle prototype Pri is obtained by averaging the features of the projections in the same angle
group (B,T, or H). Pri is used to compute the angle inference loss LA.

classes/ways. To optimize P (C|A), we could directly min-
imize the target distance in each column. However, there
may be cases, for which this distance could be smaller for
non-target class projections compared to target class pro-
jections for a specific angle category. If the distance in
each column of D is minimized directly, the network may
get confused. To address this problem, we sort each row
of D, and obtain D′. We compute Li

col by applying the
cross-entropy loss to minimize the target distance of ith col-
umn of D′. Then, the angle inference loss is computed as
LA =

∑
i L

i
col. This way, when the target distance is min-

imized in each column of D′, instead of finding the best
match for a specific angle, the network is allowed to pick
the best object based on the best angle category. During
training, the total loss is

L = (1− α) ∗ LC + α ∗ LA, (3)

wherein α ∈ [0, 1] is a hyper-parameter.
Angle Inference during Testing: During testing, we first
obtain P (C), and then calculate P (A|C) by applying Soft-
max function along each row of the distance matrix D.
Once we have P (C) and P (A|C), P (A) ∈ R3 can be esti-
mated by Eq. (1). Now that we have an estimate for P(A),
we can better estimate the prototype S′

j of each class by
incorporating the angle bias as:

S′
j =

3∑
i=1

Pri ∗ Pi(A), (4)

where Pri is the angle prototype shown in Fig 5 (b), and
Pi(A) is the probability that the query was taken under ith

angle category. We replace the original prototype feature S
with S′

j in the left block of Fig. 5(b), and the final prediction
result P ′(C) is obtained the same way as obtaining P (C).

5. Experiments
We perform experiments on the ModelNet40 [22],

Toys4K [14] and ShapeNet [3] datasets. To make it more
challenging and realistic, when choosing the query and sup-
port images, we make sure that the 3D mesh data that is used
to generate the projections come from different object sam-
ples in the same class. In addition, we use the projections
generated by [14] as query images, which have different dis-
tributions of color, texture, and view angle compared to the
projections we use in the support set. We compare our pro-
posed AINet with six baseline methods. It should be noted
that all the baseline methods were proposed for traditional
2D image few-shot learning (Fig. 1 a), and not for using the
3D projection images as support. In our comparison, we
first build the support sets from the projection images, and
then apply these baselines. For commensurate comparison,
the same well-trained ResNet-10 [9] is used as the backbone
for all the methods being compared.

5.1. Few-shot Image Classification on ModelNet40

ModelNet40 dataset contains 12,311 3D objects from 40
classes. We sort the classes alphabetically based on the first
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letter of the class name, and then split them into four folds,
with 10 classes in each fold. At each experiment fold, we
pick the 10 classes in one of these folds as testing classes,
and use the remaining 30 classes for training. We repeat
this four times for 4-fold cross validation. We perform 5-
way, 1-shot, 10-query and 5-way, 3-shot, 10-query experi-
ments. Here n-shot refers to using n-many 3D meshes, and
thus 14n projections, for each class. The accuracy values
with the 95% confidence interval are shown in Tab. 2. In 1-
shot classification task, our proposed AINet outperforms all
other baselines for each fold. In 3-shot classification task,
our AINet achieves the best performance for three of the
four folds. As for the Mean Accuracy, AINet outperforms
the second best model by 1.48% and 0.54%, in 1-shot and
3-shot experiments, respectively. ProtoNet [13], an earlier
work, has the simplest architecture, and provides the 2nd
or 3rd best performance when compared with more recent
works [11, 21, 23].

In our proposed 3DG2D few-shot image classification
approach, 14 projections are generated from each 3D mesh
shot, and these 14 projections in the support set show signif-
icant variance among themselves, making the problem more
challenging for the traditional baselines, which pick the 2D
support and query images from the same image pool.

Fold 0 Fold 1 Fold 2 Fold 3 Mean
MetaOpt [10] 68.87%±0.87% 57.13%±0.90% 50.44%±0.83% 54.62%±0.84% 57.77%±0.86%

ADM [11] 65%±0.90% 58.27%±0.86% 47.28%±0.83% 51.81%±0.86% 55.59%±0.86%
DeepBDC [23] 66.84%±0.86% 60.75%±0.83% 52.19%±0.81% 56.55%±0.84% 59.08%±0.84%

RelationNet [15] 64.82%±0.89% 63.77%±0.82% 50.01%±0.84% 54.93%±0.87% 58.39%±0.86%
FRN [21] 71.43%±0.87% 59.9%±0.78% 53.16%±0.92% 58.9%±0.83% 60.85%±0.85%

ProtoNet [13] 72.04%±0.85% 68.53±%0.75% 55.71%±0.84% 59.18%±0.86% 63.86%±0.83%
AINet (ours) 73.47%±0.79% 69.56%±0.76% 56.59%±0.78% 61.77%±0.80% 65.34%±0.78%

(a) 1-3D (14 projections)-shot image classification result
Fold 0 Fold 1 Fold 2 Fold 3 Mean

MetaOpt [10] 74.53%±0.67% 62.05%±0.79% 55.17%±0.82% 62.36%±0.77% 63.53%±0.76%
ADM [11] 78.72%±0.67% 61.65%±0.72% 55.64%±0.76% 62.27%±0.76% 64.57%±0.73%

DeepBDC [23] 77.29%±0.65% 73.37%±0.62% 61.11%±0.76% 69.71%±0.67% 70.37%±0.68%
RelationNet [15] 71.5%±0.72% 69.21%±0.70% 56.11%±0.79% 65.59%±0.70% 65.61%±0.73%

FRN [21] 81.53%±0.67% 76.15%±0.63% 62.67%±0.85% 70.31%±0.68% 72.67%±0.71%
ProtoNet [13] 81.94%±0.60% 76.05%±0.61% 65.26%±0.75% 65.59%±0.76% 72.21%±0.68%
AINet (ours) 83.18%±0.58% 76.43%±0.63% 65.29%±0.75% 67.94%±0.73% 73.21%±0.67%

(b) 3-3D (42 projections)-shot image classification result

Table 2. Accuracy values on the ModelNet40 dataset

5.2. Few-shot Image Classification on Toys4K

Toys4K dataset consists of 4179 instances from 105
categories. Similar to the experiment with ModelNet40,
we split the classes into four folds, with 25,25,25, and
30 classes in each fold. We perform 4-fold cross valida-
tion. The results are shown in Tab. 3. Our proposed AINet
achieves the best performance for all folds in the 1-shot
classification task, and for 3 of the 4 folds in the 3-shot clas-
sification. As for the mean accuracy, AINet outperforms
the second best model, ProtoNet, by 1.64% and 0.32% on
1-shot and 3-shot classification tasks, respectively.

5.3. Few-shot Image Classification on ShapeNet

ShapeNet contains 52K mesh samples from 55 object
categories with basic surface texture properties. We sort

Fold 0 Fold 1 Fold 2 Fold 3 Mean
MetaOpt 56.7%±0.90% 58.19%±1.0% 65.58%±0.96% 56.38%±0.98% 59.21%±0.96%

ADM 55.58%±0.87% 55.74%±0.99% 64.69%±0.96% 55.14%±0.99% 57.79%±0.95%
DeepBDC 58.53%±0.97% 60.05%±0.95% 66.51%±0.89% 61.42%±0.96% 61.63%±0.94%

RelationNet 60.33%±0.91% 61.87%±0.95% 65.89%±0.98% 62.38%±0.99% 62.62%±0.96%
FRN 59.11%±0.98% 58.45%±1.0% 65.97%±1.0% 60.43%±0.98% 60.99%±0.99%

ProtoNet 62.96%±0.91% 62.51%±0.92% 69.18%±0.96% 62.76%±0.93% 64.35%±0.93%
AINet (ours) 63.86%0.96% 63.95%±0.91% 71.73%±0.93% 64.41%±0.94% 65.99%±0.94%

(a) 1-3D (14 projections)-shot image classification result
Fold 0 Fold 1 Fold 2 Fold 3 Mean

MetaOpt 62.48%±0.93% 66.09%±0.92% 72.48%±0.85% 63.69%±0.89% 66.19%±0.90%
ADM 61.24%±0.88% 61.55%±0.92% 65.5%±0.88% 62.14%±0.86% 62.61%±0.89%

DeepBDC 68.96%±0.77% 71.09%±0.88% 74.39%±0.79% 67.63%±0.85% 70.52%±0.82%
RelationNet 69.18%±0.78% 70.64%0.79% 73.11%±0.90% 70.37%±0.83% 70.83%±0.83%

FRN 69.94%±0.82% 69.07%±0.88% 76.57%±0.81% 70.89%±0.83% 71.62%±0.84%
ProtoNet 72.11%±0.79% 71.63%±0.85% 77.99%±0.77% 70.1%±0.85% 72.96%±0.82%

AINet (ours) 72.6%±0.77% 71.92%±0.80% 78.55%±0.77% 70.06%±0.84% 73.28%±0.80%

(b) 3-3D (42 projections)-shot image classification result
Table 3. Accuracy values on the Toys4K dataset

55 classes by their class ID in an ascending order, and split
them into four folds, with 14,14,14 and 13 classes in each
fold. We perform 4-fold cross validation. The results are
shown in Tab, 4. Our propose AINet provides the best per-
formance for all folds in 1-shot classification task and for
3 of the 4 folds in 3-shot classification. As for the mean
accuracy, our proposed AINet outperforms the second best
model by 0.82% and 0.64% in 1-shot and 3-shot classifica-
tion task, respectively.

Fold 0 Fold 1 Fold 2 Fold 3 Mean
MetaOpt 53.06%±0.92% 64.44%±0.90% 58.8%±0.80% 54.67%±0.90% 57.74%±0.88%

ADM 52.88%±0.91% 62.28%±0.90% 54.48%±0.88% 57.74%±0.81% 56.85%±0.88%
DeepBDC 53.91%±0.93% 65.8%±0.89% 56.73%±0.82% 59.13%±0.86% 58.89%±87.5%

RelationNet 53.4%±0.91% 65.57%±0.89% 58.03%±0.81% 58.86%±0.82% 58.97%±85.75%
FRN 55.93%±0.91% 68.48%±0.91% 58.99%±0.87% 59.12%±0.85% 60.63%±88.5%

ProtoNet 58.18%±0.93% 69.53%±0.86% 61.79%±0.83% 60.99%±0.82% 62.62%±0.86%
AINet (ours) 58.9%±0.89% 70.5%±0.89% 62.86%±0.84% 61.51%±0.81% 63.44%±0.86%

(a) 1-3D (14 projections)-shot image classification result
Fold 0 Fold 1 Fold 2 Fold 3 Mean

MetaOpt 59.96%±0.89% 70.4%±0.85% 64.53%±0.80% 59.73%±0.80% 63.66%±0.84%
ADM 56.54%±0.84% 71.19%±0.85% 65.71%±0.77% 67.4%±0.72% 65.21%±0.80%

DeepBDC 65.56%±0.81% 77.69%±0.70% 70.69%±0.75% 68.09%±0.72% 70.51%±0.75%
RelationNet 61.59%±0.83% 72.39%±0.75% 66.02%±0.84% 64.63%±0.74% 66.16%±0.79%

FRN 63.75%±0.86% 76.2%±0.81% 68.05%±0.84% 66.89%±0.73% 68.72%±0.81%
ProtoNet 66.53%±0.81% 77.57%±0.71% 69.92%±0.75% 69.08%±0.69% 70.78%±0.74%

AINet (ours) 67.13%±0.85% 78.92%±0.69% 70.09%±0.71% 69.56%±0.71% 71.42%±0.74%

(b) 3-3D (42 projections)-shot image classification result
Table 4. Accuracy values on the ShapeNet dataset

5.4. Experiments using RGB Images as Query

We also performed experiments to show that our method
can be applied when RGB images are used as queries, i.e.
instead of using the projection images, generated by [14] as
queries, we use RGB images collected from Web, which are
split into set (a) and set (b). A few examples are shown in
Fig. 6. Please see the suppl. material for the rest. We also
perform a comparison with the original ProtoNet. Since
ProtoNet, and other traditional approaches, randomly pick
support and query images from the same RGB image pool,
without considering variations in view angle, in our exper-
iments, for each class, an angle category (B, H or T) is
picked first. Then, projections from that specific angle cat-
egory are used as the support set for ProtoNet. In Tab. 5,
the IoU value for each class is shown for the experiments
performed on query set (a) and (b). Our proposed method
performs well on RGB images. As for ProtoNet, since the
support set is composed of images from one view angle, the
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Figure 6. Example query images collected from the Web. 20 im-
ages are collected for each class.

Airplane Bottle Bowl Chair Cone Mean
ProtoNet 0.00% 7.14% 20.00% 0.00% 4.76% 6.38%

Ours 100.00% 80.00% 81.82% 81.82% 69.23% 82.57%
(a) Experiment result on query set (a)

Airplane Bottle Bowl Chair Cone Mean
ProtoNet 0.00% 26.32% 7.69% 0.00% 4.76% 7.75%

Ours 90.00% 90.91% 90.00% 90.91% 100.00% 92.36%
(b) Experiment result on query set (b)

Table 5. IoU value for each class for different query sets.

model fails on this task. Please see the Supp. material for
details, and additional experiments with RGB images.

6. Ablation Studies
In these studies, we perform comparisons with the tradi-

tional approach of finding the class prototype by taking the
average of the support features, as done in ProtoNet. We list
this as ProtoNet in the tables, even though original ProtoNet
does not use 3D data projections as support.

6.1. Analysis of Angle Inference Loss

We first analyze the contribution of LA, which was intro-
duced in Sec. 4.2, by setting α in Eq. (3) to zero, and thus
removing LA from the loss. By doing so, during training,
features of all the support images are averaged, as done in
ProtoNet. As for testing, AINet performs angle inference by
(1) for final prediction. The results of the experiment, per-
formed on ModelNet40, are shown in Tab. 6. Without the
use of LA, the AINet still outperforms ProtoNet for all folds
by inferring the view angle of a query image during testing
phase. AINet with LA achieves the best performance in 7
of the 8 test folds, since the angle inference during testing
is not that accurate without the use of LA.

6.2. Analysis of Hyperparameter α

To study the effect of hyperparameter α on AINet’s per-
formance, we set α to values between 0.1 and 0.5. The re-
sults of the experiment performed on ModelNet40 dataset
for 1-shot image classification task, are shown in Table 7.
For different α values, AINet outperforms the traditional
approach in 13 out of the 20 experiments (numbers in black
font). In terms of mean accuracy, AINet provides better
performance for all α values.

Fold 0 Fold 1 Fold 2 Fold 3 Mean
ProtoNet 72.04% 68.53% 55.71% 59.18% 63.86%

AINet (w/o LA) 72.28% 69.54% 56.07% 59.69% 64.40%
AINet (with LA) 73.47% 69.56% 56.59% 61.77% 65.34%

(a) 1-3D (14 projections)-shot image classification result
Fold 0 Fold 1 Fold 2 Fold 3 Mean

ProtoNet 81.94% 76.05% 65.26% 65.59% 72.21%
AINet (w/o LA) 81.98% 76.22% 65.29% 65.86% 72.34%

AINet (with. LA) 83.18% 76.43% 65.21% 67.94% 73.19%
(b) 3-3D (42 projections)-shot image classification result

Table 6. Classification accuracy with and w/o the angle inference
loss LA. The best and the 2nd best performances are marked in
bold and blue color, respectively.

α Fold 0 Fold 1 Fold 2 Fold 3 Mean
0.1 72.82% 67.42% 56.58% 59.94% 64.19%
0.2 73.25% 69.17% 54.98% 60.61% 64.50%
0.3 74.46% 69.56% 55.67% 60.94% 65.16%
0.4 73.05% 68.18% 55.06% 61.76% 64.51%
0.5 73.40% 68.06% 55.45% 60.95% 64.46%

Table 7. Accuracy for different α values. The best performance
in each column is shown in bold. If accuracy is lower than the
traditional averaging approach, the value is marked in red.

6.3. Analysis of Number of Angle Categories

We analyzed the performance when 14 angle categories,
instead of three (Bottom, Horizontal and Top) are used. The
results in the Suppl. material show that AINet with the three
angle categories achieves the best performance.Moreover,
regardless of the number of angle categories, the perfor-
mance of AINet is higher than ProtoNet.

6.4. Analysis of Pretraining

We provide an analysis of how the pretraining affects the
network’s performance in the supplementary material.

7. Conclusion
In this paper, we have first presented how having view-

angle and shape variety in the support set affects few-shot
classification performance. Motivated by our findings, we
have proposed a 3D Guided 2D (3DG2D) few-shot image
classification approach, wherein projections of 3D mesh
data, taken from different view angles, serve as the support
set to classify 2D query images. After showing that projec-
tions generated from different view angles contribute dif-
ferently to the classification of query images during testing,
we have proposed an Angle Inference Network (AINet).
With AINet, more weight is given to support projections
sharing similar view angles with query images. We have
performed experiments with cross validation on the Mod-
elNet40, Toys4K and ShapeNet datasets, and shown that
AINet consistently outperforms the SOTA approaches. We
have also performed experiments using RGB images, col-
lected from Web as queries, and presented ablation study re-
sults. In future work, experiments with RGB images will be
extended by collecting more images covering more classes.

2739



References
[1] Kelsey Allen, Evan Shelhamer, Hanul Shin, and Joshua

Tenenbaum. Infinite mixture prototypes for few-shot learn-
ing. In International Conference on Machine Learning,
pages 232–241. PMLR, 2019.

[2] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
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