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Figure 1. The XR-Stereo dataset: (a) We collected high-fidelity camera movement trajectories by taking virtual tours of virtual scenes
and recording 6-DoF camera poses from VR/AR HMDs. (b) Examples of the captured virtual scenes and 6-DoF camera trajectories. (c)
Examples of rendered photo-realistic images.

Abstract

Real-time Stereo Matching is a cornerstone task for Ex-
tended Reality (XR) applications, such as 3D scene under-
standing, video pass-through, and mixed-reality games. De-
spite significant advancements, getting accurate depth in-
formation in real time on a low-power mobile device re-
mains a challenge. One of the main difficulties is the lack
of high-quality indoor video stereo data captured by head-
mounted VR or AR glasses. To address this, we introduce
a novel video stereo synthetic dataset that comprises pho-
torealistic renderings of various indoor scenes and realistic
camera motion captured by a moving VR/AR head-mounted
display (HMD). Our newly proposed dataset enables one to
develop a novel framework for continuous video-rate stereo
matching.

As another contribution, we also propose a new video-
based stereo matching approach tailored for XR applica-
tions, which achieves real-time inference at an impressive
134fps on a standard desktop computer, or 30fps on a
battery-powered HMD. Our key insight is that disparity and
contextual information are highly correlated and redundant
between consecutive stereo frames. By unrolling an itera-

tive cost aggregation in time (i.e. in temporal dimension),
we are able to distribute and reuse the aggregated features
over time. This leads to a substantial reduction in computa-
tion without sacrificing accuracy. We conducted extensive
evaluations and demonstrated that our method achieves su-
perior performance compared to the current state-of-the-
art, making it a strong contender for real-time stereo match-
ing in VR/AR applications. Our dataset is released on
https://github.com/za-cheng/XR-Stereo.

1. Introduction
Extended reality (or XR in short) is a collective term that

refers to immersive technologies, including Virtual Reality
(VR), Augmented Reality (AR) and Mixed Reality (MR).

Real-time Stereo Matching is key algorithm running on
a VR/AR headset, which enables a wide range of appli-
cations such as visual passthrough and 3D mapping. Ef-
ficient stereo matching is particularly important for stand-
alone (untethered) VR/AR headsets, as these are typically
low-power mobile devices with limited computing power.
Therefore, any computational overhead from stereo match-
ing algorithms can reduce the responsiveness of human in-
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teraction and quickly drain the headset’s battery, ultimately
diminishing the overall user experience. Hence, it is im-
perative to develop highly efficient stereo algorithms that
can provide accurate estimations in real-time on such low-
power devices. One promising direction is to utilize tempo-
ral information. For high-frequency video stereo matching,
consecutive frames can have large overlapped region. The
redundant overlapped region in the temporal dimension can
be utilized to reduce the computation overhead per frame.

A significant roadblock to the development of afore-
mentioned algorithms is the absence of high-quality indoor
stereo video datasets tailored for XR scenarios. Our exam-
ination of the current stereo datasets reveals several limi-
tations that inhibit our exploration of temporal redundancy
for efficient video stereo matching in XR scenarios.
Insufficient indoor environments. Indoor scenarios
present unique challenging effects, including large texture-
less area such as wall or floor, transparent windows and
mirror reflections. Standard stereo datasets such as Scene-
Flow [20] were not built for indoor stereo matching.
Absence of video sequences. Among the few dataset that
provide indoor scenarios, most are targeted on single-frame
stereo matching or lack accurate camera poses (e.g. [2,30]),
which considerably diminishes the capabilities of stereo
methods, hindering the exploration of temporal relations be-
tween consecutive frames.
Lacking photo-realism. For the few possible options,
we find [31] suffers subpar texture and shading quality,
while [25] only provide gray-scale images. The diversity of
indoor environments is also limited in both datasets, making
it difficult to generalize to the wider indoor XR domain.

In this paper, we propose two novel contributions to fa-
cilitate the development of real-time stereo matching and
other 3D vision tasks in XR scenarios. Our first contri-
bution is a novel indoor XR video stereo dataset, which
comprises photo-realistic stereo video sequences of vari-
ous indoor environments rendered by a physically-based
path tracing rendering engine, along with realistic and com-
plex 6-DoF camera trajectories captured by VR/AR head-
mounted displays (HMDs). Furthermore, the dataset in-
cludes various complete and accurate ground-truth labels,
such as disparity, depth, optical flow, normal etc. Our novel
video stereo dataset enables us to propose our second con-
tribution, which is a video stereo matching algorithm that
can achieve 100+fps inference speed on a standard desktop
computer while maintaining comparable precision to cur-
rent state-of-the-art methods. We achieve this by exploring
the computational redundancy in the temporal dimension,
based on the key insight that disparity and contextual in-
formation are highly correlated between consecutive stereo
frames. Specifically, we assume known camera pose, and
unroll an iterative cost aggregation network into the tempo-
ral dimension through temporal warping, which enables us

to distribute and reuse the aggregated feature over time and
leads to a substantial reduction in computation without sac-
rificing accuracy. Extensive experiments demonstrate that
our method achieves significant improvements in inference
speed compared to current state-of-the-art methods while
maintaining comparable precision, making it a strong con-
tender for real-time stereo matching in XR applications.
Our contributions are summarized as follows:

• A high-fidelity synthetic dataset for video stereo
matching in indoor XR scenarios, consisting of photo-
realistic stereo sequences and 6-DoF realistic camera
motion captured by VR/AR head-mounted displays.

• A video stereo matching pipeline that exploits tempo-
ral redundancy of scene geometry to achieve real-time
inference with high accuracy.

• Extensive experiments and comparisons with existing
methods show that our method can maintain accuracy
comparable to state-of-the-art methods while achiev-
ing an impressive 134fps inference speed on a desktop
computer.

2. Related work

Video stereo datasets. A huge roadblock for develop-
ing efficient video stereo algorithms for indoor XR sce-
nario is the lack of high-quality video stereo datasets in
indoor environment. Specifically, we find several limita-
tions of existing stereo datasets, including (1) Deficiency
of indoor scenarios, (2) absence of video sequence and (3)
lacking photo-realism, that largely blocked our way to ex-
plore the utilization of temporal information redundancy
to develop a highly efficient video stereo matching algo-
rithms dedicated for indoor XR scenario (see Table 1 for
a summary). Existing stereo datasets are collected from
various domains, including autonomous driving [11, 15],
robotics [25, 31], movie [5] or synthesized from 3D mod-
els for general stereo matching training [20]. Indoor sce-
narios present unique challenging effects, including large
texture-less ares such as wall or floor, transparent windows
and mirror reflections. Few existing datasets [23–25,30,31]
provide indoor scenes for training stereo matching to over-
come these challenges. Among them, most are targeted on
single-frame stereo matching [23, 24] and do not provide
high-quality real-time video sequences, which considerably
diminishes the capabilities of current stereo methods, lim-
iting them to single-frame setups and hindering the explo-
ration of temporal relations. For the very few stereo datasets
that offer indoor stereo video sequences, [30] do not pro-
vide camera pose. Only [25, 31] provide accurate camera
poses. Lack of camera data can ultimately limit the ex-
ploration of utilizing temporal relation, as camera pose is
required for accurately model the relation between pixels
in consecutive video frames. For these two possible op-
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tions, we find [31] exhibits subpar rendering quality and
lacks the photo-realistic effects present in indoor XR envi-
ronments, while [25] only provide low resolution gray-scale
images. Their variety of indoor environments is also limited
for training algorithms dedicated to the indoor XR domain.

To facilitate the development of real-time stereo match-
ing and other 3D vision tasks in XR scenarios, we propose
a novel indoor video stereo dataset that utilizes physically-
based path tracing to achieve photorealistic rendering of
stereo pairs, along with real 6-DoF movement captured by a
head-mounted display (HMD) as the camera trajectory. Our
dataset is designed and implemented to a high standard to
facilitate the evaluation of our approach and promote further
research in Extended Reality scenarios.
Stereo Matching. Stereo Matching is a long-standing task
in computer vision, involving the estimation of the disparity
between a stereo image pair. Classical methods [4, 14, 24]
compute hand-crafted matching costs along with local,
semi-global, or global cost aggregation to achieve accurate,
complete, and smooth disparity estimation. In recent years,
deep learning-based stereo methods [13,19,29,32,35] have
achieved superior results by utilizing learned image features
to build cost volumes, learned cost aggregation networks,
and learned disparity regression.

A recent approach, RAFT-Stereo [18], employs a GRU
structure to iteratively lookup matching costs and refine dis-
parity estimation. Another approach, CREStereo [17], ex-
tends this method with a cascade framework and adaptive
correlation.
Real-time Stereo Matching. Few existing stereo match-
ing methods focus on achieving real-time inference with
high accuracy. Classical methods, such as PatchMatch
Stereo [4], are capable of running in real-time, but their es-
timation accuracy is far inferior to current learning-based
methods due to their hand-crafted cost metric and cost ag-
gregation. These methods are largely outperformed by deep
learning-based counterparts. Few recent deep learning-
based methods have explored real-time stereo matching [9,
18]. DeepPruner [9] is based on PatchMatch Stereo [3, 4],
which implements a differentiable PatchMatch layer for
pruning the disparity searching space in low computational
cost to alleviate the computational overhead of subsequent
deep cost volume and deep cost aggregation network. Stere-
oNet [16] propose to use hierarchical refinement to improve
efficiency. HiTNet [28] use a multi-resolution initialization
paired with coarse-to-fine slanted window based propaga-
tion to improve efficiency. Coex [1] propose a Guided Cost
Volume Excitation to alleviate the computation of 3D con-
volutions. Most closely related to our method is RAFT-
Stereo [18], which utilizes a multilevel recurrent field to it-
eratively refine disparity estimation. It iteratively looks up
matching cost from a pre-built cost volume and uses an it-
erative cost aggregation network to gradually refine the dis-

parity estimation. Such a strategy has shown great promise
in terms of accuracy and generality, but its runtime increases
linearly with the increasing number of iterations. Therefore,
it has to trade-off accuracy by reducing the number of iter-
ations to improve inference speed.
Video Stereo. Temporal information can substantially con-
tribute to both the accuracy and efficiency of stereo match-
ing; however, recent deep stereo methods rarely explore the
utilization of temporal information. Classical methods like
Patchmatch Stereo [4] utilize temporal relation by propa-
gating previous disparity estimations to the current frame
as disparity hypotheses but lack further utilization of con-
textual information over time. Open-World Stereo [38]
builds an LSTM connecting latent features along the time
dimension. However, they heavily focus on the unsuper-
vised open-world stereo setup and provide very limited in-
sight or evaluation on the utilization of temporal informa-
tion for improving stereo matching accuracy or efficiency.
DeepVideoMVS [10] adopted similar LSTM structure for
temporal multi-view stereo, where the temporal matching
require a static scene that is infeasible in XR scenario.
Very recently, a concurrent work TemporalStereo [37] also
explored the utilization of temporal information in stereo
matching. They extend a single-frame coarse-to-fine esti-
mation framework similar to cascade stereo methods [12,
34], and warp previous cost volume into the current view
with hand-crafted statistical fusion. They also warp previ-
ous disparity to the current time frame for extra disparity hy-
pothesis. Based on these simple temporal extensions, their
temporal model yields incremental accuracy improvement
over their single-frame baseline but is slower at runtime.
Unlike TemporalStereo, our framework is specifically de-
signed to reduce the computational cost per frame by learn-
ing temporal cost aggregation. Our model can better utilize
temporal information and can achieve 3x to 5x faster in-
ference speed with superior accuracy than our single-frame
baseline.

3. XR-Stereo Dataset
We first introduce our new video stereo synthetic dataset,

XR-Stereo, which contains 60K stereo images in 640x480
resolution. We design our dataset in an indoor extended re-
ality (XR) setup, where the stereo cameras are mounted on a
head mounted display (HMD). Below we introduce details
of this new dataset.

3.1. Indoor Scenes

We use a set of 13 carefully crafted, photo-realistic 3D
virtual indoor environments. As shown in Figure 1(b), the
virtual scenes selected for this research primarily focus on
household environments such as living rooms, kitchens,
bedrooms, and study rooms, while also featuring a few addi-
tional environments such as office, hospital and hotel room.
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Dataset Year Type Scenario Camera Pose Camera Motion Video Disparity
Sintel [5] 2012 Synthetic Movie Virtual Virtual Camera 50 frames Rendered
KITTI Stereo [11] 2012 Real Road Estimated Driving N/A LiDAR
KITTI VO [11] 2012 Real Road Estimated Driving 10 Hz LiDAR
Middlebury [23] 2014 Real Laboratory N/A N/A N/A Structured Light
SceneFlow [20] 2016 Synthetic Various Virtual Spline N/A Rendered
ETH3D [25] 2017 Real Indoor/Outdoor Estimated Robotics 13.6 Hz Laser Scan
Apollo [15] 2018 Real Road Estimated Driving 30 Hz LiDAR
TartanAir [31] 2020 Synthetic Various Virtual Robotics 10Hz-30Hz Rendered
IRS [30] 2021 Synthetic Indoor Virtual Spline N/A Rendered
XR-Stereo (Ours) 2023 Synthetic Indoor XR HMD Recorded Human Head Movement 30 Hz Rendered

Table 1. Stereo Matching Datasets. Our proposed XR-Stereo dataset focus on indoor extended reality (XR) scenario and provide 6-DoF
camera motion recorded by VR/AR HMD through our virtual tour pipeline.

3.2. Recorded 6-DoF Camera Trajectory

We aim to obtain accurate camera poses of realistic
movement trajectories by capturing the motion of a vir-
tual reality/augmented reality (VR/AR) head-mounted dis-
play (HMD) as its wearers walk through virtual scenes. To
accomplish this, we have developed a virtual tour pipeline
that enables users to explore virtual scenes while wearing
a VR/AR HMD. As illustrated in Figure 1(a), the pipeline
consists of a real-time stereoscopic viewport rendering en-
gine that is connected to the VR/AR HMD using OpenXR
APIs. The pipeline utilizes the 6-DoF head pose of the
HMD in real-time and associates it with the virtual head lo-
cation in the virtual scene. The corresponding stereoscopic
viewport images of the virtual head location are then ren-
dered in real-time and streamed back to the HMD. This al-
lows the wearer to freely explore the virtual scene while
physically walking in the real world, subject to the physical
space available for walking. Figure 1(b) shows examples of
captured head trajectories overlaid on virtual scene exam-
ples. To ensure a diverse set of trajectories, we collected tra-
jectories from different users with varying movement styles
for each virtual scene, for a total of 17 trajectories.

3.3. Physically-based rendered images

Existing synthetic datasets typically utilize real-time ren-
dering engine such as Lumen [27] or Eevee [7] for its high
efficiency and low computational cost. However, they are
sub-optimal for training XR-oriented stereo matching net-
works due to the lack of challenging real-world photometric
effects (such as specular reflections and transmitted lights)
that are present in indoor environments. To simulate com-
plex real-world optics, we use Blender’s path tracing engine
Cycles [7]. All the virtual scenes are shaded with Physics-
Based Rendering materials for photometric fidelity. With
this setup, we are able to synthesize a diverse range of
optical effects in high fidelity, including mirror reflection,
refraction, subsurface scattering and secondary reflection.
Physically-based path tracing consumes significantly more
computational resources over its real-time counterparts. We
implement our rendering pipeline using 80 distributed com-
puting nodes, each node containing 4 NVIDIA Tesla V100

GPUs. Rendering the entire dataset took around two weeks.

3.4. Lens and lighting effects

Our dataset draws inspiration from the SceneFlow
dataset [21] and provide rendering of two sets of images,
which we refer to as cleanpass and finalpass. The cleanpass
set serves as a baseline, providing a clear and unadulter-
ated view of the scene radiance, while the finalpass set con-
tains real-world lens and lighting effects such as including
motion-blur, defocus, rolling-shutter, lens glare and indoor
light flickering.

3.5. Data Type and Potential Applications

We provide various types of data and ground-truth, in-
cluding pixel-wise raw light intensity, RGB image, ren-
dered disparity, rendered depth, optical flow, surface nor-
mal, visual ray vectors, surface mesh, instance labels, ob-
ject bounding box, diffuse/specular/transmission layer sep-
aration etc. These data can facilitate the development of var-
ious indoor XR applications, such as indoor 3D reconstruc-
tion or Visual See-through (VST), and generic computer
vision tasks such as monocular depth estimation, stereo
matching, multi-view stereo, 3D reconstruction, structure
from motion, visual odometry, SLAM, etc.

3.6. Limitation

The current version of our XR-Stereo dataset does not
contain moving objects. In XR scenarios, various applica-
tions require modeling of moving objects in the scene, such
as pets or people. Our dataset also lacks of an egocentric
virtual human model, particularly the hand and body. The
human model will aid in the development of hand tracking,
human motion estimation, digital twin, and other related ap-
plications. The scene variety can also be improved.

4. Continuous video stereo matching

We now introduce our video stereo matching framework.
Our key idea is to leverage the temporal redundancy of
video within a RAFT-style cost aggregation scheme, where
disparities are iteratively looked-up and refined by a GRU.
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Figure 2. Real-time video stereo matching framework. We un-
roll an iterative cost aggregation network into temporal dimen-
sion, which enables us to distribute and reuse the aggregated fea-
ture over time and leads to substantial reduction in computation
without sacrificing accuracy. In this example, we perform a single
GRU iteration per frame. “L” denotes the disparity look-up.

Instead of running multiple iterations per frame in a frame-
by-frame manner, we warp the previous frame disparity hy-
pothesis to current frame to warm-start the GRU. As illus-
trated in Fig 2, this strategy significantly reduces GRU iter-
ations per frame.

For time step t with new stereo image frames in-
puts {ILt , IRt }, their relevant world-to-camera pose inputs
{PL

t , PR
t }, their camera intrinsic parameters {KL,KR}

and stereo baseline B, our method estimate disparity Dt

for the left stereo image. We first extract matching feature
and contextual feature from input images (Sec. 4.1). We
then warp previous disparity estimation and previous hid-
den state into current camera frame (Sec. 4.3). Based on the
warped disparity, we perform disparity lookup and compute
matching cost on-the-fly. The matching cost is used along
with current contextual feature in a recurrent network to es-
timate disparity for current time frame (Sec. 4.4)). We train
this network in supervised manner (Sec. 4.5).

4.1. Feature Extraction

For any time step t with stereo image inputs {ILt , IRt },
we firstly extract matching feature {FL

t , FR
t } and context

feature {CL
t , C

R
t } using a shared-weight feature extraction

network ϕf : I → {F,C}. We adopt the feature extraction
network from [18] for fair comparison.

4.2. State Initialization

If the given stereo inputs on time step t is the very first
frame, we perform a disparity and hidden state initializa-
tion. We use a small network ϕ0 to estimate an initial dis-

Dt�1
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t�1
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t

t � 1

t

Dt�1

Ẑt�1

Zt�1
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Figure 3. Temporal Warping. We reuse previous disparity esti-
mation and hidden state feature by warping them to current frame
based on relative camera pose.

parity taking current left context feature as input. We ini-
tialize hidden state as all zeros. Pose of previous frame is
set to be identical to current frame.

4.3. Temporal Warping

We warp previous disparity estimation Dt−1 and GRU
hidden state Zt−1 into current camera frame, termed as
D̂t−1, Ẑt−1 accordingly. As illustrated in Fig 3, this warp-
ing address the view point change caused by camera move-
ment based on multi-view geometry. Specifically, we com-
pute a transformation matrix T geo

t−1,t that maps stereo pixels
(u, v, d) from previous left camera coordinate to current left
camera coordinate.

T geo
t−1,t = Q[RT ]t−1,tQ

−1, (1)

where [RT ]t−1,t is the relative camera pose and Q is
the stereo transformation from stereo coordinates (u, v, d)
to camera coordinates (x, y, z).

Q =


1 0 0 −cx
0 1 0 −cy
0 0 0 f
0 0 1/b 0

 (2)

We warp previous disparity and hidden state to cur-
rent frame using this transformation T geo

t−1,t, resulting in
D̂geo

t−1, Ẑ
geo
t−1 respectively. To handle occlusion during for-

ward warping, we use Softmax Splatting [22] with weight
proportional to current disparity, so that when multiple loca-
tions from previous view are mapped to the same location
at current view, the nearest one takes priority. In case of
disocclusion (holes), all missing values are assigned zero.
We implement forward warping as a non-parametric layer
in our network that is differentiable w.r.t. hidden state Zt−1.

4.4. Disparity look-up and cost aggregation

Upon each new input frame at timestamp t, the cost ag-
gregation GRU takes as initial input the warped hidden state

8723



of previous frame Ẑt−1 and warped disparity D̂t−1, and
performs iterative cost look-ups and disparity updates con-
ditioned on context features. Same as RAFT-Stereo [18],
we use feature correlation as cost metric to compute photo-
metric matching cost Mt ∈ Rh×w×K as

Mt(u, v, d) = FL
t (u, v) · FR

t (u+ d, v). (3)

Contrast to RAFT-Stereo [18], we are able to signifi-
cantly reduce the number of GRU iterations. Even with a
single GRU iteration per frame, our method performs com-
parably to RAFT-Stereo [18] using 20 GRU iterations.

4.5. Supervised Training

We train our network in a supervised manner. Follow-
ing common practice in stereo matching methods [13, 18],
we use the l1 distance between estimated disparity and final
disparity as disparity loss Ld.

Ld = ||D −Dgt||1 (4)

Unlike RAFT-Stereo [18] that applies an exponential
loss weight over iteration steps, we treat the disparity output
of each time step equally important and do not weigh down
outputs on early time steps.

5. Experiments
In this section, we demonstrate the performance of our

approach with a comprehensive set of experiments. Below,
we describe the datasets and benchmarks, the implementa-
tion details, presentation and analysis of our results.

5.1. Datasets

We conduct extensive experiments on our proposed XR-
Stereo dataset and also verify the performance of our
method on the real-world KITTI VO dataset [11].
XR-Stereo dataset is our newly proposed synthetic indoor
video stereo dataset. It consists the rendering of 14 virtual
indoor scenes, which forms more than 60k photo-realistic
stereo image pairs of indoor scenario. We use 640 × 480
resolution and 30Hz video frame rate. We split the dataset
into 2 validation scenes and 2 testing scenes, and the rest
are used for training.
KITTI Visual Odometry (VO) dataset [11] consists of
image sequences acquired from a car driving in urban sce-
narios, captured with a calibrated stereo camera system and
a high-precision GPS/IMU localization system. It cover a
wide range of scenarios, such as residential areas, high-
ways, and urban centers. It provides synchronized RGB
stereo images and LiDAR measurements, IMU measure-
ments, and GPS localization data. The dataset is widely
used for evaluating visual odometry, stereo matching, and
SLAM algorithms. We train our model from scratch and
split the dataset into 20 training videos and 2 test videos.

0 10 20 30 40 50 60

1.5

2

2.5

3

3.5

Inference Time (ms)

E
PE

Ours-Fast
Ours

RAFT-Stereo RT

Figure 4. XR-Stereo dataset. Inference time and accuracy com-
parison between our method and our single-frame baseline RAFT-
Stereo [18] real-time model. Our model outperform RAFT-Stereo
real-time model on both accuracy and inference speed.

5.2. Metrics

We use standard evaluation metrics to assess our results.
These metrics include the average end-point error (EPE), as
well as the percentage of pixels with disparity error greater
than 1 pixel (D1), 3 pixels (D3), and 5 pixels (D5). Further-
more, we also compute the bad 1%, bad 3%, and bad 5%
EPE on the KITTI VO dataset, which correspond to the top
1%, 3%, and 5% percentiles of EPE, respectively.

5.3. Implementation Details

We implement two variants of our method, a full model
(Ours) and a fast model (Ours-Fast). For the full model, we
include results from our model with 1, 2 and 5 GRU itera-
tions per frame. The fast model is introduced to maximize
inference speed, for which we run GRU once per frame and
disable the temporal warping. The fast model differs from
our full model in two ways: (a) we remove the temporal
warping by assuming camera motion between consecutive
frames is small and continuous (b) we half intermediate fea-
ture channels within the feature encoder. We train both full
model and fast model using Adam optimizer for 250K it-
erations using batch size 8 and sequence length 16. We
use eight NVIDIA V100 32G GPUs for training. For all
evaluations, we use a PC with one NVIDIA RTX 3090 TI
GPU. To deploy our trained model on HMD, we convert the
fast model via ONNX to a device-friendly float-point format
running on Qualcomm XR2 chip without quantization.

5.4. Comparison with Existing Methods

We first compare our method with related methods on
our XR-Stereo dataset. All methods are trained on our
dataset unless otherwise stated, and are grouped into single-
frame (Single-frame, or S in short) or video stereo methods
(Video). For single frame methods we mainly compare to
our real-time baseline RAFT-Stereo [18]. For video stereo
methods we only compare to DeepVideoMVS [10] as other
methods [37, 38] did not release code. Results are listed
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Method EPE D1 D3 D5 FPS

Si
ng

le
-f

ra
m

e

HiTNet* [28] 4.51 36.4 24.1 11.34 19.48
GA-Net-deep [36] 2.11 22.56 11.05 8.46 1.24
GWC-Net [13] 1.87 20.45 10.01 7.99 8.10
PCW-Net [26] 1.77 19.43 9.96 7.84 6.53
ACV-Net [33] 1.69 19.31 8.94 6.57 13.89
RAFT-Stereo [18] (RT @ 7 iters) 1.93 20.93 9.85 7.03 49.83
RAFT-Stereo [18] (RT @ 20 iters) 1.70 18.18 8.37 6.03 19.97

V
id

eo
DeepVideoMVS* 2.20 20.2 9.52 7.10 13.22
Ours-Fast 1.67 19.40 8.86 6.25 134.05
Ours (1 iter) 1.48 18.64 8.55 5.95 108.09
Ours (2 iters) 1.44 16.80 7.89 5.50 90.97
Ours (5 iters) 1.42 16.31 7.69 5.36 57.46

Table 2. XR-Stereo dataset. Our method outperforms all existing methods in terms of both accuracy and runtime fps. For accuracy similar
to RAFT-Stereo [18] real-time model (RT @ 20 iters), Our fast model achieved an impressive 134 fps on inference.

Left Image Estimated Disparity Disparity Error Estimated Disparity Disparity Error

RAFT-Stereo (19.97 FPS) Ours (108.9 FPS)

0 0

50 5

(Pixel)

Figure 5. XR-Stereo dataset. Qualitative results

in Table 2. HiTNet [28] did not release training code, so
we can only use its released pre-trained model for evalu-
ation. Disparity from DeepVideoMVS [10] were obtained
by d = b×f

Z . DeepVideoMVS runs much slower than re-
ported in original paper due to our dataset has 4X higher
image resolution than ScanNet [8]. Our fast model, which
lacks the temporal warping, already outperforms all exist-
ing methods in EPE and achieved an impressive 134 FPS
inference speed. Our full model that runs a single GRU
iteration maintains a high inference speed at 100+ FPS. By
further adding GRU iterations, our method consistently out-
performed all competing methods on all metrics.

5.5. Efficiency versus accuracy

Apart from the general inference fps provided in Table
5, we also specifically compared the runtime efficiency and
accuracy of our model to the single-frame baseline RAFT-
Stereo. For both models, we plot the runtime-EPE curve
with varying number of GRU iterations. The results are
shown in Figure 4. Our model achieves significantly better
accuracy compared to our single-frame counterpart while
operating within a fraction of its time.

5.6. Generalization Ability

We evaluate the generalization ability of our model on
KITTI Visual Odometry (VO) dataset with low frame rate
and sparse depth supervision. Results are shown in Table
3. Our model outperforms the single-frame baseline using
significantly less GRU iterations, which proves its general-
ization ability to real-world applications.

5.7. Ablation study

We provide ablation experiments on the XR-Stereo
dataset to evaluate the contribution of the proposed mod-
ules and also provide detailed analysis of our method.
Temporal warping In this ablation we evaluate the impor-
tance of correct geometric alignment by temporal warping.
A baseline model is trained without warping and compared
to our full model running one GRU iteration per frame. Re-
sults are show in Table 4. The performance of baseline
model deteriorates as camera motion increases when the full
model is robust to large motions. Similar observations are
made in Figure 8, where the fast model is vulnerable to large
motions due to lack of temporal warping.
Pose noise We analyze the robustness of our model against
noisy camera pose. We manually add a random noise into to
the input pose before using it in our temporal warping mod-
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Method EPE D1 D3 D5 Bad 1% Bad 3% Bad 5%

S RAFT-Stereo [18] (RT @ 7 iters) 1.82 26.47 10.26 6.71 26.93 13.69 8.27
RAFT-Stereo [18] (RT @ 20 iters) 1.77 25.76 9.79 6.39 27.01 13.30 7.85

V
id

eo
Ours-Fast 1.91 30.58 11.92 7.51 25.15 13.55 8.64
Ours (1 iters) 1.84 30.33 11.14 6.93 24.87 12.82 7.94
Ours (2 iters) 1.72 26.71 10.11 6.47 24.71 12.59 7.55
Ours (5 iters) 1.66 24.52 9.57 6.22 24.87 12.40 7.32

Table 3. KITTI VO dataset. Performance of our method compared with RAFT-Stereo [18] in real-world scenario.

1 3 5 7 9

1.5

1.75

2

2.25

2.5

Pose Noise Level

E
PE

Figure 6. XR-Stereo dataset. EPE versus Pose Noise. Each noise
level adds an increment of 0.3 degrees maximum rotation noise
and 1mm maximum translation noise.

Temporal Warping 1X speed 6X speed
EPE D1 EPE D1
1.70 18.29 3.18 32.05

✓ 1.48 18.64 1.68 21.16

Table 4. XR-Stereo dataset. Contribution of temporal warping.

ules. Specifically, we add a random rotation and translation
noise drawn from uniform distributions. Results are show
in Figure 6, where each noise level adds an increment of 0.3
degrees maximum rotation noise and 1mm maximum trans-
lation noise. Our model is affected by extreme pose noise.
However, since our method only requires relative pose be-
tween two consecutive frames, many SLAM pipelines falls
within noise level 1. E.g. a modified ORB-SLAM3 [6] runs
within 0.3 degree and 0.5mm inter-frame noise on our head-
set, with local bundle adjustment.
Movement speed Since our model is specifically designed
to utilize the relation between consecutive frames, inter-
frame motion can affect our model’s performance. High
speed motions reduce overlap between consecutive frames
and can further introduce occlusion/disocclusion. We in-
crease inter-frame motion intensity by skipping frames in a
30Hz input stereo video stream, simulating up to 20x origi-
nal speed. Results are shown in Figure 8. Our full model is
robust to high speed motions when the fast model (without
warping) is vulnerable to such changes.
Performance curve on initialization We now analyze the
performance curve on model initialization. Since our model
rely on temporal iterative cost aggregation, in a fresh start,
it require certain amount of frames to be processed to reach
a stable performance. In Figure 7, we show the disparity
accuracy curve as more frames are fed into our model (1
iter) upon initialization. The disparity accuracy of the very
first few frames gradually improved along with more iter-
ations of temporal cost aggregation been performed. The

5 10 15 20 25 30
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0.8

Init. Iterations
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Figure 7. XR-Stereo dataset. EPE curve as our model progresses
through an input video. Error converges after 15 stereo frames.
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Figure 8. XR-Stereo dataset. Model robustness with respect to
movement speed. Our fast model, which lacks temporal warping,
can be largely affected by high movement speed. Our full model
with temporal warping achieve reasonable performance even in
extreme speed (20x).

performance of our model stabilized after around 15 frames,
which roughly corresponds to a 0.5 second video duration.

5.8. Limitation

Our proposed approach, while effective in stereo match-
ing scenarios with stereo video inputs, may face limitations
in applications where such inputs are not available. Besides,
it may not provide reliable and accurate disparity estimation
at the very first stereo frame, thereby limiting its use in on-
demand stereo matching applications.

6. Conclusion

We present two novel contributions to facilitate the de-
velopment of XR, including an indoor XR video stereo
dataset implemented in high-fidelity and a highly efficient
real-time video stereo matching framework that can poten-
tially run in real-time on low-power stand-alone VR/AR
headsets. In the future, we would like to improve our dataset
to enable the development of more XR algorithms, and ex-
tend our video stereo framework to sceneflow estimation.
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