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Figure 1. Overview of the reconstruction process. We introduce a learning-based approach for reconstructing sewing patterns from
garment images. Given (a) and input garment image, we utilize a panel transformer to extract (b) the panels of the sewing pattern.
Subsequently, we employ a stitch predictor to determine (c) the stitching information, resulting in a complete reconstructed sewing pattern.
The reconstructed pattern can be further (d) simulated on virtual human bodies through software draping simulation.

Abstract

In this paper, we present a novel approach for recon-
structing garment sewing patterns from 2D garment im-
ages. Our method addresses the challenge of handling
occlusion in 2D images by leveraging the symmetric and
correlated nature of garment panels. We introduce a
transformer-based deep neural network called Panelformer
that learns the parametric space of garment sewing pat-
terns. The network comprises two components: the panel
transformer and the stitch predictor. The panel transformer
estimates the parametric panel shapes, including the oc-
cluded panels, by learning from the visible ones. The stitch
predictor determines the stitching information among the
predicted panels, enabling the reconstruction of the com-
plete garment. To mitigate the overfitting problem caused
by strong panel correlations, we propose two tailor-made
data augmentation techniques: panel masking and gar-
ment mixing. These techniques generate a wider variety
of panel combinations, enhancing the model’s robustness
and generalization capability. We evaluate the effective-
ness of Panelformer using a synthetic dataset with diverse
garment types. The experimental results demonstrate that
our method outperforms competing baselines and achieves
comparable performance to NeuralTailor, which operates
on 3D point cloud data. This validates the efficacy of our
approach in the context of garment sewing pattern recon-
struction. By utilizing 2D images as input, our method ex-
pands the potential applications of garment modeling and

offers easy accessibility to end users. Our code is available
online1.

1. Introduction
The computer graphics and computer vision community

has long been captivated by research about garments mod-
eling due to its wide range of applications, including virtual
try-on, avatar generation, and garment design. Several re-
searchers have dedicated their efforts to reconstructing 3D
garment models from input garment images using various
techniques. Some of these approaches involve fitting pre-
defined garment template models [2,3,6,13,20,31,33] or op-
timizing sets of parametric sewing patterns [11, 37]. While
these methods have demonstrated impressive reconstruction
quality, they are primarily limited to pre-defined garment
types. To improve their generalizability, researchers have
explored the use of robust implicit function representations
to faithfully reconstruct garments with varying styles and
types [5, 21, 40, 41]. However, the reconstructed garment
models often exhibit physical deformations derived from
the input images, which may not be desirable when drap-
ing garments on different body shapes or poses.

To address the aforementioned issues, NeuralTailor [17]
presents a novel deep-learning framework to recover a
structured representation of garment sewing patterns from a
3D point cloud. This sewing pattern representation consists

1https://ericsujw.github.io/Panelformer/
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of a collection of 2D panel shapes, their relative positions in
relation to a reference body, and information on how these
panels are stitched together to form the final garment. By
adopting such a sewing pattern representation, which mim-
ics the fabrication process of real-world garments, Neural-
Tailor effectively disentangles the overall garment shape
from physical deformations, allows for describing a wide
range of garment types, and facilitates the sharing of knowl-
edge across different garment types during the training.

Inspired by NeuralTailor [17], this paper introduces
a novel approach that focuses on reconstructing garment
sewing patterns from 2D garment images instead of 3D
point clouds. By utilizing 2D images as input, this approach
expands the potential applications as 2D images are easily
accessible to end users. However, working with 2D images
presents a significant challenge in handling occlusion since
nearly half of the garment (specifically, the back-side) is not
visible in the projected 2D space.

To tackle this challenge, we leverage the key observa-
tion that garment sewing patterns often consist of symmet-
ric panels and exhibit strong correlations between panel
shapes. For example, the structure of the left-front sleeve
panel is similar to that of the left-back sleeve panel. Based
on this insight, we introduce a transformer-based deep
neural network called Panelformer to learn the parametric
space of garment sewing patterns from input garment im-
ages. As shown in Figure 1, our network consists of two
main components. The first component, the panel trans-
former, is responsible for estimating the parametric panel
shapes of the sewing pattern. Through attention mecha-
nisms, the network can infer the shape of occluded pan-
els (e.g., back sleeves) by learning from the visible ones
(e.g., front sleeves). Subsequently, we employ a stitch pre-
dictor that determines the stitching information among the
predicted panels. This component helps establish the con-
nections between different panels, enabling the reconstruc-
tion of the complete garment.

Furthermore, we identified a potential overfitting prob-
lem during training, stemming from the strong correlation
among panels in sewing patterns. For example, suppose the
training dataset only includes one type of garment with a
hood. In that case, the model might consistently produce
the corresponding sewing pattern whenever it encounters
a hood, failing to generalize to other garment types. To
address this issue, we introduce two tailor-made data aug-
mentation techniques for garment shapes: panel masking
and garment mixing. These techniques enable generating a
wider variety of panel combinations, enhancing the model’s
robustness, and reducing the risk of overfitting.

We perform a comprehensive evaluation to assess the ef-
fectiveness of Panelformer using a synthetic dataset com-
prising a diverse range of garment types. The experimental
results demonstrate that our method outperforms compet-

ing baselines and is comparable to NeuralTailor [17], which
operates on 3D point cloud data. This demonstrates the effi-
cacy of our method in the context of garment sewing pattern
reconstruction.

In summary, we make the following contributions:

• We introduce a novel end-to-end transformer archi-
tecture for the reconstruction of garment sewing pat-
terns from 2D garment images. To the best of our
knowledge, our work represents one of the pioneer-
ing approaches in estimating structured sewing pat-
terns solely from 2D images.

• We propose two tailor-made data augmentation tech-
niques to generate a wider variety of panel combina-
tions, thereby enhancing the model’s robustness and
generalization capability.

• We achieve state-of-the-art performance compared to
competing baselines and comparable performance to
methods that operate on 3D point cloud data.

2. Related work

Garment modeling from 2D images. Template-based
methods are often used to estimate the geometry of an input
garment image. Several approaches [11, 37] utilize para-
metric sewing patterns as templates and optimize the pa-
rameters to achieve a simulated result similar to the input
garment. With advancements in deep learning techniques
within the fields of computer vision and computer graph-
ics, recent works [6, 33] are capable of directly estimating
the parameters of 3D garment templates from the given in-
put, thereby accelerating the inference process. Neverthe-
less, the varying parameter requirements across templates
impose limitations on the generalization of these models.

SMPL [19] has emerged as a popular solution to address
these issues, owing to its learning-friendly characteristics.
SMPL is a 3D human body model parameterized by pose
and shape parameters learned from an extensive dataset of
human body scans. Several studies [2, 3, 13, 20, 31] have
designed garment templates based on the deformation of
a submesh of the SMPL body. However, the fixed topol-
ogy nature of SMPL limits the ability to represent various
garments. Recent advancements [5, 21, 40, 41] explore the
combination of implicit functions with explicit mesh repre-
sentation to reduce the necessity of creating new templates.

Another line of research focuses on modeling the dy-
namics of the garments, which is useful to visualize the
quality of reconstructed garments and enable new appli-
cations such as virtual try-on. Several works model the
task as a function of pose and shape parameters, and di-
rectly predict vertex deformations on fixed topology gar-
ment meshes [24,27–29,34] Alternatively, some works pre-

455



Figure 2. Network architecture. The architecture consists of two main components: the panel transformer and the stitch predictor. The
input image I is first feed into our panel transformer to reconstruct the shapes and placement of panels. We later use an MLP classifier to
predict the stitching information to create a complete sewing pattern.

dict deformations within the 2D image space through care-
fully designed texture maps [14, 35], harnessing the robust-
ness of CNN architectures. Sewing patterns inherently align
with traditional simulators and subsequently generate high
quality results without being constrained to pre-defined gar-
ment types and topologies.

Template-free rest shape modeling from 3D garments.
One commonly employed technique for estimating the rest
shape of a 3D garment is surface flattening, wherein the
input mesh is cut into developable surfaces and unfolded
onto 2D planes [1, 10, 18, 25]. However, these methods re-
quire the input mesh to be clean and complete to achieve
good results. On the other hand, recent works [17, 26] uti-
lize a novel sewing pattern representation for garment rest
shape that exhibits generalizability across various garment
types. Their deep learning architecture predicts sewing pat-
terns based on point cloud inputs.

Nevertheless, these existing methods rely on 3D data as
input, which is not suitable for our scenario. We propose a
novel approach that directly estimates sewing patterns from
2D images. Our experimental results show that our pro-
posed method achieves superior performance compared to
the naive approach of first project 2D garment images to 3D
and subsequently applying the aforementioned techniques.

Transformer for vision tasks. Transformers have demon-
strated remarkable performance in various vision tasks,
such as image classification [8] and object detection [4],
despite their original design for sequence-to-sequence ma-
chine translation tasks [32]. DETR [4] introduced a novel
formulation for object detection by utilizing a set of learned
object queries to predict bounding boxes. This architecture
has been further extended to predict lines [36], planes [30],
and polygons [38].

In a similar vein, we adopt a similar formulation for
estimating garment patterns. However, unlike Room-

former [38], which directly regresses the vertices of the
polygon, we leverage an LSTM instead of a feed-forward
network to generate an indefinite number of vertices. This
design choice reduces the overall complexity while still
maintaining strong performance.

3. Method

3.1. Data preprocessing

In the data preprocessing stage, we begin with the gar-
ment mesh obtained from Korosteleva and Lee [16, 22].
Each garment mesh is initially centered and scaled to fit
within the range of [−0.5, 0.5]. Next, we render the front
view of the normalized garment mesh by positioning the
camera at [0, 0, 1.6] and pointing it in the direction of
[0, 0,−1] using orthogonal projection. This process yields
the garment image I ∈ R3×H×W .

3.2. Sewing pattern representation

The sewing pattern S = {P,G} is represented as a set
of individual panels P and a set of stitches G that connect
the panels together to form a complete garment.

Panel representation. Our model outputs a set of M
panels {P}Mi=1. Each panel Pi = {Ei, Ti, Ri} consists
of edges Ei that represent the outline of panel shape and
{Ti, Ri} that represent the 3D placement of the 2D pan-
els. And each panel is classified into a corresponding class
based on their location and semantic meaning (e.g., front
left sleeve panel, top front panel). This allows us to repre-
sent a diverse range of garment designs based on different
numbers and shapes of panels. The shape of a 2D panel
P is denoted as Ei = (eji , c

j
i ), a sequence of N consecu-

tive edges, with each edge being either a straight line or a
quadratic Bezier spline, represented as the edge vector eji
with the edge curvature cji . We denote the edge vector as
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eji = (ex, ey) ∈ [−1, 1] in the normalized device coordi-
nates (NDC) space. The sequence of edges Ei form a closed
outline of 2D shape by connecting the starting point of ev-
ery edge to the end point of the previous edge in sequential
order. The starting point of the first edge connects to the
origin. This way, we obtain a closed outline of the panel
shape. Panels that consist of only zero length edges are ig-
nored. To represent curves, we define the edge curvature
cji = (cx, cy) ∈ [−1, 1] as the supplement to the edge vec-
tor eji . Edge curvature cji indicates the control point of the
quadratic Bezier spline defined within the local edge space.
The origin of this local edge space is the starting point of the
edge vector eji and (1, 0) is the end point of the edge vector
eji . We represent the 3D placement of the panel P as the
rotation Ri = (qx, qy, qz, qw) in quaternion form and the
translation Ti = (tx, ty, tz) of the panel in the NDC space.

Stitch representation. Stitches {G} are defined as a set of
1-to-1 connections between edge of one panel and an edge
of another panel within the same garment. In this work, the
prediction of stitches is modeled as a binary classification
problem of whether there being a connection between the 2
edges. We denote p

(j,n)
(i,m) as the probability of the existence

of stitch between the jth edge of the ith panel and the nth

edge of the mth panel.

3.3. Network architecture

Figure 2 illustrates the architecture of Panelformer,
which comprises two main components: the panel trans-
former and the stitch predictor. The panel transformer is re-
sponsible for predicting the shape of panels P̂ , and solving
the occlusion issue by learning correlations between panel
shapes via the attention mechanisms, while the stitch pre-
dictor predicts the connectivity between the edges across
different panels.

Panel transformer. We employ ResNet-50 [12] as our fea-
ture extraction backbone. Given the input garment image I ,
we extract a feature map of resolution 16 × 16. To incor-
porate positional information into this feature map, we add
2-dimensional sine and cosine positional encodings to each
location of the feature map. Based on the original encoder-
decoder transformer architecture [32], we utilize the flat-
tened positional encoded features as input to the transformer
encoder block. The resulting tokens from the encoder block
are then employed for cross-attention within the transformer
decoder block. To query all panel classes from the garment
image I , we utilize a fixed number of M learnable embed-
dings as input queries for the transformer decoder. Notably,
these queries adhere to a fixed order, signifying the specific
panel class associated with each query and guaranteeing de-
terministic results. The output tokens of the transformer de-
coder are further processed using two auxiliary decoders:
(i) an LSTM-based panel decoder that generates the panel

Figure 3. Data augmentation process. Panel masking removes
panels from the garment, and garment mixing attaches additional
panels to the garment.

edge sequence {Êi}Mi=1. The sequential nature of the edge
sequence makes the LSTM-based model adept at generat-
ing reasonable results. (ii) an MLP-based placement de-
coder that outputs the 3D placement, comprising rotation
{R̂i}Mi=1 and translation {T̂i}Mi=1, for all M panel classes.
The design of the decoders follows the module architectures
in NeuralTailor [17].

Stitch predictor. The edge sequence {Ei}Mi=1 was orig-
inally defined in the local panel space. However, panels
need to be placed in the same world space in order to per-
form draping simulation, which is where the stitches come
into use. Therefore, we transform the predicted edge se-
quence {Êi}Mi=1 into global edges {V̂ j

i = (ûj
i , v̂

j
i , ĉ

j
i )}Nj=1

via the predicted 3D placement {T̂i, R̂i}Mi=1, where uj
i and

vji are the 3D coordinates of the starting point and ending
point of the edge eji in the NDC space, respectively. We
then employ a classification MLP as our model and feed all
possible global edge pairs {(V̂ j

i , V̂
n
m)}, where i ̸= m and

j ̸= n, into the MLP-based stitch predictor and predict the
probability {p̂(j,n)(i,m)} of the valid stitches.

3.4. Data augmentation

We introduce two data augmentation techniques inspired
by CutOut [7] and Copy-Paste [9], namely panel masking
and garment mixing, as illustrated in Figure 3. Starting
from an garment image I , we first acquire the bounding box
of each panel leveraging the projected ground truth vertex
segmentation of the garment image I . We then assign each
panel to a group according to their semantic information.
For example, left front sleeve, left back sleeve, right front
sleeve, and right back sleeve are assigned to the same group
as they all represent sleeves. The groups are denoted as
Q = {Qi}Li=1, where L is the number of groups. Please
refer to our supplementary material for all the details of the
groups Q.
Panel masking. We first randomly select one group Qi

within the input image I . For every panel within the chosen
group Qi, the pixels enclosed by their respective bounding
box Bi, as well as the corresponding ground truth informa-
tion, are set to zero.
Garment mixing. We begin by randomly selecting an-
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other image I ′ from the training set. Subsequently, one of
the groups Q′

i is randomly chosen from the selected im-
age I ′. Following this selection, the pixels contained within
the corresponding bounding box B′

i, along with the ground
truth information associated with the panels belonging to
the chosen group, are copied and integrated into the current
input image I .

By applying these data augmentation techniques, we in-
troduce variations and increase the diversity of the training
dataset. These augmentation techniques effectively prevent
overfitting and improve the robustness of the model.

3.5. Loss functions

Edge loss. The edge loss Ledge primarily focuses on ensur-
ing the accurate shape of the predicted panels, formulated
as the mean squared error (MSE) between the ground truth
panel edge sequence and the corresponding predicted panel
edge sequence, as shown below:

Ledge =

∑M
i=1

∑N
j=1(Êij − Eij)

2

M ·N · 4
. (1)

Loop loss. The loop loss Lloop is defined as the L2 norm
of the distance between starting point and the ending point
of the predicted panel edge sequence, as shown below:

Lloop =
1

M

M∑
i=1

(

N∑
j=1

êji )
2, (2)

by incorporating the loop loss, we encourage the predicted
panel edges to form closed loops, mimicking the character-
istic closed structure of panels.
Placement loss. The placement loss consist of Lrot and
Ltrans, where both of them defined as the MSE loss be-
tween the ground truth and the predicted rotation and trans-
lation, as shown below:

Lrot =

∑M
i=1(R̂i −Ri)

2

M · 4
, (3)

Ltrans =

∑M
i=1(T̂i − Ti)

2

M · 3
. (4)

The overall loss function Ltotal for training the shape
and placement model is defined as follows:

Ltotal = λ1Ledge + λ2Lloop + λ3Lrot + λ4Ltrans, (5)

where λ{1,...,4} are the hyperparameters for weighting the
loss functions.
Stitch loss. The stitch loss Lstitch calculates the binary
cross entropy loss between predicted probability p̂

(j,n)
(i,m) and

corresponding ground truth p
(j,n)
(i,m), as shown below:

Lstitch =
1

M2 ·N2

∑
p
(j,n)
(i,m) · log σ(p̂

(j,n)
(i,m))

+ (1− p
(j,n)
(i,m)) · log(1− σ(p̂

(j,n)
(i,m))),

(6)

where every possible stitch between all edges of all different
panels are computed.

4. Experiments
4.1. Experimental settings

Dataset. For both training and evaluation purposes, we uti-
lize the Dataset of 3D garments with sewing patterns [22]
obtained from [16]. This dataset comprises a total of 23,500
samples, covering 19 distinct base garment types. Each
sample within the dataset contains a garment mesh and the
corresponding sewing pattern. As described in Section 3.1,
we then render the 2D garment image, which is the front
view of the garment mesh for each sample, and use them as
input data for all experiments. The samples in the testing set
are further divided into two categories: ”unseen types” and
”seen types.” The ”unseen types” category includes sam-
ples from seven garment types that do not exist in the train-
ing set. On the contrary, the category ”seen types” com-
prises samples from the remaining 12 garment types that are
present in the training set. This division allows us to eval-
uate the generalizability of our model on both familiar and
unfamiliar garment types. We adopt the same filtering pro-
cess to NeuralTailor [17], where samples exhibiting similar
draping results but different sewing pattern arrangements
are filtered, resulting in training, validation, and testing sets
with 9678, 1200, and 1765 samples, respectively.
Baselines. We conduct a comparative analysis between
our method and a naive baseline approach. The baseline
approach involves a two-step process: first, predicting 3D
point clouds from 2D images, and then using NeuralTai-
lor [17] to reconstruct sewing patterns based on the pre-
dicted 3D point clouds (the code of Personaltailor [26] is
not available.) For the 3D point cloud prediction, we em-
ploy the AnchorUDF model [39], which has been fine-tuned
on the test set. Regarding the prediction of sewing patterns,
we fine-tune the NeuralTailor architecture [17] using our
proposed data augmentation techniques.
Implementation details. Our model is implemented with
PyTorch [23]. Training and evaluation processes are per-
formed on a single NVIDIA GeForce RTX 3090 GPU with
24GB VRAM. The input images are resized to a resolu-
tion of 512 × 512 pixels and normalized using mean values
of [0.485, 0.456, 0.406] and standard deviation values of
[0.229, 0.224, 0.225]. The number of panel classes M is set
to 23, the maximum number of edges per panel N is set to
14, and the maximum number of groups L is set to 6. The
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Input Ground Truth Ours AnchorUDF* + NeuralTailor

Figure 4. Qualitative comparison on panel reconstruction. The top 2 rows show samples from the unseen types testing set and the
bottom 2 rows show samples from the seen types testing set. We do not show results from AnchorUDF + NeuralTailor here as the setting
hardly produces meaningful shapes.

hidden dimension of the panel transformer is set to 256. We
emperically set λ1 = 1, λ2 = 1, λ3 = 1 and λ4 = 1 in
Equation 5. We use the Adam optimizer [15] with b1=0.9
and b2=0.99. We train the panel transformer for 350 epochs
and the stitch predictor for 350 epochs with batch size 32
and 30, respectively. In general, it takes 25 hours to train our
Panelformer. We divide our panel transformer training pro-
cess into two stages, which involve a pre-training step with-
out translation loss Ltrans followed by a fine-tuning step
that incorporates translation loss Ltrans. In the pre-training
step, we set the learning rate to 1e − 5 for the ResNet-50
module [12], while a learning rate of 1e − 4 is used for the
remaining modules. The ResNet-50 module is initialized
with the pre-trained weights provided by the torchvision li-
brary. During the fine-tuning step, we multiply all the learn-
ing rates by 0.1 and add translation loss Ltrans to fine-tune.
For the stitch prediction model, we use one-cyclic schedul-
ing with the maximum learning rate set to 0.002. As for the
training data, we take two kinds of edge pairs: (i) ground
truth edge pairs, and (ii) predicted edge pairs derived from
panel transformer.

Metrics. We use the metrics introduced in NeuralTai-
lor [17] to assess the quality of our results. To evaluate the
overall quality of the sewing pattern, we compute the accu-
racy of the number of panels predicted for each pattern (#P)
and the number of edges predicted for each panel (#E). To
evaluate the reconstructed quality of the shapes of predicted
panels, we calculate the L2 norm between the predicted ver-

tices and the ground truth vertices, along with the curvature
coordinates (L2-P). We also estimate the L2 norm between
the predicted translations (L2-T) and the predicted rotations
(L2-R) and their ground truth values. For stitches, we report
the precision (Prec.) and recall (Rec.) of the prediction.

4.2. Sewing pattern reconstruction performance

Quantitative comparison on panels. As shown in Ta-
ble 1, our Panelformer outperforms all the baselines across
most of the metrics, except for the rotation error in terms
of seen garment types. Compared to AnchorUDF + Neural-
Tailor, our model improves #P by 89.3% and #E by 95.2%.
We observe that NeuralTailor [17] is highly sensitive to the
global translation of the input point cloud. It is unable to
adapt to the normalized point cloud produced by Ancho-
rUDF, which is fitted within the NDC space. To address
this issue, we incorporate the ground-truth global transla-
tion into the predicted point cloud from AnchorUDF. We
then feed these adjusted point clouds into NeuralTailor. The
setting is denoted as AnchorUDF* + NeuralTailor.

Compared to AnchorUDF* + NeuralTailor, our model
achieves notable improvements in #P (by 38.8%), L2-P (by
2.3), and #E (by 1.6%), while maintaining a comparable
rotation error (L2-R). These results indicate that NeuralTai-
lor is highly sensitive to the imperfect and noisy predicted
point clouds obtained from AnchorUDF. In contrast, our
Panelformer is an end-to-end model that eliminates the need
to predict a 3D point cloud as an intermediate step before
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Table 1. Quantitative comparisons on predicted panels from different baselines. The best results are in bold font.

Method
Seen Types Unseen Types

L2-P ↓ #P (%) ↑ #E (%) ↑ L2-R ↓ L2-T ↓ L2-P ↓ #P (%) ↑ #E (%) ↑ L2-R ↓ L2-T ↓
AnchorUDF + NeuralTailor 24.4 10.5 4.5 0.34 14.59 25.2 2.6 4.4 0.36 16.48
AnchorUDF* + NeuralTailor 4.2 61.0 98.1 0.00 2.49 5.2 85.6 90.1 0.00 3.59
Ours 1.9 99.8 99.7 0.01 1.78 5.4 97.3 92.7 0.01 7.24

transforming it into a sewing pattern.

Table 2. Quantitative comparisons on predicted stitches from
different baselines. The results from AnchorUDF + NeuralTailor
are omitted as the setting hardly produces meaningful shapes.

Seen Types Unseen Types

Prec. (%) ↑ Rec. (%) ↑ Prec. (%) ↑ Rec. (%) ↑
AnchorUDF* + NeuralTailor on GT 76.0 71.5 68.9 61.5
AnchorUDF* + NeuralTailor on Preds. 70.6 91.1 70.7 88.0
Ours on GT 99.2 99.6 78.9 79.5
Ours on Preds. 98.9 99.9 83.3 81.1

Table 3. Ablation study on various data augmentation. We
compare the results without the fine-tuning with Ltrans.

Unseen Types

L2-P ↓ #P (%) ↑ #E (%) ↑ L2-R ↓
Ours w/o augmentation 13.5 14.1 60.7 0.12
Ours w/ standard masking 10.2 10.0 80.7 0.13
Ours w/ panel masking 8.6 73.4 84.2 0.03
Ours w/ garment mixing 8.5 65.8 83.9 0.04
Ours 5.4 97.3 92.7 0.01

Table 4. Ablation study on perdicted panels on positional en-
coding (PE). We compare the results without Ltrans fine-tuning.

Seen Types Unseen Types

L2-P ↓ #P (%) ↑ #E (%) ↑ L2-R ↓ L2-P ↓ #P (%) ↑ #E (%) ↑ L2-R ↓
Ours w/o PE 3.2 99.4 99.6 0.01 6.1 79.2 91.2 0.03
Ours w/ PE 1.9 99.8 99.7 0.01 5.4 97.3 92.7 0.01

As for unseen garment types, our Panelformer surpasses
all the baselines in #P and #E, while maintaining compa-
rable performance in other metrics. Compared to Ancho-
rUDF* + NeuralTailor, our model still achieves significant
improvements in #P (by 11.7%) and #E (by 2.6%), despite
the fact that we favor the baselines by providing ground-
truth translations and fine-tuning AnchorUDF on the test
set, which includes both seen and unseen types, rather than
on the training set, which contains only the seen types from
the same dataset. Based on our experiments, the overall
quality of the reconstructed sewing patterns largely relies
on the accurate prediction of the number of panels (#P) and
the number of edges (#E).
Quantitative comparison on stitch prediction. As shown
in Table 2, our Panelformer demonstrates superior perfor-

mance in terms of both precision and recall. This can be at-
tributed to the high quality of our shape predictions, which
serve as a foundation for accurate stitch inference. Addi-
tionally, we observe that the methods trained on predicted
edge pairs perform better on unseen types. We believe it is
because imperfect data can enhance the model’s robustness.
Qualitative comparison on panel reconstruction. The
qualitative comparisons, as depicted in Figure 4, further
support the reported metrics. Our Panelformer produces re-
sults with fewer redundant panels and more accurate panel
shapes compared to AnchorUDF* + NeuralTailor. In gen-
eral, our model follows an end-to-end approach, eliminat-
ing the need for predicting intermediate 3D point clouds,
which contributes to greater result stability. Additionally,
our data augmentation techniques, such as panel masking
and garment mixing, enhance the robustness of our model,
enabling reasonable panel reconstruction even for unseen
types. Please refer to our supplemental material for more
quantitative and qualitative results.

4.3. Ablation study

Effects of different data augmentation. In this experi-
ment, we aim to assess the effectiveness of each augmenta-
tion technique used in our model. We compare the setting
with all augmentations against different variants to evalu-
ate their impact. The variants include: (i) Ours w/o aug-
mentation represents our model without any augmentation
techniques applied; (ii) Ours w/ standard masking applies
random masking of images without the removal of corre-
sponding ground-truth panel; (iii) Ours w/ panel masking
includes the augmentation technique of panel masking only;
and (iv) Ours w/ garment mixing incorporates the aug-
mentation technique of garment mixing only.

The results of this ablation study, as shown in Table 3,
show that the implementation of standard masking does
not yield noticeable reductions in overfitting. This out-
come aligns with expectations, as standard masking merely
enhances the visual diversity of the input images without
introducing any significant variation in the corresponding
ground-truth sewing patterns. On the contrary, both panel
masking and garment mixing significantly increase perfor-
mance. Both methods contribute to increasing the variety
of data and effectively prevent the model from overfitting
to the training set. Moreover, panel masking outperforms
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Figure 5. Performance of each shape reconstruction metric on different viewing angle. The performance is the best when there is no
perturbation and shows noticeable decline beyond 20 degrees.

garment mixing marginally, probably due to the slight dif-
ference from the original images before garment mixing.
Combining the utilization of panel masking and garment
mixing yields the most optimal performance among all ex-
perimental settings.
Effects of positional encoding. We compare our origi-
nal model with a modified version where positional encod-
ing is excluded from the input. The results are presented
in Table 4: The omission of positional encoding degrades
the performance of L2-P on seen types (by 1.3) and fails to
generalize to unseen types, resulting in significant declines
on L2-P (by 0.7), #P (by 18.1%), and #E (by 1.5%).
Effects of different viewing angle. In order to assess
the robustness of our model against different viewing an-
gles, we generate garment images at different angles rang-
ing from 0 to 45 degrees, with increments of 5 degrees. The
predicted results, as depicted in Figure 5, show a slightly
drop before 20 degrees. This suggests that our model is ca-
pable of tolerating minor perturbations in viewing angles.

Input Ours Simulation [16]

Figure 6. Qualitative results on real-world data. We reconstruct
sewing patterns and perform drape simulation for real images.

4.4. Qualitative results on real-world data

We collect real world garment images from the internet
and reconstruct their sewing pattern using our Panelformer.
We then drape the produced sewing pattern over a human
body using software simulation [16]. Our model demon-

Input Ground Truth Ours

Figure 7. Limitations. Edge pairs that are colored with the same
color indicate that they can be connected by a stitch. The red edges
failed to connect to a reasonable edge.

strate the ability to make accurate estimations regarding the
overall structure of the garments. However, it should be
noted that finer details of the garments, such as pockets and
buttons, were not fully reconstructed in the process. The
recovery of these intricate details through techniques like
texturing or expanding the range of panel classes remains a
crucial task for future endeavors in this field.

5. Conclusion

We propose Panelformer, an end-to-end model that fo-
cuses on reconstructing sewing patterns from 2D garment
images. To enhance the model’s performance, we introduce
augmentation techniques aimed at improving the robustness
of our model. The experimental results show the excep-
tional performance of our model.

Limitation and future work. Our model occasionally
predicts unreasonable edge combinations between panels as
shown in Figure 7. We plan to develop a model that can
jointly predict both the shape and stitch of sewing patterns.
Another limitation is that our model can only take one front
view image as input. In the future we will move on to utiliz-
ing multi-view images as input. Also, the hyper-parameters
in Equation 5 have not been thoroughly tuned. We intend to
optimize these parameters to improve model performance
in future.
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