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Abstract

Few-Shot Segmentation (FSS) aims to segment the novel
class images with a few annotated samples. In the past, nu-
merous studies have concentrated on cross-category tasks,
where the training and testing sets are derived from the
same dataset, while these methods face significant diffi-
culties in domain-shift scenarios. To better tackle the
cross-domain tasks, we propose a pixel matching network
(PMNet) to extract the domain-agnostic pixel-level affinity
matching with a frozen backbone and capture both the pixel-
to-pixel and pixel-to-patch relations in each support-query
pair with the bidirectional 3D convolutions. Different from
the existing methods that remove the support background,
we design a hysteretic spatial filtering module (HSFM) to
filter the background-related query features and retain the
foreground-related query features with the assistance of the
support background, which is beneficial for eliminating in-
terference objects in the query background. We comprehen-
sively evaluate our PMNet on ten benchmarks under cross-
category, cross-dataset, and cross-domain FSS tasks. Ex-
perimental results demonstrate that PMNet performs very
competitively under different settings with only 0.68M pa-
rameters, especially under cross-domain FSS tasks, show-
ing its effectiveness and efficiency. Code will be released at:
https://github.com/chenhao-zju/PMNet

1. Introduction

With the rapid development of computer vision [13, 55],

semantic segmentation [33, 36], as one of the most im-

portant vision fields, has made remarkable progress. The

great success of semantic segmentation benefits from a large

amount of human-annotated datasets. However, the pixel-

level annotations are hard to obtain due to the time con-

sumption and labor. To alleviate this problem, Few-Shot

Segmentation (FSS) [3,4,11,19,39,47,53] aims at segment-

ing samples with a few annotated support samples and has

been attracting a lot of attention.

*The corresponding author.
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Figure 1. Comprehensive comparison results between HSNet [35]

and PMNet on 10 benchmarks. All experiments are tested with

Resnet50 backbone under the 1-Shot setting. The experiment re-

sults of HSNet are collected from [23, 35, 45].

FSS remains a very challenging task due to the scarcity

of support samples and the diverse intra-class flavors. The

crux of FSS is to exploit the affinities among the objects in

the support-query pairs. Currently, the existing approaches

roughly follow two groups, i.e., class-wise and pixel-wise,

based on the representations of support samples. The class-

wise methods [18,24,28,34,52] perform the support masks

on the feature maps of the support samples to obtain their

foreground prototype vectors and utilize them to guide the

segmentation of the query images. As the compressed pro-

totype vectors only contain the most manifest information

while losing the spatial structure information that is es-

sential for the dense FSS task, the class-wise methods fail

in conducting fine-grained matches with target objects in

the query image. To remedy the spatial information loss,

the pixel-wise methods [35,38] represent the support-query

pairs with pixel-wise features and obtain the support-query

affinity by performing the dense many-to-many correspon-

dence.

Though pixel-wise methods achieve superior perfor-

mances, however, segmenting the query samples from the

support-query correlation matrix once obtaining it would

lead to inferior relation matching due to the following rea-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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sons. First, the pixel-to-pixel correlation hardly handles the

case where the objects in support-query pairs are in differ-

ent sizes. Second, the foreground objects and background

objects may give high relevance but the parts of the fore-

ground objects may get low relevance due to the inter-class

similarity and intra-class diversity, which will mislead the

model in incomplete query objects and discovering interfer-

ence objects in the background. Third, most existing ap-

proaches remove the support backgrounds with the support

mask in advance and only consider the object foregrounds

in the dense correlations, which will omit some important

information for the query segmentation.

To address the above issues, we develop a pixel match-

ing network (PMNet) for FSS to enhance the correspon-

dence matching from the naive support-query affinity by

fully exploiting the dense pixel-to-patch relations with fea-

sible sizes between the foreground and background. Dif-

ferent from HSNet [35] which removes the support back-

ground with the support mask before extracting the support-

query correlations, PMNet obtains the support-query affin-

ity from the whole feature maps of support-query pairs,

which fully considers the support background. Denser

support-query affinity is, more foreground-related features

will be retained and more background-related features will

be filtered in the follow-up hysteretic spatial filtering mod-

ule, thus leading to a better prediction of query mask. In

contrast to DCAMA [38] that weights the support-query

correlation with the support mask once obtaining it, we pro-

pose HSFM to further enhance the support-query correla-

tion with bidirectional 3D convolutions before filtering it.

Specifically, the bidirectional 3D convolutions exploit the

support-query correlations in both pixel-to-pixel and pixel-

to-patch with flexible size, reaching more dense correlations

and more fine-grained matching between the support-query

pairs, which contributes to segmenting the query target ob-

jects with the huge different size from the support objects.

After the support-query affinity enhancement, HSFM fil-

ters the query background-related features and retains the

foreground-related features with the assistance of the sup-

port mask.

Besides, the existing dense pixel-level approaches (e.g.,

DCAMA [38]) add a linear head on the top of each block of

the backbone to reduce the noises before obtaining the affin-

ity matrix. Though effective it is, the linear head introduces

a large number of parameters, resulting in a heavy segmen-

tation head. To lighten the model, we remove the linear

head and mitigate the noises after obtaining the affinity ma-

trix. With more convolutional layers produced in the affin-

ity matrix, PMNet fuses multi-scale and multi-receptive-

field feature maps with fewer parameters, which provides

the learnable space for reducing the noises.

The main contributions of this work include:

• We propose a lightweight FSS framework, pixel

matching network (PMNet), with 0.68M parameters,

to boost the support-query correspondence matching

by fully exploiting the pixel matching of both the back-

ground and foreground in each support-query pair.

• We develop HSFM to further enhance the support-

query affinity with bidirectional 3D convolutions and

filter it with the support mask, which exploits both the

pixel-to-pixel and pixel-to-patch relationships.

• As far as we know, this is the first work to compre-

hensively evaluate FSS under cross-category, cross-

dataset, and cross-domain settings. The experiments

on ten benchmarks show the superior generalization

ability of our method. As shown in Fig. 1, PMNet

comprehensively outperforms the SOTA competitor

HSNet [35] under different settings.

2. Related work

2.1. Fow-Shot Semantic Segmentation

The existing FSS works [8, 12, 21] could roughly fol-

low two groups, i.e., class-wise [37, 40, 49, 54] and pixel-

wise [5, 20] correspondence, based on the interaction be-

tween the support-query pairs. The class-wise approaches

represent the objects in the support samples as a prototype

through masked average pooling and segment the query

samples based on the similarities between the support pro-

totype and the pixel feature embeddings of the query sam-

ple. The class-wise approaches differ in the way of ob-

taining the support prototypes. For example, ASGNet [24]

extracts multiple prototypes via clustering and adaptively

allocates these prototypes to the most related query pix-

els, DPCN [28] introduces a dynamical convolutional mod-

ule to extract prototypes containing support object details

and extracts query foreground through feature fusion, and

NTRENet [30] extracts the background prototype to elim-

inate the similar query region in a prototype-to-pixel way.

Though efficient, the class-wise approaches compress the

support feature maps into a prototype vector and lose their

spatial information which is essential for the segmentation

tasks.

To remedy the spatial information loss, the pixel-wise

methods obtain the support-query correlation by densely

calculating the similarities between the pixel feature em-

beddings of support-query pairs. Though more operations

than the class-wise competitors, the pixel-wise approaches

obtain superior performances and gain much more atten-

tion in recent years. These approaches boost the perfor-

mances by enhancing the support-query correlations. For

example, as one of the earliest works to compute pixel-

to-pixel correlation, DAN [43] enhances the support-query

correlation with a graph attention mechanism. HSNet [35]
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Figure 2. Illustration of the proposed pixel matching network (PMNet). PMNet extracts the multi-scale features from the frozen backbone

and reaches the support-query affinity matrix between query features and support features from each layer of the last two backbone blocks.

Then, HSFM filters the query background and retains the query foreground with the support mask in two different scale paths (only

one path is drawn). In the HSFM, the query-support affinity matrix is further enhanced with the proposed bidirectional 3D convolutions

(B3DConvs). Finally, the filtered query-support affinity matrix from different blocks combined with the low-level query features are used

to predict the query mask with a decoder. The number next to each module denotes its parameter.

enhances support-query correspondence with 4D convolu-

tion operations. Following HSNet [35], VAT [14] replaces

the 4D convolution operations with a 4D swin transformer

[32] to further enhance the support-query correspondence.

DCAMA [38] enhances the support-query correlations by

fully aggregating the pixel-to-pixel relations of all layers of

each backbone block. Our PMNet is related to HSNet [35]

and DCAMA [38] and enhances the support-query correla-

tion by first densely calculating the pixel-to-pixel relations

and then further processing it with bidirectional 3D con-

volutions. Different from HSNet and DCAMA that filter

the support background [35] or weight the affinity matrix

with the support mask once obtaining it [38], PMNet intro-

duces a hysteretic spatial filtering module to fully consider

the pixel-to-pixel and pixel-to-patch relationships of back-

ground and foreground between the support-query pairs be-

fore filtering it.

Many works have explored the effects of support back-

grounds. BAM [22] focuses on the interference brought

by the support background and designs a branch to learn

the base category distribution. HM [29] compares the dif-

ference between the backbone features with or without the

background of the input image and complements each other.

Different from these methods, PMNet focuses on the affin-

ity matching of background in a more fine-grained way,

which contributes to filtering similar objects in query sam-

ples.

2.2. Cross-Domain Few-Shot Segmentation

Cross-Domain Few-Shot Segmentation is a specific FSS

scenario that performs the trained model on the novel

classes from a novel domain. In contrast to ordinary FSS,

the cross-domain FSS is more challenging due to the short-

age of the prior distribution of the testing set. There

are a few attempts to address cross-domain FSS. RTD

[45] designs a two-stage method to transfer the feature-

enhancement knowledge to target samples. PATNet [23]

measures the cross-domain tasks difficulty and proposes

a pyramid-based module to transform the domain-specific

features into domain-agnostic ones. In this work, we ex-

tensively evaluate PMNet in cross-domain tasks and show

that PMNet has a great transfer ability between different do-

mains.

3. Methods

3.1. Problem Definition

Given a base set consisting of some images and their

masks, FSS aims to train a model to segment some samples

from the novel classes, under the condition of one or a few

support samples associated with their masks. In this work,

we adopt the popular meta-learning paradigm to train the

model with the episodes sampled from the base set, where

each episode contains a support set S = {Isk, Ms
k}Kk=1 and

a query set Q = {Iq,Mq}, Is and Iq represents the input

support and query images, Ms and Mq denotes the cor-

responding masks, and K denotes the number of support

images. Mq is required to be predicted during inference.

3.2. Framework

The FSS task is to match the objects from the same cat-

egory in the support-query pairs. In this paper, we propose

a novel framework to address FSS by densely exploiting

pixel-level support-query pairs. As illustrated in Fig. 2,
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Figure 3. Illustration of the proposed Hysteretic Spatial Filtering

Module (HSFM). Bidirectional 3D Convolutions (B3DConvs) aim

to enhance the support-query affinity. Then, the enhanced support-

query affinity is filtered by suppressing the query background and

retaining the query foreground with the assistance of the support

mask.

the framework could be divided into four steps. (1) The

support-query pair is taken as the input to a feature en-

coder (e.g., ResNet50) to obtain their feature maps from

different blocks. (2) The feature maps from the last two

blocks are used to reach the support-query affinities. Same

as the pixel-wise methods [35,38], we compute the support-

query correlations with the fully pixel-to-pixel inner prod-

uct of feature maps from each layer in blocks and con-

catenate them separately. (3) The affinity matrix is filtered

through the hysteretic spatial filtering module (HSFM) with

the corresponding support mask, which contributes to ob-

taining the coarse mask predictions of the query sample by

filtering the query background and retaining the query fore-

ground. In the HSFM, the support-query affinities are en-

hanced with the bidirectional 3D convolutions that could

further exploit the pixel-to-patch relationships, contributing

to segmenting the query objects with different sizes from

the support objects. (4) The coarse mask predictions are re-

fined in a decoder network to predict the query mask with

the low-level query feature embeddings from the first two

backbone blocks.

Steps (3) and (4) are key designs in our framework,

which will be introduced in detail.

3.3. Hysteretic Spatial Filtering Module

Given the feature maps Fs ∈ R
c×h×w and Fq ∈

R
c×h×w of both support and query samples, where c, h,

and w denote the channel, height, and width, respectively,

the support-query affinity matrix S ∈ R
hw×hw could be

obtained with

S = R(Fs)
T ×R(Fq), (1)

where R denotes the reshaping operation that reshapes the

feature maps of support and query samples to R
c×hw. To

further enhance the affinity matrix, we introduce the bidi-

rectional 3D convolutions (B3DConvs) on it to exploit the

pixel-to-patch correlations between support-query pairs. As

shown in Fig. 3, we first reshape S to R
h×w×hw and input

it to a 3D convolution network with different kernels. Each

network contains two 3D convolution blocks, consisting of

a 3D convolutional layer, a BatchNorm layer, and a ReLU

operation. Thus, each pixel of the support sample could in-

teract with the query patches whose size is the same as the

kernels (e.g., 3× 3 and 5× 5 ). Similarly, we could explore

the interactions of each query pixel and the support patches

by transposing and reshaping S and then inputting it into

the 3D convolution network. In this way, we could obtain

the pixel-to-patch relationships in a bidirectional way, i.e.,

support-to-query, and query-to-support. This process is for-

mulated as:

Senh = R2(H(R1(S))) +R2(H(R1(S
T )))T , (2)

where Senh ∈ R
hw×hw denotes the enhanced affinity ma-

trix, H denotes a 3D convolution network, R1 and R2 are

both shaping operations, T is the metric transpose.

Once obtained the enhanced support-query affinity ma-

trix, we introduce the support mask to filter the query fore-

ground. As shown in Fig. 3, the reshaped support mask

Ms ∈ R
hw×1 performs as a convolution operator on the

affinity matrix along the query dimension to obtain the

coarse query mask, which is formulated as:

Mcoarse = Conv(input : Senh, weight : Ms) (3)

where Mcoarse ∈ R
hw×1 denotes the coarse mask of query

sample, Conv denotes the convolution operation.

In contrast to DCAMA [38] which weights affinity ma-

trix with the support mask once obtaining it, PMNet intro-

duces a hysteretic spatial filtering module, which takes the

affinity matrix as two parts and produces 3D convolutions to

them separately before filtering. Through a fine-grained op-

eration, our method guarantees the affinity matching of the

foreground and background, benefiting suppressing the re-

lated background and highlighting the related foreground in

spatial filtering. Fig. 4 provides some filtered feature maps

of different approaches and shows that PMNet retains more

query foreground and filters more query background, which

will benefit in the following mask prediction.

3.4. Decoder

The decoder takes the coarse query masks from different

layers as the input to predict the final mask. Specifically,

the decoder fuses the multi-scale and multi-receptive-field

coarse masks with Conv1 and Conv2. The coarse masks of

two blocks are enhanced with Conv1 separately and fused

by pixel-wise addition. The fused feature is continuously

enhanced with two Conv2 blocks. To supplement the struc-

tural information, the feature maps are concatenated with
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Query HSNet [35] DCAMA∗ DCAMA [38]PMNet(Ours)
Figure 4. The visualization of the coarse mask in the second block

of different models, trained under 1-shot task with Resnet50 back-

bone on PASCAL5i dataset. ∗ denotes DCAMA with the last two

backbone blocks.

the low-level query features and segmented with the classi-

fier head. The detailed Conv1, Conv2, and Classifier head

will be given in Supplementary Material.

In [38,51], a linear head is added for each of the last two

modules to transform the feature embeddings into the other

feature embedding to better fit the segmentation task from

the pre-trained backbone. Though the linear head could as-

sist the model in improving the cross-category FSS perfor-

mance, it consists of a large number of learnable param-

eters. To lighten the model, we remove the linear heads

as shown in Fig. 2 and remedy it with the post-processing

in the decoder with fewer parameters. Besides, we observe

that removing the linear heads could preserve more domain-

invariant features, which will benefit the cross-domain FSS

tasks, please refer to more details in Supplementary Mate-

rial. During training, the binary cross-entropy loss is used

to supervise the model. Under the 5-shot setting, multiple

support features and masks are concatenated in the channel

dimension in Hysteretic Spatial Filtering Module.

4. Experiments

4.1. Datasets.

PASCAL-5i [9] is the expansion of PASCAL VOC

2012, which is divided into 4 subsets following [1]. Each

subset contains 15 base classes for training and 5 novel

classes for testing. COCO-20i [26] contains 80 common

classes in natural scenery. Same as PASCAL-5i, COCO-20i

is divided into 4 subsets, each containing 60 base classes

and 20 novel classes. FSS-1000 [25] is a natural image

dataset, consisting of 1,000 classes and each class has 10

(a)

(b)

(d)

(c)

(e)

(f)

(g)

(h)

PA
SC
A
L

C
O
C
O

Support HSNet DCAMA PMNetres50PMNetres101 GT

Figure 5. The visualization of prediction results with different

methods in COCO and PASCAL datasets under various chal-

lenging scenarios. ‘GT’ denotes the query ground-truth mask.

‘PMNetres50’ and ‘PMNetres101’ denote PMNet with Resnet50

and Resnet101 backbone, respectively.

annotated samples. The official split has been used in our

FSS experiments. The results are tested on the testing set,

containing 240 classes and 2,400 samples. Deepglobe [7]
is a satellite image dataset, containing 7 classes: urban land,

agriculture, rangeland, forest, water, barren, and unknown.

Following PATNet [23], each image is cut into 6 pieces.

ISIC2018 [6, 42] is a dataset on dermatoscopic images,

containing 2,596 skin cancer screening samples. In PAT-

Net [23], ISIC2018 is divided into three classes, while the

classification basis has not been published. In our work, the

whole dataset is seen as one class, which is more challeng-

ing. Chest X-ray [2, 17] is an X-ray dataset for Tuber-

culosis, which includes 566 annotated x-ray images, col-

lected from 58 cases with a manifestation of Tuberculosis

and 80 normal cases. SUIM [16] is an underwater imagery

dataset, containing over 1,500 pixel-annotated images for

eight classes.

4.2. FSS Tasks.

On the basis of the different distributions of the train-

ing dataset and testing dataset, the FSS tasks are divided
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Pascal-5i

Backbone Methods Type
1-shot 5-shot Learnable

Fold-0 Fold-1 Fold-2 Fold-3 mIoU Fold-0 Fold-1 Fold-2 Fold-3 mIoU Params(M)

NTRENet(CVPR’22) [30] 65.4 72.3 59.4 59.8 64.2 66.2 72.8 61.7 62.2 65.7 18.6

SSP(ECCV’22) [10] Prototype 60.5 67.8 66.4 51.0 61.4 67.5 72.3 75.2 62.1 69.3 8.7

IPMT(NeurIPS’22) [31] 72.8 73.7 59.2 61.6 66.8 73.1 74.7 61.6 63.4 68.2 -

CyCTR(NeurIPS’21) [51] 65.7 71.0 59.5 59.7 64.0 69.3 73.5 63.8 63.5 67.5 15.9∗

HSNet(ICCV’21) [35] 64.3 70.7 60.3 60.5 64.0 70.3 73.2 67.4 67.1 69.5 2.6

ResNet-50 AAFormer(ECCV’22) [46] 69.1 73.3 59.1 59.2 65.2 72.5 74.7 62.0 61.3 67.6 -

VAT(ECCV’22) [14] Pixelwise 67.6 72.0 62.3 60.1 65.5 72.4 73.6 68.6 65.7 70.1 3.2

DCAMA(ECCV’22) [38] 67.5 72.3 59.6 59.0 64.6 70.5 73.9 63.7 65.8 68.5 14.2∗

FECANet(TMM’23) [27] 69.2 72.3 62.4 65.7 67.4 72.9 74.0 65.2 67.8 70.0 3.5

ABCNet(CVPR’23) [15] 68.8 73.4 62.3 59.5 66.0 71.7 74.2 65.4 67.0 69.6 -

PMNet (Ours) 67.3 72.0 62.4 59.9 65.4 73.6 74.6 69.9 67.2 71.3 0.68

NTRENet(CVPR’22) [30] 65.5 71.8 59.1 58.3 63.7 67.9 73.2 60.1 66.8 67.0 18.6

SSP(ECCV’22) [10] Prototype 63.2 70.4 68.5 56.3 64.6 70.5 76.4 79.0 66.4 73.1 27.7

IPMT(NeurIPS’22) [31] 71.6 73.5 58.0 61.2 66.1 75.3 76.9 59.6 65.1 69.2 -

HSNet(ICCV’21) [35] 67.3 72.3 62.0 63.1 66.2 71.8 74.4 67.0 68.3 70.4 2.6

ResNet-101 AAFormer(ECCV’22) [46] 69.9 73.6 57.9 59.7 65.3 75.0 75.1 59.0 63.2 68.1 -

VAT(ECCV’22) [14] Pixelwise 70.0 72.5 64.8 64.2 67.9 75.0 75.2 68.4 69.5 72.0 3.3

DCAMA(ECCV’22) [38] 65.4 71.4 63.2 58.3 64.6 70.7 73.7 66.8 61.9 68.3 14.2∗

ABCNet(CVPR’23) [15] 65.3 72.9 65.0 59.3 65.6 71.4 75.0 68.2 63.1 69.4 -

PMNet (Ours) 71.3 72.4 66.9 61.9 68.1 74.9 75.5 75.3 69.8 73.9 0.68

COCO-20i

NTRENet(CVPR’22) [30] 36.8 42.6 39.9 37.9 39.3 38.2 44.1 40.4 38.4 40.3 18.6

SSP(ECCV’22) [10] Prototype 35.5 39.6 37.9 36.7 37.4 40.6 47.0 45.1 43.9 44.1 8.7

IPMT(NeurIPS’22) [31] 41.4 45.1 45.6 40.0 43.0 43.5 49.7 48.7 47.9 47.5 -

HSNet(ICCV’21) [35] 36.3 43.1 38.7 38.7 39.2 43.3 51.3 48.2 45.0 46.9 2.6

ResNet-50 AAFormer(ECCV’22) [46] 39.8 44.6 40.6 41.4 41.6 42.9 50.1 45.5 49.2 46.9 -

VAT(ECCV’22) [14] Pixelwise 39.0 43.8 42.6 39.7 41.3 44.1 51.1 50.2 46.1 47.9 3.2

DCAMA(ECCV’22) [38] 41.9 45.1 44.4 41.7 43.3 45.9 50.5 50.7 46.0 48.3 14.2∗

FECANet(TMM’23) [27] 38.5 44.6 42.6 40.7 41.6 44.6 51.5 48.4 45.8 47.6 3.5

ABCNet(CVPR’23) [15] 42.3 46.2 46.0 42.0 44.1 45.5 51.7 52.6 46.4 49.1 -

PMNet (Ours) 39.8 41.0 40.1 40.7 40.4 50.1 51.0 50.4 49.6 50.3 0.68

NTRENet(CVPR’22) [30] 38.3 40.4 39.5 38.1 39.1 42.3 44.4 44.2 41.7 43.2 18.6

SSP(ECCV’22) [10] Prototype 39.1 45.1 42.7 41.2 42.0 47.4 54.5 50.4 49.6 50.2 27.7

ResNet-101 IPMT(NeurIPS’22) [31] 40.5 45.7 44.8 39.3 42.6 45.1 50.3 49.3 46.8 47.9 -

HSNet(ICCV’21) [35] 37.2 44.1 42.4 41.3 41.2 45.9 53.0 51.8 47.1 49.5 2.6

DCAMA(ECCV’22) [38] Pixelwise 41.5 46.2 45.2 41.3 43.5 48.0 58.0 54.3 47.1 51.9 14.2∗

PMNet (Ours) 44.7 44.3 44.0 41.8 43.7 52.6 53.3 53.5 52.8 53.1 0.68

Table 1. FSS performances (%) on PASCAL-5i and COCO-20i with different backbones (ResNet50 and ResNet101). ‘∗’ denotes the

results obtained by ourselves with the released codes. The results of all the competitors are from the published literature. The best and the

second best results are marked in bold and underline, respectively.

into three types, cross-category, cross-dataset, and cross-

domain. (1) Cross-category setting considers a scenario

where both the base categories and test categories are sam-

pled from the same dataset. (2) Cross-dataset setting eval-

uates the model trained with one dataset on the other dataset

without fine-tuning. Note that the trained dataset and the

evaluated dataset follow either the same distribution or dif-

ferent distributions. In this work, the cross-dataset setting

refers to both the trained and evaluated datasets following

the same distribution if not specified. (3) Cross-domain
setting is a specific case of cross-dataset setting where the

trained and evaluated datasets are from different domains.

This is a more challenging setting as the model not only

deals with the novel classes but also has to address the do-

main gap among different datasets.

4.3. Comparison with State-of-the-Art

Cross-category Task. Tab. 1 shows the comparison re-

sults on both PASCAL-5i and COCO-20i with two differ-

ent backbones. With Resnet50 backbone, PMNet achieves

71.3% in PASCAL-5i and 50.3% in COCO-20i under the

5-shot setting, and outperforms the second-best competi-

tors with 1.2% and 2.0%, respectively. With Resnet101

backbone, PMNet achieves the best performance under both

1-shot and 5-shot settings in PASCAL-5i and COCO-20i

datasets, outperforming the second-best competitors with

0.2% and 0.8% in PASCAL5i, 0.2% and 1.2% in COCO20i,
respectively. Besides, we observe that PMNet has the
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COCO20i → Pascal5i

Backbone Methods
1-shot 5-shot Learnable

Fold-0 Fold-1 Fold-2 Fold-3 mIoU Fold-0 Fold-1 Fold-2 Fold-3 mIoU Params(M)

PFENet(TPMAI) [41] 43.2 65.1 66.5 69.7 61.1 45.1 66.8 68.5 73.1 63.4 34.3

RePRI(CVPR’21) [1] 52.2 64.3 64.8 71.6 63.2 56.5 68.2 70.0 76.2 67.7 -

HSNet(ICCV’21) [35] 45.4 61.2 63.4 75.9 61.6 56.9 65.9 71.3 80.8 68.7 2.6

ResNet-50 VAT(ECCV’22) [14] 52.1 64.1 67.4 74.2 64.5 58.5 68.0 72.5 79.9 69.7 3.2

HSNet-HM(ECCV’22) [29] 43.4 68.2 69.4 79.9 65.2 50.7 71.4 73.4 83.1 69.7 -

VAT-HM(ECCV’22) [29] 48.3 64.9 67.5 79.8 65.1 55.6 68.1 72.4 82.8 69.7 -

RTD(CVPR’22) [45] 57.4 62.2 68.0 74.8 65.6 65.7 69.2 70.8 75.0 70.1 -

PMNet (Ours) 68.8 70.0 65.1 62.3 66.6 73.9 74.5 73.3 72.1 73.4 0.68

HSNet(ICCV’21) [35] 47.0 65.2 67.1 77.1 64.1 57.2 69.5 72.0 82.4 70.3 2.6

HSNet-HM(ECCV’22) [29] 46.7 68.6 71.1 79.7 66.5 53.7 70.7 75.2 83.9 70.9 -

ResNet-101 RTD(CVPR’22) [45] 59.4 64.3 70.8 72.0 66.6 67.2 72.7 72.0 78.9 72.7 -

PMNet (Ours) 71.0 72.3 66.6 63.8 68.4 75.2 76.3 77.0 72.6 75.3 0.68

Table 2. FSS performances (%) on cross-dataset task, COCO-20i → Pascal-5i, with different backbones (ResNet50 and ResNet101). The

results of all the competitors are from the published literature. The best and the second best results are marked in bold and underline,

respectively.

Backbone Methods
Deepglobe ISIC2018 Chest X-ray FSS-1000 average

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PANet(ICCV’19) [44] 36.55 45.43 25.29 33.99 57.75 69.31 69.15 71.68 47.19 55.1

RPMMs(ECCV’20) [48] 12.99 13.47 18.02 20.04 30.11 30.82 65.12 67.06 31.56 32.85

PFENet(TPAMI’20) [41] 16.88 18.01 23.5 23.83 27.22 27.57 70.87 70.52 34.62 34.98

ResNet50 RePRI(CVPR’21) [1] 25.03 27.41 23.27 26.23 65.08 65.48 70.96 74.23 46.09 48.34

HSNet(ICCV’21) [35] 29.65 35.08 31.2 35.1 51.88 54.36 77.53 80.99 47.57 51.38

PATNet(ECCV’22) [44] 37.89 42.97 41.16 53.58 66.61 70.2 78.59 81.23 56.06 61.99

PMNet (Ours) 37.10 41.60 51.2 54.5 70.4 74.0 84.6 86.3 60.83 64.1

Table 3. FSS performances (%) on four tasks with Resnet50 backbone under 1-shot and 5-shot settings. All models are trained with the

whole PASCAL dataset. Following PATNet [23], Deepglobe, ISIC2018, and Chest X-ray are cross-domain tasks, and FSS-1000 is a
cross-dataset task. The best results are marked in bold.

COCO-5i → FSS1000

Methods Fold-0 Fold-1 Fold-2 Fold-3 mIoU

ASGNet [24] 76.2 72.2 72.7 71.6 73.2

HSNet [35] 79.9 80.5 81.1 82.1 80.8

SCL [50] 81.6 78.3 77.5 74.4 78.0

RTD [45] 82.2 82.6 79.6 83.4 81.9

PMNet (Ours) 85.3 83.7 83.2 84.9 84.3

Table 4. FSS performances (%) on cross-dataset task, COCO-

20i→FSS1000, with Resnet50 backbone under 1-shot setting.

The best results are marked in bold.

fewest parameters. Please refer to the supplementary ma-

terial for the results of the FSS1000 dataset.

To visualize the segmentation results, some qualitative

results of the 1-shot segmentation task are provided in

Fig. 5. From the results, we observe that our method with

Resnet50 segments well in (a) multiple targets, (b) com-

plicated background, (f) full segmentation, and (g) object

details, but performs not so well in (c) small objects, (d) ob-

Pascal-5i → SUIM

Methods Fold-0 Fold-1 Fold-2 Fold-3 mIoU

ASGNet [24] 32.4 30.9 28.9 35.2 31.9

HSNet [35] 30.7 30.0 27.3 27.0 28.8

SCL [50] 31.3 31.2 32.2 32.5 31.8

RTD [45] 35.2 33.4 34.3 36.0 34.7

PMNet (Ours) 37.1 35.1 35.2 31.7 34.8

Table 5. FSS performances (%) on cross-domain task, PASCAL-

5i→SUIM, with Resnet50 backbone under 1-shot setting. The

best results are marked in bold.

jects with interference, (e) object is covered, and (h) huge

object. These challenging cases cause performance to de-

cline. In contrast, our method with Resnet101 segments

well under all challenging scenarios. Owing to B3DConvs

connecting the support and query object regions with feasi-

ble sizes, PMNet could segment query objects with different

sizes to support objects.

Cross-dataset tasks. We conduct experiments on 3
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(a) Deepglobe (b) ISIC2018

(c) Chest Xray (d) SUIM

Support Predicted GT Support Predicted GT
Figure 6. The visualization of prediction results in 4 cross-domain

tasks. ‘GT’ denotes the query ground truth.

Fold-0 Fold-1 Fold-2 Fold-3 Mean

w/o B3DConvs 67.1 71.2 58.9 58.8 64.0

w/o Background 59.0 65.0 54.3 51.2 57.4

PMNet 67.3 72.0 62.4 59.9 65.4

Table 6. Impact (%) of B3DConvs and the Support Background

under 1-shot setting.

cross-dataset tasks. As shown in Tab. 2, PMNet achieves the

best performance in all settings of COCO-20i→PASCAL-

5i task, surpassing the second-best competitors with 1.0%

and 3.3% under 1-shot and 5-shot settings with Resnet50

backbone, 1.8% and 2.6% under 1-shot and 5-shot setting

with Resnet101 backbone, respectively. For the COCO-

20i→FSS1000 task in Tab. 4, PMNet achieves 84.3% as

the best performance and surpasses the second-best com-

petitors by 2.4%. Following PATNet [23], the results of the

PASCAL→FSS1000 task are shown in the sixth column of

Tab. 3. With Resnet50 backbone, PMNet achieves 84.6%

and 86.3%, outperforming the second-best competitors by

6.0% and 5.0% in 1-shot and 5-shot settings, respectively.

The significant advantages show the effectiveness of PMNet

for the cross-dataset FSS tasks.

Cross-domain tasks. We conduct experiments on cross-

domain tasks with 4 datasets, which are collected from dif-

ferent scenarios, not intersecting with the trained dataset

PASCAL. As shown in Tab. 3, PMNet achieves the best

performance under 1-shot and 5-shot settings on both

ISIC2018 and Chest Xray datasets, surpassing the second-

best competitors by 10.0% and 0.9% in ISIC2018, 3.8%

and 4.8% in Chest Xray, respectively. On the Deepglobe

dataset, PMNet achieves the second-best performance with

37.1% and 41.6% under 1-shot and 5-shot settings, respec-

tively. Following RTD [45], the results of the PASCAL-

5i→SUIM task are shown in Sec. 4. Our PMNet per-

forms slightly better than the second-best competitor with

Resnet50 backbone under the 1-shot setting. The results on

both Tab. 3 and Sec. 4 demonstrate the effectiveness of the

proposed approach on cross-domain FSS tasks. As shown

in Fig. 6, the segmentation results of four cross-domain

tasks show that our method performs well in satellite, der-

matoscopic, X-ray, and underwater scenarios.

4.4. Ablation Study

In this subsection, we design a series of ablation studies

to evaluate the effects of different modules. All the results

are obtained with the ResNet50 backbone under the 1-shot

task on the PASCAL dataset.

B3DConvs. Tab. 6 illustrates the impact of B3DConvs

on the mIoU under 1-shot setting. From the experiment,

we observe that B3DConvs brings a 1.4% improvement to

mIoU and a 3.5% improvement in fold-2, which shows the

effectiveness of the B3DConvs module, indicating that ex-

ploiting the support-query affinity would be beneficial for

FSS performance improvement.

Support Background. Tab. 6 also illustrates the im-

pact of the background affinity matching on the mIoU. ‘w/o

Background’ denotes filtering the background feature from

support feature maps with the support mask before the affin-

ity calculation. From the results, removing the background

before the affinity would lead to a huge dropping, 8.0%, in

mIoU, which indicates that the support background benefits

in the segmentation of the query sample.

5. Conclusion

In this work, we have proposed a lightweight pixel

matching network (PMNet) for FSS by fully exploiting

the relationships between the foreground and background

in each support-query pair from both pixel-to-pixel and

pixel-to-patch ways, which benefits suppressing the back-

ground and highlighting the foreground in query features

with a hysteretic spatial filtering module (HSFM). From

the results, we conclude that the support background could

contribute significantly to the query segmentation by as-

sisting in both filtering the query background and explor-

ing the pixel-to-patch correlations in each support-query

pair. Extensive experimental results show that PMNet per-

forms very competitively on ten benchmarks under cross-

category, cross-dataset, and cross-domain FSS tasks with

an extremely small number of parameters.
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