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Abstract

Structural magnetic resonance imaging (sMRI), espe-
cially longitudinal sMRI, is often used to monitor and cap-
ture disease progression during the clinical diagnosis of
Alzheimer’s Disease (AD). However, current methods ne-
glect AD’s progressive nature and have mostly relied on
a single image for recognizing AD. In this paper, we con-
sider the problem of leveraging the longitudinal MRIs of
a subject for AD classification. To address the challenges
of missing data, data demand, and subtle changes over
time in learning longitudinal 3D MRIs, we propose a novel
model LongFormer, which is a hybrid 3D CNN and trans-
former design to learn from image and longitudinal flow
pairs. Our model can fully leverage all images in a dataset
and effectively fuse spatiotemporal features for classifica-
tion. We evaluate our model on three datasets, i.e., ADNI,
OASIS, and AIBL, and compare it to eight baseline algo-
rithms. Our proposed LongFormer achieves state-of-the-
art performance in classifying AD and NC subjects from all
three public datasets. Our source code is available online
at https://github.com/Qybc/LongFormer.

1. Introduction

Alzheimer’s Disease (AD) is one of the most common
cognitive impairment diseases suffered by older people, es-
pecially in the current aging society. Medical brain scans,
like Magnetic Resonance Images (MRIs), provide a non-
invasive way to capture disease pathological patterns. And
structural MRI (sMRI) is recommended to be a part of
clinical assessment for early diagnosis of AD [28], due
to its capability of characterizing brain tissue damage or
loss years before the clinical symptoms appear [6, 32]. As
shown in the left column of Fig. 1, compared to that of a
normal control (NC) subject, the sMRI of an AD subject
typically shows enlarged ventricles and hippocampus and
a shrinking cerebral cortex. However, one single MRI is
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Figure 1. Our motivation for proposing LongFormer. Existing
methods [20, 23, 40, 42] rely on the analysis of cross-sectional
sMRI scans collected at a single time point, ignoring the progres-
sive nature of AD disorder (e.g., M3T [20]). Our LongFormer
considers the progression of brain atrophy from current and prior
images, achieving the SOTA performance in AD classification.

probably not enough to separate these two groups of sub-
jects correctly; like the two subjects on the right column
of Fig. 1, using only one of their MRIs would lead to the
wrong classification result. In clinical diagnosis, the degen-
eration speed inferred from the followed-up or longitudinal
image scans is an important factor for recognizing AD sub-
jects [16, 28, 31]. As the right column shown in Fig. 1, by
considering two scans of a subject and calculating the flow
to estimate changes over time, we can separate AD subjects
from normal controls more easily. Therefore, leveraging
longitudinal brain MRIs is a promising way to study AD
and help in computer-aided AD diagnosis.

In this paper, we consider learning from 3D longitudinal
structural MRIs (sMRIs) to separate AD subjects from nor-
mal controls. Researchers have collected brain MRI scans
of a subject at multiple time points, resulting in a longi-
tudinal dataset for tracking the progression of AD, e.g., the
well-known ADNI dataset [19], OASIS [26] and AIBL [13].
Most current methods proposed for MRI-based AD diagno-
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sis treat their datasets as cross-sectional ones [20, 42], that
is, they simply consider a single MRI for classification but
ignore the degeneration progress included in the MRI se-
quence of a subject. However, temporal information can
provide complementary supervision, solely by exploiting
existing data dependency, and without requiring any addi-
tional data. Limited work has been done to fully leverage
the longitudinal dataset [8]. A recent work in [16] consid-
ers two time points for studying AD but only uses 2D CNN
techniques, which do not fully leverage spatial information.

Learning from longitudinal 3D image volumes faces the
following three challenges: (1) The missing data. Many
subjects have no scans at some time points. How to handle
missing data is a non-trivial task. (2) Large memory cost
and limited data size. One 3D volume has millions of vox-
els and needs a good amount of GPU memory for a deep-
learning model. At the same time, we only have hundreds of
AD or NC subjects for learning. This makes it even harder
to handle a sequence of 3D volumes. (3) Small longitudinal
changes and subtle subject differences. A subject’s changes
over time are relatively small, and the differences between
AD and NC subjects are subtle to recognize.

To address these challenges, we pair each current scan
of a subject with its prior image and estimate the longitudi-
nal changes between them by computing flows via optical
flow [38] or deformation fields via VoxelMorph [2]. Since
we can scale the flows to normalize them, all images in
the dataset can be used for learning, with no need to worry
about the missing data issue. Also, because each subject can
have multiple image and flow pairs, we will have thousands
of input samples for learning. Besides, the pre-computed
flows take some heat from the network to learn small lon-
gitudinal changes, which is experimentally demonstrated to
be more effective than directly working on image pairs.

To learn from the pair of a 3D sMRI and its flow, we de-
velop a hybrid CNN-Transformer framework named Long-
Former. Its CNN-based embedding module reduces the in-
put size of the following transformer and the data require-
ment of our model. The follow-up query-based transformer
adopts a deformable attention mechanism [36, 43] to ef-
ficiently integrate the spatial and temporal features of the
sMRI and its flow. Compared to eight baselines, our Long-
Former achieves the state-of-the-art (SOTA) performance of
classifying AD on three public datasets.

Overall, our contributions in this paper are three-fold:
• To our best knowledge, we are the first to explore an

efficient vision Transformer on 3D longitudinal MRIs,
which adaptively extracts spatiotemporal features from
image and flow combinations for AD classification.

• We propose a novel model LongFormer, which pro-
vides a framework for learning from 4D data us-
ing 3D CNNs for embedding and query-based trans-
former with deformable cross-attention to fuse differ-

ent sources of features flexibly and efficiently.
• Our LongFormer achieves the SOTA performance

of classifying AD and NC subjects on three public
datasets, i.e., ADNI, OASIS, and AIBL. Especially, on
the largest dataset ADNI, we achieve over 93% accu-
racy on AD classification.

2. Related Work
Vision Transformer. Transformer is firstly proposed for
the sequence-to-sequence machine translation [34] and cur-
rently becomes the basic component in most natural lan-
guage processing tasks. Recently, the transformer has been
successfully applied in computer vision, such as DETR [5]
for object detection, SETR [41] for semantic segmentation,
ViT [10] and DeiT [33] for image recognition. DETR pro-
poses a new detection paradigm upon transformers, which
simplifies object detection to a set prediction problem. De-
formable DETR [43] achieves better performance by us-
ing local attention and multi-scale feature maps. To handle
videos, a sequence of image frames, SeqFormer [35] adopts
deformable DETR in the video instance segmentation task.
SeqFormer proposes the query decomposition mechanism,
splits instance queries at each frame, and then aggregates
them to obtain a representation at the video level. DAT [36]
proposes a deformable attention mechanism, which is to
learn a set of global keys shared among visual tokens, and
can be adopted as a general backbone for vision tasks. Our
method adopts the deformable attention mechanism by se-
lecting a set of learnable keys instead of global keys to learn
visual combination representations.
CNN-Based AD Classification. Deep neural networks
have been widely applied for AD recognition. Thanks to
the publicly available large datasets, like ADNI [19], OA-
SIS [26] and AIBL [13], training deep models for detect-
ing AD pathology becomes possible. In 2018, a hierarchi-
cal fully convolutional network (FCN) is proposed in [25]
to learn multi-scale features from both small patches and
whole brain regions to perform AD diagnosis. In 2020, a
multi-modality FCN with a multilayer perceptron (MLP)
model is proposed in [29] to take both MRIs and associ-
ated subject attributes (e.g., age, gender) and is trained on
ADNI and tested on multiple datasets. In 2021, a dual-
attention multi-instance deep learning model (DA-MIDL)
is proposed in [42] to identify discriminative pathological
locations for AD diagnosis using sMRIs. In 2022, a three-
dimensional medical image classifier is proposed in [20],
using a multi-plane and multi-slice Transformer (M3T) net-
work to classify AD using 3D MRIs. The proposed network
synergically combines 3D CNN, 2D CNN, and Transformer
for AD classification. A 3D Global Fourier Network (GF-
Net) is proposed in [40] to utilize global frequency infor-
mation that captures long-range dependency in the spatial
domain. Trans-ResNet proposed in [23] integrates CNNs
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Figure 2. Illustration of our proposed LongFormer, which includes two components, i.e., the embedding module and the querying module.
The deformable cross-attention layer is the core of each querying block in the querying module.

and Transformers for AD classification.
Different from these existing works that only consider

cross-sectional MRIs (i.e., a single image, ignoring time in-
formation), our model integrates longitudinal changes over
time, which is an important feature for recognizing AD.
Longitudinal Analysis for Image-Based AD Study. Lon-
gitudinal study tracks the changes in brain morphology of
AD subjects over time. Different from the cross-sectional
setting, the longitudinal one considers multiple images from
the same subject scanned at different time points as a whole
for analysis. This means the dimension of the input data
increases while the number of training samples decreases,
which brings the risk of overfitting, especially for 3D image
volumes. To address this issue, researchers use a 3D CNN
to extract brain image features from each MRI, and an RNN

to fuse them to extract the longitudinal changes [8]. A re-
cent work [16] extracts features from image slices of longi-
tudinal sMRIs, i.e., the baseline and its follow-up scan, and
encodes them as high-level feature representation tokens by
using a transformer. Since this method takes only 2D slices
and two time points, it losses both spatial and temporal in-
formation of a subject’s image sequence.

After performing many experiments, we observe that di-
rectly learning from a sequence of 3D MRIs is non-trivial,
due to the rapidly increased GPU memory requirement,
greatly reduced input samples for learning, and the subtle
longitudinal changes in the MRI sequence. Hence, we pair
each image with a prior one to compute longitudinal flows
between them and learn the flow for the one with the miss-
ing prior image. In this way, we can fully leverage all im-
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ages in our longitudinal dataset; at the same time, we use the
flow to focus on estimating the subtle longitudinal changes,
which greatly reduces the learning difficulty of a network.

3. Methodology
Figure 2 presents the hybrid CNN-Transformer frame-

work of our Longformer network, which predicts the AD
classification label of a subject based on an input pair. This
input pair is a combination of a current image and its asso-
ciated flow which is pre-computed to measure longitudinal
changes of this subject, e.g., the optical flow, or the defor-
mation field based on image registration.

3.1. Pre-Computing Longitudinal Flow

Assume a subject has an image scan at some time point,
and we treat it as the current scan xcurr. To consider the
longitudinal changes, e.g., within one year, we take the prior
image one year ago and will face two situations, i.e., the
prior image exists and we have the longitudinal pair that
includes multiple images, (xcurr,xprior) ∈ Dm, or it does
not exist and the pair includes a single image, (xcurr,∅) ∈
Ds. In this way, we reformulate our longitudinal dataset and
construct a new one D = Dm ∪ Ds.

For the image pair in the subset Dm, we directly com-
pute their optical flow based on [38] or deformation fields
using a pre-trained VoxelMorph [2]. For the image pair
in the subset Ds, we also have two cases, i.e., one is the
baseline image that has no prior image, and the other is a
follow-up image that has a prior image within half year or
1.5 years ago. For the baseline image case, we leave the
flow empty, which will be learned later in our LongFormer.
For the follow-up image case, we compute the flow using its
combination with the prior image and scale the flow using
the age difference, as below:

Iflow =
Φ(Icurr, Iprior)

tcurr − tprior
, (1)

where Φ indicates the computation function of optical flow
or deformation fields.

3.2. LongFormer Framework

As shown in Fig 2(a), our LongFormer network includes
two main modules, i.e., an embedding module that extracts
image and flow features based on a CNN and a querying
module that fuses and learns spatiotemporal representation
for AD classification based on a transformer.

The embedding module takes the input image and flow
pair (Icurr, Iflow), where Icurr ∈ RD×H×W is the 3D cur-
rent image and Iflow ∈ R3×D×H×W is the associated flow
in the vector form. The embedding module produces the
support features FS ∈ RCS×DS×HS×WS for the follow-up
querying module. The querying module is then responsible

for learning query representation, that is, the query features
FQ ∈ RCQ×NQ based on the learnable query Q and the sup-
port features FS . Finally, the classification head produces a
prediction based on the learned query features FQ. Overall,
our LongFormer can be briefly expressed as

FS = Embedding(Icurr, Iflow),

FQ = Querying (FS , Q) ,

O = ClassificationHead (FQ) ,

(2)

where O indicates the final prediction output.
(1) Embedding Module. Since the follow-up querying
module will further extract spatiotemporal features for clas-
sification, this embedding module adopts a 3D CNN net-
work, e.g., a ResNet [14], DenseNet [17], which serves as a
backbone network to provide visual embeddings of individ-
ual images and flows. This CNN backbone is a reasonable
choice because of the CNN’s inductive biases [11, 27], and
it helps in efficiency by reducing the input size of the fol-
lowing transformer-based querying module.

To further reduce the number of parameters of the back-
bone network, we prefer the weight-sharing technique for
the two branches of the embedding module. However, the
input image and flow have different sizes; therefore, we first
apply a convolutional layer before sharing weights, i.e.,

FS = Embedding
(
fa1

(Icurr), fa2
(Iflow)

)
. (3)

Here, fa1 and fa2 are convolutional layers taking one and
three input channels, respectively.

To extract support features FS , we take the feature maps
at the stage S5 of the backbone network, where the spatial
resolution is 1/25 = 1/32 of the input image. While the
number of channels of the features is C = 1024. When
no prior image is available, the flow embedding branch is
not used but replaced by a learnable embedding, which is
replicated across the spatial dimensions.
(2) Querying Module. The support feature FS generated
by the embedding module is a concatenation of features for
a current image and its associated longitudinal flow. To fuse
these two sets of feature maps, the querying module uti-
lizes a query-based transformer as in Fig 2, which captures
patch embedding interactions and aggregates them to learn
a fixed-length token representation.

As shown in Fig 2(a), our querying module is a stack of
L querying blocks. Each block considers the support fea-
tures FS from the embedding module with spatial position
encoding and the query features FQ from the previous layer.
Using the self- and cross-attention operators, the querying
block gradually learns and refines the query features. Also,
to improve the flexibility of receptive fields in transformer
layers, we adopt a deformable cross-attention design simi-
lar to [36] (see Fig. 2(b)), where we replace q to learnable
queries, instead of image features itself. This transformer
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mechanism equipped by our querying design satisfies the
need of generating flexible query features FQ, which has
large receptive fields and strong representation ability, as
demonstrated by our experimental results. Details on query-
ing blocks are included in Sec. 3.3.
(3) Classification Head. To perform classification, we can
use the first query to produce a representative feature for
the classifier. Another choice is using multiple uniformly
distributed queries indicating different views of the subject
to vote for the final prediction. In this paper, we intend to
use the first one to query the category. For the loss func-
tion, since we work on the binary classification (i.e., AD
and NC), we simply use the binary cross-entropy loss.

Next, let us discuss in detail the building block of our
LongFormer, i.e., the querying blocks.

3.3. LongFormer’s Querying Block

Each querying block takes two inputs. Take the l-th
querying block for example. This block inputs the query
features F l−1

Q from the last layer and the support features
FS from the embedding module, and then outputs F l

Q for
the next layer. For the first querying block, we initialize F 0

Q

randomly. All L querying blocks update the query features
at each iteration. In our experiments, we set L to be 6.

Each querying block consists of three layers, i.e., a self-
attention layer, a deformable cross-attention layer, and a
feed-forward layer (FFN). We formulate them as

F̂ l
Q = Self-Attention

(
LN(F l−1

Q )
)
+ F l−1

Q ,

F̂ l
Q = Deformable Cross-Attention

(
LN(F̂ l

Q), FS

)
+ F̂ l

Q,

F l
Q = FFN

(
LN(F̂ l

Q)
)
+ F̂ l

Q.

(4)
Here, LN is a layer normalization [1] to normalize features
before each attention and FFN module. The self-attention
layer is a classical qkv-based multi-head self-attention [34],
where q, k, and v are all from the learnable query features
F l−1
Q . The deformable cross-attention layer is a qkv-based

multi-head cross-attention, where q is from the query fea-
tures F̂ l

Q, while k and v are from the support features FS .
Deformable Cross-Attention Layer. This layer is respon-
sible for integrating features from images and flows, that is,
it fuses and extracts spatiotemporal features for AD clas-
sification. As illustrated in Fig. 2(b), this deformable at-
tention layer computes cross-attention at multiple sample
points PQ ∈ RN×3, which have flexible locations within
the supported features FS ∈ RCS×DS×HS×WS . Here, N <
DS×HS×WS is the number of target positions, which can
be divided into a uniform grid with N = DG ×HG ×WG

points and are treated as the references. In particular, these
reference points are uniformly located in the 3D coordi-
nates [(0, 0, 0), (DG− 1, HG− 1,WG− 1)]. Then, we nor-

malize them into the range [−1,+1] according to the grid
shape, where (−1,−1,−1) indicates the top-left corner and
(+1,+1,+1) indicates the bottom-right corner.

To estimate the offset for each reference point, the learn-
able queries, i.e., FQ ∈ RN×d (d denotes the number
of channels), are projected linearly to the query tokens
q = FQWq , and then fed into a lightweight sub-network
θ offset(·) to generate the offsets ∆p = θoffset(q). To stabi-
lize the training process, we scale the amplitude of ∆p by a
pre-defined factor s = 2 to prevent those large offsets, i.e.,
∆p ← s tanh(∆p). Then the features are sampled at the
locations of deformed points as keys and values, followed
by a set of linear projections:

q = FQWq, k̃ = F̃SWk, ṽ = F̃SWv

with F̃S = ϕ(FS ;PQ +∆p), ∆p = θoffset (q),
(5)

where Wq,Wk,Wv are projection matrices, k̃ and ṽ repre-
sent deformed key and value embeddings, respectively, and
ϕ(·; ·) is a sampling function using trilinear interpolation.

4. Experiments
4.1. Experimental Datasets

We evaluate our model on the following three datasets.
ADNI [19]. The Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) dataset includes 5265 1.5T/3T T1-weighted
structural MRI (sMRI) scans collected from 1306 subjects
with visits at one or multiple time points across four ADNI
phases (i.e., ADNI-1, ADNI-2, ADNI-GO, and ADNI-3).
These subjects are divided into two categories, i.e., AD
(including 413 subjects) and NC (including 893 subjects),
according to the standard clinical criteria, e.g., the Mini-
Mental State Examination (MMSE) scores and the Clinical
Dementia Rating (CDR). The original structural MRI data
downloaded from the ADNI website went through a series
of pre-processing steps, including denoising, bias field cor-
rection, skull stripping, and affine registration to the SRI24
atlas. Then, we resample the image volumes, resulting
in images of size 224 × 224 × 224, with a resolution of
1.75mm× 1.75mm× 1.75mm.
OASIS [26]. Open Access Series of Imaging Studies (OA-
SIS) is a project aimed at making neuroimaging data sets
of the brain freely available to the scientific community.
We use OASIS 2 of this dataset, which has longitudi-
nal data for evaluation. This dataset consists of 335 T1-
weighted sMRI scans collected from 135 subjects, includ-
ing both AD subjects and healthy volunteers. We have a
similar pre-processing step to ADNI. As a result, we also
have images of size 224 × 224 × 224 with a resolution of
1.75mm× 1.75mm× 1.75mm.
AIBL [13]. The Australian Imaging, Biomarker &
Lifestyle flagship study of aging (AIBL) is a study to dis-
cover biomarkers, cognitive characteristics, and health and
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Method ADNI OASIS AIBL

Accuracy AUC Accuracy AUC Accuracy AUC

3D ResNet50 [14] 82.72% 81.04% 66.15% 65.94% 72.99% 51.04%
3D ResNet101 [14] 85.19% 83.57% 69.23% 69.02% 76.43% 57.94%
3D ResNet152 [14] 87.65% 86.92% 70.77% 70.49% 77.59% 61.95%
3D DenseNet121 [18] 88.89% 87.98% 72.31% 72.68% 82.76% 73.26%
3D ViT [10] 80.24% 81.35% 67.69% 67.13% 73.56% 76.60%
MRNet [4] 87.96% 93.16% 70.77% 81.97% 75.86% 75.17%
MedicalNet [7] 88.89% 88.80% 73.85% 72.72% 82.76% 79.07%
M3T [20] 90.05% 88.78% 80.47% 81.67% 82.35% 80.26%

Single Image 90.67% 89.03% 80.23% 80.71% 82.78% 78.42%
w/ Prior Image (see Fig. 3) 91.42% 91.37% 81.38% 82.14% 83.94% 84.14%
LongFormer w/ VoxelMorph (ours) 92.70% 93.75% 81.46% 81.50% 85.77% 84.47%
LongFormer w/ Optical Flow (ours) 93.43% 93.30% 82.35% 82.86% 84.09% 84.24%

Table 1. Quantitative results of our LongFormer and baseline methods on classifying AD and NC subjects from three datasets. The top
eight baselines are existing methods and the flowing four methods are variants of our Longformer for ablation study. The best results are
in bold and the second best ones are colored in blue.
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Figure 3. Ablation Study: Modifying the embedding module of our LongFormer to take a prior image instead of a pre-computed longitu-
dinal flow. This architecture is similar to [3].

lifestyle factors that determine the subsequent development
of symptomatic Alzheimer’s Disease (AD). This dataset in-
cludes 997 T1-weighted structural MRI (sMRI) scans col-
lected from 456 subjects with Alzheimer’s disease (AD)
and healthy volunteers. We separate training and evaluation
sets just like ADNI, and use the raw data downloaded from
the official website without any pre-processing, except for a
simple alignment with centering the brain and normalizing
the image intensity. Then, we resample the image volumes,
resulting in images of size 224×224×224, with a resolution
of 1.6mm× 0.9mm× 0.9mm.

For all images, we normalize the image intensity to zero
mean and unit variance. For all datasets, we subject-wisely
divide them into 80% for training and 20% for testing.

4.2. Experimental Settings

We adopt a 3D DenseNet121 [18] as our CNN backbone
to extract visual features from input pairs. The 3D CNN in-
puts 3D volumes or vector fields of size 224×224×224 and
summarizes them into 3D representation features of size
7 × 7 × 7 with 1024 channels. In the transformer part, we
use L = 6 querying blocks and 125 learnable queries. The
deformable cross-attention layer has a hidden dimension of
512 and 8 attention heads.

We use the Adam optimizer with β1 = 0.9 and β2 = 0.999
for 100 epochs with a learning rate of 5e-5, and the batch
size is 8. Our model is implemented using PyTorch-1.12
and is trained on four NVIDIA GeForce RTX 3090 GPUs.
To evaluate the classification performance, we use the clas-
sification accuracy (ACC) and the area under receiver oper-
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ating characteristic curve (AUC) as our evaluation metrics.

4.3. Comparison Results

We compare our LongFormer with conventional 3D clas-
sification methods based on 3D ResNet (50, 101, 152) [14],
3D DenseNet121 [17], and ViT [10], since these methods
have been widely used for AD classification [12, 21, 22,
24, 30, 37, 39]. We implement the 3D ViT, which is com-
posed of pure-transformer networks [10], and M3T [20]
which is composed of 2D CNN, 3D CNN, and transformer
networks. In the M3T model, the sequence in the trans-
former is applied to extracted 3D patch embedding with a
size of 16 × 16 × 16, and the projection dimension is 512.
We also compare our model with MRNet [4] and Medical-
Net [7]. The MRNet used in our experiment is based on 2D
ResNet50 because it has better performance than AlexNet.
MedicalNet is pre-trained on 23 medical databases.

Table 1 reports the quantitative results for comparing our
method with baselines. Overall, our LongFormer performs
best among these methods on all datasets. Even only con-
sidering a single image, our CNN-Transform hybrid design
achieves comparable or better performance than the current
SOTA method, M3T. Compared to 3D ViT, our method has
a large performance gain, over 10% improvement on aver-
age, which indicates the effectiveness of using CNN as the
backbone. We argue that a pure transformer needs a large
amount of data for training, while our hybrid design allevi-
ates this data demand greatly, which suits our datasets.

Figure 4 visualizes the longitudinal flows generated by
VoxelMorph and optical flow, respectively, and the re-
sponses of our LongFormer on classifying AD and CN sub-

jects. Since our LongFormer with VoxelMorph and optical
flow produce similar responses, we only present the one us-
ing VoxelMorph. This response map visualizes those sam-
ple points in the deformable cross-attention layer, which are
located at those important regions for recognizing AD and
support our hypothesis in Fig. 1 at the beginning.

4.4. Ablation Study

(1) Longitudinal Flow. Firstly, we demonstrate the neces-
sity of using the pre-computed longitudinal flow and the
way of computing it. Therefore, we consider four cases: (1)
using a single image, that is, whether we need longitudinal
images for AD classification, or a cross-sectional setting is
enough; (2) using the prior image directly, that is, whether
the network can figure out the longitudinal changes from
the image sequence directly; (3) using deformation fields
computed by VoxelMorph, which is one way to compute
the longitudinal flow; and (4) using optical flow to compute
the flow, an alternative.

Specifically, for the second case, we modify our Long-
Former network and implement a version of learning from
image sequences directly, according to [3]. In this variant,
after the spatial position encoding, we add a temporal en-
coding T ∈ RT×CS , which takes into account the time in-
formation (see Figure 3). This modified embedding mod-
ule outputs the concatenation of two features, which is an
‘aggregated’ representation of longitudinal flow features an-
chored on the current and prior image features.

As reported in Table 1, experiments with longitudinal
settings outperform the one with a single image, which in-
dicates longitudinal information helps in AD classification.
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Backbone ADNI OASIS AIBL

Accuracy (%) AUC (%) Accuracy (%) AUC (%) Accuracy (%) AUC (%)

3D ResNet50 87.33 (+4.61) 85.41 (+4.37) 70.59 (+4.44) 73.33 (+7.39) 70.45 (+2.54) 72.62 (+21.58)
3D ResNet101 86.50 (+1.31) 86.23 (+2.66) 76.47 (+7.24) 71.43 (+2.41) 77.27 (+0.84) 79.40 (+21.46)
3D ResNet152 92.67 (+5.02) 92.64 (+5.72) 79.94 (+9.17) 80.71 (+10.22) 81.82 (+4.23) 80.40 (+18.45)
3D DenseNet121 93.43 (+4.54) 93.30 (+5.32) 82.35 (+10.04) 82.86 (+10.18) 84.09 (+1.33) 84.24 (+10.98)

Table 2. Classification performance comparison using different 3D CNN backbones in our LongFormer with optical flow. The numbers in
red indicate the improved performance, compared to using the backbone network for classification directly, as reported in Table 1.

#Queries ADNI OASIS AIBL

Accuracy AUC Accuracy AUC Accuracy AUC

27 89.40% 88.72% 80.46% 81.99% 83.91% 79.22%
64 92.59% 91.58% 81.61% 81.67% 84.48% 80.26%
125 93.43% 93.30% 82.35% 82.86% 84.09% 84.24%
343 93.82% 92.64% 82.35% 80.71% 82.76% 82.09%

Table 3. Classification performance comparison using different numbers of queries in our LongFormer with optical flow. The best results
are in bold and the second best ones are colored in blue.

Compared with directly working on image sequences, our
model performs better when taking pre-computed longitu-
dinal flows for learning. The two methods for computing
the longitudinal flows, e.g., VoxelMorph and optical flow,
perform equally well on our datasets.
(2) Image Embedding. Next, we experiment with the ef-
fect of our CNN backbone on AD classification. In this ab-
lation study, we choose LongFormer with optical flow and
compare four different backbone networks. As shown in
Table 2, a deeper ResNet provides a better image embed-
ding, while our choice, i.e., DenseNet121, performs best
among these four backbones. This experiment demonstrates
the backbone network plays an essential role in our Long-
Former. Also, compared to directly using these backbones
for classification as reported in Table 1, our LongFormer
with transformer further improves the classification perfor-
mance in all cases. This indicates the effectiveness of using
a transformer to integrate longitudinal changes.
(3) Learnable Queries. Lastly, we would like to explore an
optimal number of learnable queries for our LongFormer.
As reported in Table 3, we test on four different numbers of
queries, and the one having 125 queries performs the best
for most cases, which is set as default for other experiments.

5. Conclusion and Discussion

In this paper, we have proposed an effective CNN-
Transformer architecture, LongFormer, for Alzheimer’s
disease classification based on longitudinal sMRI volumes.
LongFormer adopts attention mechanisms with learnable
queries and deformable cross-attention to integrate both

spatial and temporal information in an image scan and its
longitudinal flow. Our proposed method provides a way
to address the issues of missing data, the limited size of a
dataset, and the subtle changes over time and subject differ-
ences in AD classification based on 3D longitudinal MRIs.
The ablation studies demonstrate the effectiveness of our
model design. Compared to multiple recent baselines, our
model achieves the SOTA AD classification performance on
three public datasets.
Limitations and Future Work. Currently, we only con-
sider two scans of a subject, i.e., a current image and its
prior one, to compute the longitudinal flow. To have a more
accurate estimation of the flow, we could apply image re-
gression [9, 15] on an image sequence. Further improv-
ing the quality of the estimated longitudinal flow would
help improve the classification performance of our Long-
Former. Also, our experiments focus on binary classifica-
tion, which can be straightforwardly extended to multi-label
classification, e.g., classifying AD, Mild Cognitive Impair-
ment (MCI), and NC. Besides, our LongFormer only takes
MRI scans for AD classification; however, other attributes,
like age, gender, lab results, and other image modalities,
like PET, fMRI, etc., are all beneficial for AD diagnosis.
How to integrate them in a uniform framework for our task
is an interesting research topic and left as our future work.
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