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Figure 1. Left: our method controls the layout of an image generated by a pre-trained diffusion model, such as Stable Diffusion [38],

without any training or finetuning. It also alleviates the problem of such generators omitting certain objects present in the prompt. Right:

given a single real image, our method can be also used to edit the position and context of a subject (represented by 〈∗〉 ).

Abstract

Recent diffusion-based generators can produce high-
quality images from textual prompts. However, they often
disregard textual instructions that specify the spatial lay-
out of the composition. We propose a simple approach that
achieves robust layout control without the need for training
or fine-tuning of the image generator. Our technique manip-
ulates the cross-attention layers that the model uses to inter-
face textual and visual information and steers the genera-
tion in the desired direction given, e.g., a user-specified lay-
out. To determine how to best guide attention, we study the
role of attention maps and explore two alternative strate-
gies, forward and backward guidance. We thoroughly eval-
uate our approach on three benchmarks and provide sev-
eral qualitative examples and a comparative analysis of the
two strategies that demonstrate the superiority of backward
guidance compared to forward guidance, as well as prior
work. We further demonstrate the versatility of layout guid-
ance by extending it to applications such as editing the lay-
out and context of real images.

1. Introduction

Generative AI is one of the most disruptive technologies

that emerged in the past years. In computer vision, new

text-to-image generation methods, such as DALL-E [36],

Imagen [41], and Stable Diffusion [38], have demonstrated

that machines are capable of generating images of a quality

high enough for use in numerous applications, multiplying

the productivity of professional artists as well as lay people.

Despite this success, however, many practical applica-

tions of image generation, particularly in a professional set-

ting, require a high level of control that such methods lack.

Specifications in language-based image generators are tex-

tual; and while text can tap into a vast library of high-level

concepts, it is a poor vehicle for expressing fine-grained vi-

sual nuances in an image. Specifically, text is often inade-

quate for describing the exact layout of a composition.

In fact, as shown in previous work [16], state-of-the-

art image generators struggle to correctly interpret simple

layout instructions specified via text. For example, when

prompting such models with a phrase such as “a dog to the
left of a cat”, the “left of” relationship is not always de-

picted accurately in the generated images. In fact, prompts
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of this nature often cause models to produce erroneous se-

mantics, for example, an image of a cat-dog hybrid. This

limitation is exacerbated by unusual compositions, e.g.,

“horse on top of a house”, which fall outside the typical

compositions the model observes during training.

This work provides a better understanding of this limita-

tion and contributes a mechanism to overcome it. To this

end, we introduce a method that achieves layout control
without the need for further training of the image generator,

while still maintaining the quality of the generated images.

We note that, while layout cannot be easily controlled via

textual prompting, one can intervene directly in the cross-

attention layers, steering the generation in a direction of

choice with user-specified inputs, such as bounding boxes,

which we refer to as layout guidance. We consider and

compare two alternative strategies for such an intervention:

“forward guidance” and “backward guidance”. Forward

guidance directly biases the cross-attention layers to shift

activations in the desired pattern, letting the model incorpo-

rate the guidance via the iterated application of its denoising

steps. Our main contribution is backward guidance, which

uses backpropagation to update the image latents to match

the desired layout via energy minimization.

While layout control has already received some at-

tention, with some methods following the forward

paradigm [2,43], we show that backward guidance is a more

effective mechanism. Our second contribution is then an

in-depth investigation of the factors that influence the lay-

out during the image generation process, shedding light on

the shortcomings of forward guidance and discussing how

backward guidance addresses these. We show that, while

there is an intuitive correlation between different concepts

and their visual extent, this correlation is more nuanced than

one might think, and, perhaps counter-intuitively, even the

special tokens in the prompt (start tokens and padding to-

kens) contribute to shaping the layout.

Finally, we show that our backward guidance outper-

forms existing methods and seamlessly integrates into ap-

plications such as real-image layout editing.

2. Related Work
Text-to-Image Generation. For several years, generative

adversarial networks (GANs) [17] have been the dominant

approach in image generation from textual prompts [37,46,

49, 54–56]. Alternative representations for text, such as

scene graphs, have also been considered [26]. More re-

cently, the focus has shifted onto text-conditional autore-

gressive [10,14,36,53] and diffusion models [18,31,35,38,

41], with impressive results in generating images of remark-

able fidelity, while avoiding common GAN pitfalls such as

training instability and mode collapse [9]. A substantial in-

crease in both the data scale [42] and the size and capabil-

ities of transformer models [34] has played a crucial role

in enabling this shift. Typically, these models are designed

to accept a textual prompt as input, which may pose a chal-

lenge for accurately conveying all details of the image. This

problem is exacerbated with longer prompts or when de-

scribing atypical scenes. Recent studies have demonstrated

the effectiveness of classifier-free guidance [22] in improv-

ing the faithfulness of the generations with respect to the

input prompt. Others focus on improving compositionality,

e.g., by combining multiple diffusion models with different

operators [30], and attribute binding [5, 13].

Layout Control in Image Generation. Image generation

with spatial conditioning is closely related to layout con-

trol and typically done with bounding boxes or semantic

maps [12, 32, 44, 45, 50, 58]. These methods do not use

text prompts and rely on a closed-set vocabulary to gener-

ate images, i.e., the labels of the training distribution (e.g.,

COCO [29]). Recent image-text models such as CLIP [34]

are now enabling the extension to open-vocabulary. How-

ever, the precise layout of a composition is still challenging

to convey through text alone; even then, the spatial fidelity

of image generators is extremely limited [16]. Thus, jointly

conditioning on text and layout [14, 20, 25] and predicting

layout from text [23] have also been considered.

Recent works [1, 2, 4, 6, 28, 43, 48, 51] propose to extend

the state-of-the-art Stable Diffusion [38] with spatial con-

ditioning. GLIGEN [28] and ReCo [51] fine-tune the dif-

fusion model with gated self-attention layers and additional

regional tokens, respectively. Other works [2, 4, 6, 43, 48]

follow a training-free approach. MultiDiffusion [4] adopts

the idea from [30] by combining masked noise. eDiff-

I [2] and HFG [43] share a similar idea with our forward

guidance, directly intervening in the cross-attention. How-

ever, they overlook the significance of special tokens in the

process. Concurrently with our work, ZestGuide [6] and

BoxDiff [48] propose to compute a loss on cross-attention

to achieve layout control, which is closer to our backward

guidance. Unlike prior work, we use an objective function

that does not rely on precise segmentation masks to be pro-

vided by the user, and we provide an in-depth analysis of

the factors that affect the layout, and consequently, the be-

havior of both forward and backward strategies. Finally,

building on top of diffusion, some recent works show con-

trollable image generation from various other conditioning

signals [3, 24, 57], such as depth or edge maps.

Diffusion-Based Image Editing. Most aforementioned

methods lack the ability to control or edit an already gen-

erated image, or even the ability to edit real images. For

example, simply changing a word in the original prompt

typically leads to a drastically different generation. This can

be circumvented by providing or generating masks for the

objects of interest [7,31]. Prompt-to-prompt [19] addresses

this issue with simple text-based edits by exploiting the fact

that the cross-attention layers present in most state-of-the-
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art architectures connect word tokens to the spatial layout of

the generated images. Text-based image editing can also be

achieved through single-image model fine-tuning [27, 47].

However, these approaches, while successful at semanti-

cally editing entities can only apply such edits in-place and

do not allow editing of the spatial layout itself.

3. Method
We consider the problem of layout-guided text-to-image

generation. Text-based image generators allow to sam-

ple images x ∈ R
3×H×W from a conditional distribution

p(x | y) where y is language description. Given one such

generator off-the-shelf, we wish to steer its output to match

a desired layout for the generated composition, without fur-
ther training or finetuning. In other words, our objective is

to investigate whether pre-trained text-to-image generators

can adhere to a layout specified by the user during inference,

without having been trained with explicit layout condition-

ing. In the simplest case, given the text prompt y, the index

i of a word yi in the text prompt, and a bounding box B,

we would like to generate an image x that contains yi in-
side B, essentially modifying the generator to sample from

a new distribution p(x | y,B, i) with additional controls.

3.1. Preliminaries: Stable Diffusion

We first briefly review the technical details of Stable Dif-

fusion (SD) [38], a publicly accessible, state-of-the-art text-

to-image generator representative of an important class of

image generators based on diffusion [36, 38, 41]. SD con-

sists of an image encoder and decoder, a text encoder, and a

denoising network that operates in latent space.

The text encoder Y = φ(y) maps the input prompt into

a tensor of fixed dimension Y ∈ R
N×M . This works by

prepending a start symbol [SoT] to y and appending N −
|y| − 1 padding symbols [EoT] at the end, to obtain N
symbols in total. Then, the function φ, implemented as a

large language model (LLM), takes the padded sequence of

words as input and produces a corresponding sequence of

token vectors Yi ∈ R
M with i ∈ {1, . . . , N} as output.

While not crucial for our discussion, SD’s encoding

network h maps images x to corresponding latent codes

z = h(x) ∈ R
4×H

s ×W
s , where s divides H and W . The

function h is an autoencoder with a left inverse h∗, such that

x = h∗ ◦ h(x). The main purpose of this component is to

replace the problem of modeling p(x | y) with the problem

of modeling p(z | y), reducing the spatial resolution s-fold.

A key component of SD is the iterative conditional de-

noising network D. This network is trained to output a con-

ditional sample z ∼ p(z | y) of the latent code z. It is

designed to take a noised sample zt = αtz +
√
1− αtεt,

as input, where εt is normally distributed noise and αt is a

decreasing sequence, from α0 ≈ 1 to αT ≈ 0, representing

the noise schedule. Then, the network D returns an estimate

Denoiser Network
Text Encoder

“a dog is playing on the grass”

Backward Forward

Cross 
attention 

Cross 
attention Q

K  
V  

+[SoT]

[EoT]

Figure 2. Overview of the two layout guidance strategies. The

cross-attention map for a chosen word token is marked with a red

border. In forward guidance, the cross-attention maps of the word,

start and padding tokens are biased spatially. In backward guid-

ance, we compute instead a loss function and perform backpropa-

gation during the inference process to optimize the latent.

of the noised sample zt: D(zt, y, t) ≈ εt. To sample an

image, one first samples zT , which is normally distributed,

and applies D iteratively, to obtain the intermediate codes

zT−1, . . . , z1, z0 ≈ z. Finally, z is converted back to an

image via the image decoder x = h∗(z).
There is one final aspect of the SD architecture that is rel-

evant for our work. While there are several design choices

that make the network D work well in practice, the mecha-

nism that is of interest in our investigation is cross-attention,

which connects visual and textual information and allows

the generation process to be conditioned on text. Each

cross-attention layer takes an intermediate feature tensor

z(γ) ∈ R
C×H

r ×W
r as input, where γ is the index of the

relevant layer in the network, and r is a scaling factor defin-

ing the spatial resolution at that level of the representation.

The cross-attention map A(γ) associates each spatial loca-

tion u ∈ {1, . . . , H
r } × {1, . . . , W

r } to a token indexed by

i ∈ {1, . . . , N}:

A
(γ)
ui =

exp〈Q(γ)
u ,K

(γ)
i 〉∑N

j=1 exp〈Q(γ)
u ,K

(γ)
j 〉

, a(γ)
u =

N∑
i=1

A
(γ)
ui V

(γ)
i ,

where the value V
(γ)
i and the key K

(γ)
i are linear transfor-

mations of the token embedding Yi provided by the textual

encoder, Q(γ) is a linear transformation of z(γ), and a
(γ)
u is

the output of the cross-attention layer.

3.2. Layout Guidance

Text-to-image generators such as SD struggle to accu-

rately interpret layout instructions provided through text.

We thus introduce a method to guide the layout during the

generation process by sampling from a distribution p(x |
y,B, i) with additional controls, e.g., user-specified bound-

ing boxes B corresponding to selected text tokens yi. This

can be achieved via manipulation of the attention response

in certain cross-attention layers in the architecture.
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Figure 3. Cross-attention maps during forward and backward

guidance. Spatial dependencies between different words nega-

tively affect forward guidance, while backward guidance softly

encourages all dependent tokens to match the desired layout.

It has already been shown that cross-attention layers reg-

ulate the spatial layout of a generated image [19]. Specifi-

cally, A
(γ)
ui determines how strongly each location u in layer

γ is associated with each of the N text tokens yi. Since

the sum of association strengths
∑N

i=1 A
(γ)
ui = 1 for each

spatial location u, the different tokens can be seen as “com-

peting” for a location. To control the image layout using a

bounding box B corresponding to token yi, the attention can

be biased such that locations u ∈ B within the target box are

strongly associated with yi (while other locations are not).

As we discuss below, this can be done without fine-tuning

the image generator or training additional layers.

Next, we present a comprehensive investigation of two

strategies to achieve training-free layout control: forward

and backward guidance (Fig. 2). While instances of forward
guidance have been discussed in recent work [2, 43], we

hereby formalize this approach, identify its limitations, and

propose backward guidance as a more effective alternative.

Forward Guidance. In forward guidance, the bounding

box B is represented as a smooth windowing function g
(γ)
u

which is equal to a constant c > 0 inside the box and

quickly falls to zero outside.1 We rescale the windowing

function such that ‖g(γ)‖1 = 1. Then, we bias a cross-

attention map by replacing it with:

A
(γ)
ui ← (1− λ)A

(γ)
ui + λg(γ)u

∑
v

A
(γ)
vi , (1)

where λ ∈ [0, 1] defines the strength of the intervention. In

practice, we normalize the right side of Eq. (1) with a soft-

max function along the text token dimension, keeping the

sum of per-pixel attention equal to 1. Note that (1) only the

cross-attention map A
(γ)
:,i of the i-th token is manipulated,

and (2) the window is weighed by the mass
∑

v A
(γ)
vi so as

to leave the latter unchanged.

This intervention is applied for a number of iterations

of the denoiser network D at selected layers γ ∈ Γ. This

1For simplicity, in our implementation, we put a Gaussian blob with σ
decided by the resolution, height, and width of the bounding box.

Figure 4. Cross-attention maps of different text prompts at the gen-

eration process, indicating that start [SoT] and padding [EoT]
tokens carry rich semantic and layout information.

means that the activation maps computed by each selected

layer are independently modified following Eq. (1).

A critical analysis reveals that forward guidance is a sim-

plistic approach that suffers from inherent constraints hin-

dering its ability to provide effective layout control. As we

discuss in Section 3.3, this is primarily due to various fac-

tors that influence the layout during the generation process,

including spatial dependencies among text tokens and spa-

tial information “hidden” in the initial noise.

Backward Guidance. To address the shortcomings of

forward guidance, we introduce an alternative mechanism,

which we refer to as backward guidance. Instead of di-

rectly manipulating attention maps, in backward guidance,

we bias the attention by introducing an energy function

E(A(γ), B, i) =

(
1−

∑
u∈B A

(γ)
ui∑

u A
(γ)
ui

)2

. (2)

Optimizing this function encourages the cross-attention

map of the i-th token to obtain higher values inside the area

specified by B. Specifically, at each application of the de-

noiser D, when layer γ ∈ Γ is evaluated, the gradient of

the loss (2) is computed via backpropagation to update the

latent zt(≡ z
(0)
t ):

zt ← zt − σ2
t η∇zt

∑
γ∈Γ

E(A(γ), B, i), (3)

where η > 0 is a scale factor controlling the strength of

the guidance and σt =
√
(1− αt)/αt. By updating the

latent, the cross-attention maps of all tokens are indirectly

influenced by backward guidance. To generate an image,

we alternate between gradient updates and denoising steps.

3.3. Analysis and Discussion

Next, we detail a comparative analysis between the for-

ward and backward strategies. To motivate backward guid-

ance and understand its effectiveness, we shed light on the

significance of all tokens and the influence of the initial

noise in shaping the layout during the generation process.
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Figure 5. Comparison between forward and backward guidance,

including guidance of start and padding tokens.

The Role of Word Tokens. One important consideration

is that the text encoder fuses information from different

words when processing a prompt due to self-attention. This

results in a “semantic overlap”: information from one token

being encoded by another token. In other words, text em-

beddings capture both word-specific and contextual infor-

mation, e.g., subject-verb-object dependencies. This over-

lap is then transferred from the text encoder into the diffu-

sion process via the cross-attention layers, resulting in spa-
tial overlap. The example in Figure 3 illustrates this overlap

in the cross-attention maps of different words. It also shows

the behavior of forward and backward guidance when pro-

viding spatial conditioning for the phrase “two climbers”.

It becomes evident that the mismatch between the attention

map of the conditioned phrase and its spatial dependencies

with other words (“climbing”,“a”) causes forward guidance

to disregard the layout condition. Instead, backward guid-

ance indirectly drives all attention maps toward the layout

condition as necessary, because it acts on the latent codes.

The Role of Special Tokens. Another crucial finding is

that the cross-attention maps of [SoT] and [EoT] tokens,

which do not correspond to content words in the input text,

still carry significant semantic and layout information. As

we show in Figure 4, the cross-attention maps of [EoT]
tokens correspond to salient regions in the generated image,

i.e., typically the union of individual semantic entities in the

text prompt. [SoT] behaves complementarily to [EoT],

emphasizing the background. For forward guidance to be

effective, it is thus necessary to intervene not only on se-

lected content tokens but also on the special ones. We use

the union of the input boxes as guidance for [EoT] and the

reverse for [SoT]. However, we have empirically found

that this sometimes results in overly aggressive guidance,

which harms image fidelity. Backward guidance, on the

other hand, does not suffer from such drawbacks, as it opti-

mizes the latent. We discuss this further in the supplement.

The Role of Initial Noise. Finally, the initial noise of the

diffusion process plays an important role in shaping the lay-

out of the images. We have empirically observed that the

noise contains an intrinsic layout; e.g., when prompting the

model with phrases like “an image of a dog” and “an im-

age of a cat” using the same seed, it generates images with

consistent layouts, placing the dog and the cat in the same

locations. We provide examples in the supplement.

An initial noise with an intrinsic layout close to the one

given by users is easier to optimize and results in higher fi-

delity. Therefore, selecting a noise pattern that aligns with

the desired layout can further boost the effectiveness of the

guidance. In backward guidance, the loss applied to the

cross-attention maps can, in fact, double as a metric for ini-

tial noise selection. Specifically, we sample different noise

patterns and evaluate Eq. (2) after applying backward guid-

ance for a few steps. This allows us to pick the best-aligned

initial noise. Please see the supplement for detailed results.

Forward vs. Backward. In summary, forward and back-

ward guidance use different mechanisms to manipulate

cross-attention. Forward guidance directly modifies cross-

attention to conform to the prescribed pattern, which is

“forced” repeatedly for a number of denoising iterations.

While it does not incur any extra computational cost, it

struggles to provide robust control over the layout, as non-

guided tokens may cause the generation to deviate from the

desired pattern. In contrast, backward guidance uses a loss

function to evaluate whether the attention follows the de-

sired pattern. While slower than forward guidance, back-

ward guidance is more refined, as it indirectly encourages

all tokens (guided and non-guided ones) to adhere to the

layout through latent updates.

3.4. Real-image Layout Editing

Layout guidance can be used in combination with other

techniques that build on diffusion-based image generators.

We demonstrate this for the task of real-image editing. To

this end, we incorporate backward guidance into two meth-

ods that are commonly used for personalization of diffu-

sion models given real images, namely Textual Inversion

(TI) [15] and Dreambooth [40]. TI extends an existing im-

age generator with a new concept given one or several im-

ages as examples, by optimizing a learnable text token 〈∗〉
for the concept. Dreambooth attempts to capture the ap-

pearance of a particular subject of which several images are

available by fine-tuning a pre-trained text-to-image model.

Then, new images of the learned concept can be generated.

Neither method supports localized spatial control over

the newly generated images; their edits are usually global

and semantic. To achieve this, we apply backward guidance

on the Dreambooth-finetuned model and the TI-optimized

token as part of a prompt. This allows us to control the

layout of the generated images while preserving the identity

of the original object represented by 〈∗〉.

4. Experiments

In this section, we evaluate our approach for training-

free layout guidance, quantitatively comparing variants of

forward and backward guidance and providing comparisons
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Figure 6. Qualitative comparison of different text-to-image models with text prompts defined in [16]. As stated in [16], current text-to-

image models fail to understand spatial relationships without explicit layout conditioning. However, we achieved control of the generated

images with the help of guidance on cross-attention maps.

OA (%) VISOR (%)

Model uncond cond Runtime

Stable Diffusion 27.4 16.4 59.8 ∼ 4 sec/image

Ours (FG) 25.9 23.5 90.7 ∼ 4 sec/image
Ours (FG∗) 27.6 26.1 95.0 ∼ 5 sec/image
Ours (BG) 38.8 37.6 96.9 ∼ 8 sec/image
Ours (BG + NS) 43.7 42.3 96.9 ∼ 9 sec/image

Table 1. Comparison of the forward (FG) and backward (BG)

strategies, including noise selection (NS). FG∗: forward guidance

includes [SoT] and [EoT] tokens. We randomly sampled 1000

text prompts and compute metrics based on VISOR [16].

OA (%) VISOR (%)

Model uncond cond

GLIDE [31] 3.36 1.98 59.06
GLIDE + CDM [30] 10.17 6.43 63.21
DALLE-mini [8] 27.10 16.17 59.67
CogView2 [11] 18.47 12.17 65.89
DALLE-v2 [35] 63.93 37.89 59.27
SD [38] 29.86 18.81 62.98
SD + CDM [30] 23.27 14.99 64.41

SD + Ours 40.01 38.8 95.95

Table 2. Comparison of backward guidance (ours) with text-to-

image generation models based on the VISOR [16] protocol.

to prior and concurrent work on three benchmarks.

4.1. Experimental setup

Implementation Details. We utilize Stable-Diffusion

(SD) V-1.5 [38] trained on the LAION-5B dataset [42] as

the default pre-trained image generator, if not specified. For

a detailed description of the architecture and noise sched-

uler please see the supplement.

For forward guidance, we apply Eq. (1) to every layer of

Method
COCO 2014 Flickr30K

FID (↓) mAP (↑) FID (↓) APP (↑) mAP (↑)

MultiDiffusion [4] 70.7 22.3 84.1 21.6 11.9
eDiff-I [2] 72.5 21.7 85.3 21.4 9.7
HFG [43] 72.2 21.5 85.6 22.4 10.7
BoxDiff [48] 72.6 24.1 78.7 26.0 16.6

Stable Diffusion [38] 72.3 19.2 76.4 19.4 8.7
Stable Diffusion + Ours 73.3 35.7 78.9 35.6 17.9

GLIGEN [28] 69.1 62.8 77.3 87.2 31.4
GLIGEN + Ours 66.7 65.1 78.1 88.9 32.7

Table 3. Comparison with other layout-to-image models. Our

approach improves spatial fidelity (suggested by higher AP/mAP

scores). mAP is calculated with an IoU threshold of 0.3.

the denoiser network for the first 40 steps of the diffusion

process and set λ = 0.8. For backward guidance, we cal-

culate the loss on the cross-attention maps of the mid-block

and the first block of the up-sampling branch of the denois-

ing network (U-Net [39]) as we found this to be the optimal

setting to balance control and fidelity. We set η = 30 by de-

fault but found that values between 30-50 work well across

most settings. Since the layout of the generated image is

typically established in the early stages of inference, back-

ward guidance is performed during the initial 10 steps of the

diffusion process and repeated 5 times at each step.

Evaluation Benchmarks. We quantitatively evaluate our

approach on three benchmarks: VISOR [16], COCO

2014 [29], and Flickr30K Entities [33, 52]. We discuss the

ethical concerns of the dataset usage in the supp. VISOR

proposes metrics to quantify the spatial understanding abil-

ities of text-to-image models. For COCO 2014, we follow

the same setup adopted by prior work [4], which uses only a

subset of the annotated objects per image. Finally, we intro-

duce the Flickr30K Entities dataset as another benchmark
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Figure 7. Our method controls the objects inside the generated

images with user-specified bounding boxes. On the left, the size

and position of flamingo changes according to the bounding box.

On the right, we show the ability to control multiple objects.

Figure 8. The top left is the real image input. The images above

the dash are generations using only text inversion (TI) [15] and

Dreambooth [40]. The images under the line are generated by our

method on top of Dreambooth and TI.

to evaluate layout control, since it contains image-caption

pairs with visual grounding. Details for all benchmarks and

metrics are provided in the supplementary material.

4.2. Forward vs. Backward Guidance

First, we compare the two different modes of guidance

(forward and backward) in Table 1 using the VISOR proto-

col with 1,000 randomly chosen text samples. The biggest

advantage of forward guidance is that the computation over-

head is negligible, thus leading to a faster inference time.

However, we observe that, compared to (unguided) SD, for-

ward guidance does not significantly increase the object ac-

curacy (OA), while the backward mechanism yields a no-

tably higher OA. In terms of evaluating the generated spa-

tial relationships (VISOR conditional/unconditional met-

rics), both forward and backward guidance obtain signifi-

cantly better results than the SD baseline. We also find that

the inclusion of [SoT] and [EoT] tokens improves for-

ward guidance, which confirms our analysis and insights in

Section 3.3, yet backward guidance still achieves superior

performance. Finally, noise selection using backward guid-

ance offers a significant boost in all metrics.

We provide a qualitative comparison of the forward and

backward mechanisms in Figure 5, including the impact of

special tokens on forward guidance. Backward guidance

achieves a better alignment between the generated objects

and the input bounding boxes. It also helps to address the

issue of objects occasionally being omitted from the gener-

ated images in diffusion models.

4.3. Comparisons to Prior Work

In Table 2, we compare our method with text-to-image

generation methods that do not use layout control. We note

that comparisons are fair since, in this setting (VISOR),

manual user input is not required for guidance (see supple-

ment). Our method exhibits remarkable performance under

the VISORcond metric, achieving an accuracy of 95.95%,

and higher OA compared to the baseline (SD). Although

OA does not directly assess layout, the improvement can be

explained by the fact that unguided SD often fails to gen-

erate correct semantics in atypical compositions. We also

note that, while DALLE-v2 [35] achieves the highest OA

overall, it appears to struggle more with layout instructions

compared to SD, as indicated by a lower VISORcond score.

In Table 3, we compare our backward guidance to other

mechanisms for layout conditioning. Apart from the entries

in the last two rows, all methods are based on Stable Dif-

fusion [21] V1.5. Remarkably, our backward guidance sur-

passes other layout conditioning methods by a significant

margin, achieving over a 9-point improvement in mAP and

APP on COCO and Flickr30K. Notably, in direct compar-

ison with the concurrent BoxDiff model [48], we achieve

gains of 11.6 in mAP and 9.6 in APP, all while maintain-

ing analogous image quality. Finally, we show that our ap-

proach can be used complementarily to methods like GLI-

GEN [28] that train additional layers for layout condition-

ing, further improving their performance.

In Figure 6, we qualitatively compare different text-to-

image models using prompts sampled from [16]. Methods

that do not use layout control are not capable of inferring

the spatial relationships between objects based purely on
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Figure 9. The cross-attention map of the word “cat” at different

layers (top to bottom) across different timesteps (left to right).

Figure 10. Qualitative comparison of different loss scales in the

backward guidance. We increase the loss scale from left to right

keeping the same prompt and random seed. With increasing scale,

the objects are more tightly constrained inside the bounding boxes.

However, for very high scales, fidelity decreases significantly.

textual input and often fail to generate one or both objects.

We also observe that even methods with layout conditioning

struggle in this setting, especially those that adopt a forward

guidance paradigm (eDiff-I [2], HFG [43]). In the case of

BoxDiff [48], the lower quality could potentially be due to

overlooking the impact of special tokens and the loss func-

tion design. In contrast, our approach (backward-guided

SD) can accurately position objects within a scene, even

when they are rarely seen together, such as “snowboard”

and “bowl”, and achieves the best adherence to the prompt

without loss of image fidelity. More examples of our ap-

proach are shown in Figure 7, demonstrating precise control

over the size and position of one or more objects, includ-

ing unconventional object categories, such as “flamingo” or

“pikachu”, and atypical scene compositions.

4.4. Further Analysis and Applications

Real-Image Layout Editing. We showcase the potential

of backward layout guidance for editing real images in Fig-

ure 8, confirming its effectiveness at changing the position,

gesture, and orientation of the “dog” (based on the aspect

ratio of the bounding box) to fit the new context, without

altering its identity. As shown in the same figure, the ca-

pability to precisely control object size and position cannot

be attained through Dreambooth/TI alone. This highlights

the potential of our method in a wide range of applications

related to image editing and manipulation.

Cross-attention Layers and Guidance Steps. We also

investigate the layers and the number of guidance steps that

are necessary to achieve layout control. Cross-attention

maps at various layers of the denoising network are pre-

sented in Figure 9. We observe that the first layers of (down-

sampling) do not capture much information about the ob-

ject (here, the “cat”). We found it most effective to per-

form backward guidance only on the mid and up-sampling

blocks of the architecture. The figure also illustrates that

object outlines are typically generated in the early steps of

the diffusion process, before T = 20. Based on our exper-

imentation, we find that 10-20 steps are generally suitable

for guidance. Additional quantitative analysis and examples

are presented in the supplement.

Loss Scale Factor. In Figure 10, we qualitatively analyze

the impact of the loss scale factor η. We observe that in-

creasing the loss weight leads to stronger control over the

generated images, but at the cost of some fidelity, partic-

ularly with higher scales. The optimal loss scale setting

depends on the difficulty of the text prompt. For exam-

ple, an atypical prompt like “a sink above a bear” re-

quires stronger guidance to generate both objects success-

fully (without guidance, i.e., η = 0, the bear is not gener-

ated). This suggests that layout guidance helps the genera-

tor “recognize” multiple objects in the text prompt.

5. Conclusions

In this paper, we investigated the potential of manipu-

lating the spatial layout of images generated by large, pre-

trained text-to-image models without additional training or

fine-tuning. Through our exploration, we discovered that

both the cross-attention maps and the initial noise of the

diffusion play a dominant role in determining the layout and

that even the cross-attention maps of special tokens contain

valuable semantic and spatial information. We identify and

analyze the mechanism behind most prior work: forward

guidance. Moreover, based on our analysis, we propose

a new technique “backward guidance” that overcomes the

shortcomings of forward guidance. Finally, we demonstrate

the versatility of our training-free strategy by extending it to

applications such as real-image layout editing.
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