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Abstract

Food computing has emerged as a prominent multidis-
ciplinary field of research in recent years. An ambitious
goal of food computing is to develop end-to-end intelligent
systems capable of autonomously producing recipe infor-
mation for a food image. Current image-to-recipe meth-
ods are retrieval-based and their success depends heavily
on the dataset size and diversity, as well as the quality of
learned embeddings. Meanwhile, the emergence of pow-
erful attention-based vision and language models presents
a promising avenue for accurate and generalizable recipe
generation, which has yet to be extensively explored. This
paper proposes FIRE, a novel multimodal methodology tai-
lored to recipe generation in the food computing domain,
which generates the food title, ingredients, and cooking in-
structions based on input food images. FIRE leverages
the BLIP model to generate titles, utilizes a Vision Trans-
former with a decoder for ingredient extraction, and em-
ploys the T5 model to generate recipes incorporating ti-
tles and ingredients as inputs. We showcase two practical
applications that can benefit from integrating FIRE with
large language model prompting: recipe customization to
fit recipes to user preferences and recipe-to-code transfor-
mation to enable automated cooking processes. Our exper-
imental findings validate the efficacy of our proposed ap-
proach, underscoring its potential for future advancements
and widespread adoption in food computing.

1. Introduction
Food is not only a vital source of sustenance but also an

integral part of our cultural identity, defining our lifestyle,
traditions, and social interactions [31]. As the well-known
saying goes, “Tell me what you eat, and I will tell you
who you are,” [28] emphasizing the idea that an individ-
ual’s dietary choices reflect their identity [30]. Moreover,
a person’s physical appearance and cognitive abilities of-
ten bear evidence of their dietary habits, as the selection
of nutritious food contributes to the overall well-being of
both the body and mind [46]. The advent of social media

 Cooking Instructions:
    - Preheat oven to 350 degrees Fahrenheit.
    - Spray pan with non stick cooking spray.
    - Heat milk, water and butter to boiling.
    - Stir in contents of both pouches of potatoes.
    - Let stand one minute. Stir in corn.
    - Spoon half the potato mixture in pan.
    - Sprinkle half each of cheese and onions.
    - Top with remaining potatoes.
    - Sprinkle with remaining cheese and onions.
    - Bake 10 to 15 minutes until cheese is melted. 

Title: Crunchy Onion Potato

Ingredients: Milk, Butter,
Onion, ..., Potato

Figure 1. Given a potentially unseen image, our method FIRE
generates a corresponding recipe consisting of a title, ingredients,
and cooking instructions.

enables anyone to share captivating visuals of personal ex-
periences related to the delectable food they consume. A
simple search for hashtags like #food or #foodie yields
millions of posts, underscoring the immense value of food
in our society [17]. The significance of food accompanied
by its large amounts of publicly available data has inspired
food computing tasks [31] that associate visual depictions
of dishes with symbolic information. An ambitious goal of
food computing is to produce the recipe for a given food
image, with applications such as food recommendation ac-
cording to user preferences, recipe customization to accom-
modate cultural or religious factors, and automating cook-
ing execution for higher efficiency and precision [33].

Generating detailed recipe information or cooking pro-
cedures solely from a food image presents a considerable
challenge [40, 41]. Food computing has been of interest to
the computer vision (CV) community, whose efforts to use
image processing for food quality assurance can be traced
back to 1996 [11]. State-of-the-art food image processing
methods [15,27,41] use deep learning techniques to extract
ingredients from images with limited success. Meanwhile,
a popular natural language processing (NLP) application
has been recipe generation, a procedural task of creating
recipes based on a flexible set of ingredients as inputs. Typ-
ical models for recipe generation include [29, 41, 51]. We
note that prior work has not connected the dots between the
CV and NLP research in order to provide an end-to-end sys-
tem that generates recipes from images. Moreover, current
methods for food computing have not caught up with the
most recent advances in NLP and CV, featuring diffusion
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models and language modeling.
This paper presents a novel multimodal methodology

that we call FIRE (Food Image to REcipe generation).
FIRE is designed to generate comprehensive recipe out-
put for the food computing domain, including food titles,
ingredients, and cooking instructions, based on input food
images as shown in Figure 1. We leverage recent advance-
ments in CV and language modeling to employ state-of-the-
art (SotA) techniques that have demonstrated exceptional
performance in various vision and language tasks. FIRE
connects the dots between SotA models, using BLIP [21]
for title generation, a Vision Transformer [9] with a de-
coder for ingredient extraction, and the T5 [37] model for
cooking instruction generation. Furthermore, we highlight
two practical applications that can benefit from integrating
FIRE with prompting large language models: recipe cus-
tomization for personalized recipe adaptation, and recipe-
to-code generation, enabling automated cooking processes.
The contributions of the paper are as follows:

1. We leverage the capabilities of Vision Transformers
(ViT) [9] to get expressive embeddings from food im-
ages, which are subsequently fed into an attention-
based decoder to extract the ingredients of the recipe.

2. We present an end-to-end pipeline for generating
recipe titles and cooking instructions, utilizing SotA
vision (BLIP) and language (T5) models, respectively.

3. Our multimodal approach outperforms the existing
work based on two evaluation metrics: (a) set metrics
for ingredient extraction and (b) document-level met-
rics for cooking instruction generation.

4. We showcase the ability of FIRE to support two novel
food computing applications: Recipe Customization
and Recipe to Code Generation, through integration
with few-shot prompting of large LMs.

We organize this paper as follows; Section 2 of the paper
gives a detailed overview of the related work in the field
of food computing and its gap against SotA models. We
describe our proposed methodology (FIRE) in Section 3.
Section 4 describes the experimental setup we follow to ob-
tain the results, which are presented in Section 5. Section 6
illustrates two advanced applications that can benefit from
our proposed approach. Finally, we conclude our paper in
Section 7 with future research directions. We make all of
our code available to stimulate work on recipe generation.

2. Related Work
2.1. Food Computing

Recently, the importance of food and the availability of
extensive multimodal food datasets, such as Food-101 [4],
Recipe1M [26], and Recipes242k [39], have enabled com-
putational research on food computing tasks [31]. We re-
view prior work on food recognition and recipe generation.

Food Recognition is an image-to-text task requiring mod-
els to detect food categories in a food image. Recognition
of food items can offer people comprehensive information
and a better understanding of unfamiliar dishes, thereby
improving other food-related applications as well [1, 34].
Previous works focus on extracting deep representations of
food [15,27,41,55]. Martinel et al. [27] adapted a slice con-
volution block in the residual network to capture features in
images. Salvador et al. [41] proposed InverseCooking, an
encoder-decoder framework to output the title of the food.
Wang et al. [50] also utilized images to get the recipe by
treating it as an image captioning task. Notably, earlier ar-
chitectures are constrained as they tend to emphasize global
features rather than local features and can not detect the in-
gredients overlapping in the image [19]. Instead, we employ
a SotA vision encoder, ViT [9], to enhance the extraction of
the local semantic segmentation.
Recipe Generation is a more complex text-to-sequence
task generating food recipes based on the ingredients pro-
vided. To solve this task, models must possess knowl-
edge of food composition, ingredients, and cooking pro-
cedures to perform the task accurately. Early attempts at
recipe generation were constrained by limited model capac-
ity and structure, leading to solutions that relied on infor-
mation retrieval techniques [52,56]. Wang et al. [52] devel-
oped a novel similarity and filtering algorithm to increase
the search accuracy. Xie et al. [56], leveraged the cook-
ing flow and eating features with other domain knowledge
to enhance the searching process. More recent work relies
on encoder-decoder structures to generate recipes [41, 51]
with multimodal settings. Salvador et al. [41] presented a
framework that utilizes encoded image and ingredients rep-
resentations in recipe generation. Wang et al. [51] added
tree structures within the encoder-decoder process to incor-
porate structure-level information. In contrast to prior uni-
modal work, our approach uses images as input and gener-
ates titles and ingredients as an intermediate representation,
and uses them to generate recipes.

2.2. State-of-the-Art Models

We review state-of-the-art models that have not found a
broad application in food computing tasks to date.
Image to Text Models gradually play an important role in
vision language tasks with the development of deep learn-
ing [20]. Models follow a main pipeline that encodes im-
age input into intermediate stages and then decodes them
into text output [49, 57]. Vinyals et al. [49] encoded the
input image into a global visual vector through CNN and
then applied RNN to generate captions, whose generaliza-
tion on multi-task also supported the effect of the encoder-
decoder pipeline. Xu et al. [57] further built an atten-
tion mechanism to pick the most related subregion vectors
rather than depending only on the global visual vector. De-
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 Cooking Instructions:
    - Preheat oven to 350 degrees Fahrenheit.
    - Spray pan with non stick cooking spray.
    - Heat milk, water and butter to boiling.
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Figure 2. Proposed architecture to extract ingredients, and generate the recipe title and cooking instructions from a food image. (Ingredients
with quantity is passed during the train time only)

spite the progress in the encoder-decoder pipelines, their
ability is limited by only emphasis on single modularity
input. Recent research switched to unimodality with the
birth of large image-text datasets [13, 58]. CLIP [35] mod-
ified GPT-2 [36] to obtain text features from textual input
and used image-text contrastive learning, which trained the
model with the similarity between the image and text. AL-
BEF [22] utilized ViT (pre-trained on large amounts of data
and transferred to multiple mid-sized or small image recog-
nition benchmarks) [9] as an image encoder and BERT [8]
as a text encoder to extract information with attention. One
additional multimodal encoder was built on the extraction
output, which additionally incorporated masked-language-
modeling loss (MLM) to enhance the image-text interac-
tions. Based on previous work, BLIP model [21], designed
to achieve unified vision-language understanding and gen-
eration, reached state-of-the-art results on various vision-
language tasks in a zero-shot manner [60]. By employing a
captioner to generate synthetic captions and applying a fil-
tering mechanism, BLIP maximizes the utilization of noisy
web data. In our work, we leverage BLIP and ViT to gener-
ate food titles and ingredients separately.
Text (Sequence) to Sequence Models takes a sequence
of text as input and maps it into a succession of another
sequence [59]. For this task, previous work either built
recurrent neural networks (RNNs) [2, 7, 45] or attention-
based models [8, 36, 37, 48]. GPT-2 [36] is based on a
transformer-decoder to perform tasks on various fields in
a zero-shot setting, while T5 (text-to-text encoder-decoder
model) [37] transformed text-related tasks in a text-to-
sequence format to enhance its general ability. With the
recent progress of large pre-trained LMs, prompting has be-
come a popular and efficient approach to tackle many NLP
tasks [23]. More specifically, few-shot prompting provided
input-output mapping in demonstration to guide LMs to
prompt the specific structure. Chain-of-thought (CoT) [54]
with Self-Consistency [53] reached state-of-art on com-
monsense reasoning and symbolic reasoning, even com-
pared to supervised models. Madaan et al. [25] used graph
demonstration to hint LMs generate complex Python classes
for reasoning and state tracking. Capitalizing on these ad-
vancements, we employ T5 to generate cooking instructions

from food ingredients and titles. To overcome resource and
time constraints posed by large-scale food dataset, we also
show how few-shot prompting can support food computing
applications. Our work analyzes how to generate a curated
recipe or convert recipe into a structured program flow [33]
for further application with the help of prompting.

3. Proposed Methodology (FIRE)
FIRE consists of three components: (1) title genera-

tion from food images by using state-of-the-art image cap-
tioning, (2) ingredient extraction from images using vision
transformers and decoder layers with attention, and (3)
cooking instruction generation based on the generated title
and extracted ingredients using an encoder-decoder model.

3.1. Title Generation

We generate recipe titles from food images using the
BLIP model, a state-of-the-art image captioning approach.
In our initial experiments with the off-the-shelf BLIP
model, we observed promising results, yet, BLIP’s predic-
tion accuracy was lower because of the domain shift be-
tween its training data and the food domain. Namely, BLIP
tends to capture extraneous details impertinent to our goal
because it was originally designed to provide a compre-
hensive image caption for a wide variety of settings. As
an illustration, when presented with an image of a muffin,
BLIP produced the description ‘a muffin positioned atop a
wooden cutting board’. To better align the generated cap-
tions with recipe titles, we fine-tune the BLIP model using
a subset of the Recipe1M dataset. We restrict our tuning
to 10% of the training dataset, as fine-tuning on the entire
dataset is computationally intensive [18]. We observe that
the fine-tuned version of BLIP shows promising improve-
ments in generating accurate, aligned, and pertinent titles
for food images. The fine-tuned BLIP captions the same
example image with a shorter string ‘muffin’, removing the
additional extraneous information.

3.2. Ingredient Extraction

Extracting ingredients from a given food image presents
challenges due to the inherent complexity and variability of
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food compositions. Unlike generating titles or captions, de-
termining a comprehensive and accurate list of ingredients
requires a deep understanding of food characteristics, tex-
tures, and interactions. Additionally, the visual appearance
of certain ingredients may overlap, whereas others may not
be visible at all, leading to potential ambiguities and diffi-
culties in discerning specific components. For instance, in a
food image that contains a dish with melted cheese on top,
from visual appearance alone it may be challenging to de-
termine if the cheese used is mozzarella, cheddar, or any
other type. These nuances motivate need for an architecture
capable of retaining expressive embeddings from food im-
ages. While finetuned BLIP successfully generated accurate
titles for food images, our analysis showed that using it for
ingredient extraction led to significant hallucinations in the
output. As BLIP is primarily trained for image captions, it
struggles to generate ingredient lists accurately. To address
this challenge, we develop an ingredient extraction pipeline
(shown in Figure 2) built on top of the one proposed by [41].
Feature Extractor: We extract the image’s features by em-
ploying a vision transformer (ViT). ViT’s attention mech-
anism enables for effective handling of feature representa-
tions with stable and notably high resolution. This capa-
bility precisely meets the requirements of dense prediction
tasks such as ingredient extraction from food images [63].
Furthermore, transformer-based approaches exhibit mini-
mal reliance on the inductive bias, facilitating effective in-
teraction and integration of long-range information. Unlike
conventional CNNs, the output of a ViT is sequential; there-
fore, we use a fully connected (FC) linear layer to reshape
the output and pass it to a 2D convolution (Conv2D) layer.
Ingredient Decoder: The feature extractor produces im-
age embeddings. We pass these image embeddings through
three normalization layers (layerNorm) and subsequently
feed the output into our ingredient decoder responsible for
extracting ingredients. The decoder consists of four con-
secutive blocks, each comprising multiple sequential layers:
self-attention, conditional attention, two fully connected
layers, and three normalization layers. In the last step, the
decoder output is processed by a fully connected layer with
a node count equivalent to the vocabulary size, resulting in
a predicted set of embeddings.

Given a corpus with ingredients and recipes correspond-
ing to food images, we construct a dictionary D consist-
ing of N possible ingredients. Each recipe, ri, is associ-
ated with a set S, comprising K ingredients selected from
this dictionary. Given that the order of the ingredients does
not affect the resulting recipe, we represent the ingredients
as a set rather than a list. In other words, we exploit co-
dependencies among ingredients without penalizing for pre-
diction order. We represent the ingredient set S using a bi-
nary vector, s, of dimension N , where si = 1 if si ∈ S, and
0 otherwise. Consequently, our training dataset consists of

m pairs of image and ingredients sets: {(xi, si)}mi=0. In this
case, the goal is to predict ŝ from an image x by maximizing
the following objective:

arg max
θimg,θing

∑
log p(ŝi = si|xi; θimg, θing) (1)

where θimg and θing represent the learnable parameters
for the image encoder and ingredient decoder, respectively.
While there may exist certain dependencies among the in-
gredients, such as the common combination of salt and pep-
per, these dependencies do not exert a dominant influence.
Consequently, we can reasonably assume independence be-
tween the ingredients and factorize them as follows:

N∑
j=1

log p(ŝij = sij |xi)← p(ŝi = si|xi) (2)

Our decoder makes ingredient predictions sequentially un-
til it encounters an end-of-sequence (EOS) token. To mit-
igate the impact of the order of the ingredients, we aggre-
gate the outputs separately across different time steps and
use max pooling at the end to obtain the ingredient set. This
enables training the model using binary cross-entropy loss
(lossingr) between the predicted ingredients (after pooling)
and the ground truth. However, since the EOS information
is lost during pooling, we use a custom EOS loss (losseos).
This loss calculates the binary cross-entropy between the
predicted EOS probabilities at all time steps and the cor-
responding ground truth. Furthermore, to enhance perfor-
mance, we incorporate a cardinality L1 penalty (losscard),
which constrains the length of the predicted ingredients to
be close to the ground truth ingredients. We empirically find
that integrating the losscard leads to better performance.
loss = α1× lossingr+α2× losseos+α3× losscard (3)

where, α1=100 , α2=1 , and α3=1 are the hyper-parameters.

Cooking Instructions:
- Preheat oven to 350 degrees Fahrenheit.
- Spray pan with non tick cooking spray.
- Heat milk, water and butter to boiling.

---

T5 (base)

Title:
Crunchy Onion

Potato
<sep>

Ingredients:
milk, butter,

onion, ..., potato

Ingredients with Quantity:
3/4 cup milk, 4 tbsp butter,

2 onions, ..., 3 potatoes
<sep>

Figure 3. Generating cooking instructions for a title and a set of
ingredients. (ingredients with quantity is present only during the
fine-tuning of T5)

3.3. Cooking Instruction Generation

Considering the remarkable accomplishments of LMs in
natural language applications like text generation and ques-
tion answering [6], we pose cooking instruction generation
as a language modeling task. Large LMs such as GPT [5],
LLaMa [47], and Alpaca [38] are pre-trained with billions
of tokens with multiple training objectives, which makes
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them capable of understanding language in context. Re-
fining the LMs for downstream tasks has demonstrated re-
markable outcomes in various NLP assessments. While we
expect that large LMs would be capable of generating cook-
ing instructions after fine-tuning, they require prohibitive
computational resources given their large number of param-
eters. Given the available resources and our research ob-
jective, we adopt popular encoder-decoder model, T5 [37],
for generating cooking instructions. We conduct all experi-
ments using base T5 model with 220M parameters. During
finetuning, we pass title and ingredients of the recipe as a
formatted string (see Figure 3), inspired by prior work [61].

The T5 is finetuned on three inputs: title, ingredients,
and ingredients with quantity to incorporate maximum in-
formation from the dataset. However, we do not have in-
gredients with quantity at inference time; hence we can
pass only the title and ingredients. Moreover, excluding the
quantity information from our model ensures a fair com-
parison with previous approaches and investigates whether
our model’s advantage stems from a well-structured archi-
tecture rather than relying solely on the augmentation of ad-
ditional knowledge. By removing the influence of quantity
information during inference, we aim to highlight the inher-
ent capabilities of T5 and its ability to generate high-quality
cooking instructions.

4. Experiment Setup
4.1. Dataset

Recipe1M is a large-scale dataset of over one million
cooking recipes [26]. The dataset contains rich food-related
information, including recipe titles, ingredients, cooking
instructions, and nutritional information. The dataset it-
self is not provided publicly, instead, the authors provide
a list of image URLs that can be scraped from the Web.
While scraping this data, we encountered instances where
we could not download images due to an expired URL or
a corrupt image. Additionally, some of the recipes in the
dataset did not have any accompanying images. Therefore,
we only utilized recipes with at least one corresponding im-
age available to us. Following the dataset filtering process,
we obtained a training set comprising 259,932 samples, a
development set containing 55,773 samples, and a test set
consisting of 56,029 samples adequate for recipe analysis.

4.2. Baselines

Ingredient Extraction: We present a comparative analysis
of FIRE’s ingredient extractor against two retrieval-based
techniques: RI2L and RI2LR [42]. RI2L learns joint em-
beddings between images and ingredient lists and uses them
to retrieve the most relevant recipe within the embedding
space. RI2LR expands upon this approach by incorporat-
ing the joint embedding between recipe title, instructions,

ingredients, and the corresponding food image to further
enhance retrieval. We also compare our approach to two
state-of-the-art generative models, namely FFTD and In-
verseCooking [41]. FFTD models the joint distribution of
the ingredients set by utilizing the target distribution and
greedily sampling from a cumulative distribution of sorted
output probabilities until the sum of probabilities of se-
lected elements exceeds a specified threshold. InverseC-
ooking is an attention-based model that takes embeddings
from ResNet50 as input and uses a transformer decoder ar-
chitecture for ingredient generation.
Cooking Instruction Generation: As baselines, we uti-
lize both InverseCooking [41] and Chef Transformer [29].
We specifically select these two baselines as their code
was publicly available, and they work on recipe generation
rather than retrieval from a database. InverseCooking is an
end-to-end recipe generation model that takes food images
as input and extracts ingredients, which along with image
embeddings, are used to generate the title and the cook-
ing instructions. Like our method, InverseCooking is also
trained on Recipe1M. Chef Transformer is trained on the
RecipeNLG [3] dataset and exclusively relies on ingredient
inputs rather than food images for cooking instructions gen-
eration. Therefore, in the case of the Chef Transformer, we
use ground truth ingredients for testing.

4.3. Evaluation Metrics

We evaluate FIRE on end-to-end cooking instruction
generation and through ablation study on ingredient ex-
traction. For end-to-end recipe generation, we em-
ploy document-level evaluation metrics: SacreBLEU and
RougeL to assess the quality of our model’s output. Since
the output of ingredient extraction models is a set, we
evaluate their performance using F1-score/Dice score, and
Jaccard/IoU similarity index, computed for accumulated
counts of true positives, false negatives, and false positives
over the entire dataset.

5. Results & Analysis
5.1. End-to-End Recipe Generation

The results in Table 1 show that FIRE exhibits superior
performance compared to the two SotA baselines, InverseC-
ooking and Chef Transformer. These results demonstrate
our proposed pipeline’s ability to generate precise and co-
herent recipes, corroborating the effectiveness of FIRE and
emphasizing the value of language generation models for
high-quality recipe generation. These results also support
our expectation that the FIRE method can generalize well
without ingredient quantity information given at inference
time, even when they were present during training. Mean-
while, we observe that training with extra information re-
sults in fewer hallucinations, especially regarding ingredi-
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Table 1. Recipe generation comparison on the test dataset. We
report mean with one standard deviation of 10 experiments. Bold
represents the best model. (+) represents the model tested on the
ground truth title and ingredients to generate the recipe

SacreBLEU ROUGE L

Chef Transformer [29] 4.61 ± 0.32 17.54 ± 0.19
InverseCooking [41] 5.48 ± 0.21 19.47 ± 0.15
FIRE (without losscard) 5.91 ± 0.17 20.87 ± 0.13
FIRE (ResNet50) 5.87 ± 0.10 20.49 ± 0.08
FIRE 6.02 ± 0.15 21.29 ± 0.10
FIRE+ 7.29 ± 0.11 25.17 ± 0.07

ents quantity (e.g., 2 tablespoons of salt) and cooking time
(e.g., heat for 10-12 minutes).

FIRE with automatically extracted title and ingredients
achieved a relative improvement over InverseCooking of
6% and 8% on SacreBLEU and RougeL scores, respec-
tively. Notably, InverseCooking incorporates both image
embeddings and automatically extracted ingredients dur-
ing the cooking instruction generation phase. Meanwhile,
FIRE’s instruction generation language model relies on the
recipe title and ingredients only, which provide FIRE with
informative signals to generate comprehensive recipes.

As Chef Transformer does not support image input, it
uses ground-truth ingredients for cooking instruction gen-
eration. In comparison, FIRE faces realistic challenges due
to noisy ingredient extraction. Yet, FIRE easily outper-
forms Chef Transformer, and the gap increases further when
FIRE is also provided with a ground-truth title and ingredi-
ent set. The low performance of Chef Transformer on this
task can be attributed to its architecture and its reliance on
just ingredients without any title information. As a set of in-
gredients can correspond to multiple recipes, the title may
be crucial for disambiguation and coherence. For example,
both Stir-fried Ginger Chicken and Garlic Ginger Chicken
Soup share the same set of ingredients (chicken, garlic, soy
sauce, and ginger). Despite this commonality, this same set
of ingredients leads to two entirely different recipes.

5.2. Ablation Study

Ingredient Extraction The results on the ingredient ex-
traction task are shown in Table 2. The retrieval-based ap-
proaches (RI2L and RI2LR) yield poor results. This can be
expected, given their reliance on the presence of an exact
matching recipe in the static dataset and their dependence
on the dataset size and diversity. The models FFTD, In-
verseCooking, and FIRE, which employ conditional gen-
eration, exhibit relatively higher performance in capturing
ingredient information from food images. Moreover, out
of these three models, FIRE achieves the highest IoU and
F1 scores among all of the models, surpassing the second-
ranked InverseCooking model with a relative margin of
1.5% in terms of IoU and 1.4% in terms of F1 score. We
attribute this improvement to FIRE’s superior feature ex-

Table 2. Evaluation results on ingredient extraction using set met-
rics (IoU and F1). Bold represents the best model.

Model IoU F1

RI2L [42] 18.92 31.83
RI2LR [42] 19.85 33.13
FFTD [41] 29.82 45.94
InverseCooking [41] 32.11 48.61
FIRE 32.59 49.27

Table 3. Impact of SotA feature
extractors on ingredient extrac-
tion. All models are trained and
tested on 10% dataset.

Model IoU F1

ResNet18 25.88 39.31
ResNet50 26.94 40.51
ResNet101 26.37 40.12
InceptionV3 25.31 38.92
ViT 27.69 42.73

Table 4. Comparison between
zero-shot (ZS) and fine-tuned
(FT) versions of BLIP and
T5.

Model ZS FT

BLIP 17.89 37.72
T5 2.47 6.02

traction capability that uses ViT rather than ResNet50.
Image Feature Extraction To understand the observed in-
gredient extraction gap between FIRE and InverseCooking,
we compare the impact of image feature extractors on in-
gredient extraction. We ablate our feature extractor (ViT)
with state-of-the-art CNN models: ResNet18, ResNet50,
ResNet101, and InceptionV3. Table 3 reveals that ViT out-
performs the other feature extractors, demonstrating its su-
perior ability to capture and represent food image features
relevant to ingredient extraction. Furthermore, to assess
the feature extractor’s influence on the end-to-end FIRE
pipeline, we substituted ViT with ResNet50. This change
resulted in a performance decrease, as indicated in Table 1.
This finding emphasizes the efficacy of leveraging the state-
of-the-art feature extractor ViT for improved results in our
food computing system.
Zero-shot vs Fine-tuned We compare the performance of
zero-shot BLIP and T5 model against our fine-tuned model.
The outcomes are detailed in Table 4. To assess the results
for title generation by BLIP, we use a string similarity ap-
proach based on the longest common subsequence (LCS), as
achieving an exact match is infrequent due to the vast array
of recipe variations. For example, if the actual title is ‘black
bean and rice salad’ and BLIP predicts ‘black bean and
rice,’ then a conventional accuracy metric would yield zero,
whereas the LCS score would be 0.76. For T5, we utilize
the SacreBLEU metric. The results demonstrates that SotA
BLIP and T5 models necessitate task-specific fine-tuning.
Cardinality Loss Complementing losseos with losscard
improves the model’s ability to extract the correct ingre-
dients from food images. In contrast, using only binary
cross-entropy does not consider dependencies among ele-
ments in the set. We trained FIRE’s ingredient extraction
model without cardinality loss (losscard) to check the im-
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Title: Tomato and onion sandwich

Ingredients: onion, pepper, tomato, 
salt, oil, bread, clove

Cooking Instructions:
- Heat the oil in a large skillet over 
  medium heat.
- Add the onion and garlic and cook, 
  stirring occasionally, until the onion is 
  translucent, about 5 minutes.
- Add the tomatoes and cook, stirring 
  occasionally, until the tomatoes have 
  softened, about 10 minutes.
- Season with salt and pepper.
- Spread the tomato mixture on one 
   side of each slice of bread.
- Top with the remaining slice of bread.

Figure 4. Recipe prediction by FIRE for Pav Bhaji image.

pact of adding this loss in model. Without cardinality loss,
we believe the model struggles in realizing correct number
of ingredients, which leads to divergence from the ground
truth, thus lowering performance as shown in Table 1.

5.3. Error Analysis

In order to gain further insight into the performance of
our recipe generation method, we inspected its performance
on individual images. As shown in Figure 3, FIRE is often
able to generate a correct recipe for dishes similar to those
present in the Recipe1M dataset. Meanwhile, we also study
its ability to provide a recipe for Pav bhaji, a popular Indian
dish that is not present in the Recipe1M dataset. FIRE gen-
erates a recipe for ‘tomato and onion sandwich’ as shown
in Figure 4. As expected, the generated recipe is unrelated
to the intended dish. Other state-of-the-art models are also
not able to predict the correct recipe. We acknowledge the
need for improvement in our model to better generalize to
novel recipes. Meanwhile, we highlight the importance of
developing better evaluation metrics. Conventional evalua-
tion metrics such as SacreBLEU and ROUGE, failed to cap-
ture the accuracy of the generated recipes and detect certain
text hallucinations. Given the significant impact of even a
single mistake on the final outcome of a dish, it is crucial
to develop a robust metric that can reliably ensure the com-
pletion of the desired cooking task beyond text similarity.
For additional examples of both successful and unsuccess-
ful cases, please refer to the Appendix.

6. FIRE Applications
While FIRE achieves state-of-the-art performance on

the ambitious task of generating recipes from images,
we go a step further and investigate its integration into
larger pipelines for food computing applications. Namely,
considering the promise of few-shot prompting of large
language models, we describe how FIRE and large LMs
can be integrated to support recipe customization and
recipe-to-machine-code generation. For both applications,
we provide a potential pipeline with an illustrated recipe

and we conduct a pilot study to investigate its potential.

(1) Recipe Customization
Recipe customization is crucial due to the connection be-
tween food, customs, and individual preferences. Addi-
tionally, it becomes essential when addressing allergies or
dietary restrictions. Surprisingly, despite the evident de-
mand, existing literature lacks dedicated efforts in the do-
main of recipe customization. We are inspired by the Com-
puter Cooking Contest (CCC) [32], an annual event show-
casing computational systems that generate novel and cre-
ative recipes, enabling participants to employ AI and com-
putational creativity in exploring innovative food combina-
tions and techniques. However, we cannot use CCC directly
because judges perform its evaluation manually. Our work
aims to bridge the research gap by enabling personalized
recipe customization, considering individual taste profiles
and dietary restrictions. To guide future research in this
area, we showcase the ability of FIRE to support a recipe
customization approach that focuses on a wide range of top-
ics (e.g. ingredient replacement, taste adjustment, calories
adjustment, cooking time adaptation) to test few-shot per-
formance thoroughly. As shown in the purple part of Figure
5, we perform ingredient removal to trim the potatoes from
the recipe. Two sentences related to potatoes are deleted in
the modified version, and one sentence is modified to ensure
consistency. Specifically, we perform ingredient addition to
replace ‘cheese’ with ‘cheddar cheese’ and recognize that it
should be added before baking, resulting in the modified
sentence ‘Sprinkle half each of cheddar cheese and onions.’
We manually design four demonstrations to hint GPT-3 to
solve the customization requirements.
Analysis To assess the effectiveness of recipe customiza-
tion, we conducted a human evaluation with seven experts
involving 10 recipes and their customizations. Evaluators
rated four attributes: efficacy, coherence, soundness, and
proportions and measurements, on a 0 to 4 scale (0: strongly
disagree, 1: disagree, 2: neutral, 3: agree, 4: strongly
agree). Table 1 (Appendix) shows the average experimental
results. On average, each attribute has a high result (3.5 to
3.76) with high Fleiss [10] kappa inter-annotator agreement
(0.78 to 0.92). The results indicate the promise of integrat-
ing our method with few-shot LM prompting. Albeit pro-
vided with a limited number of demonstrations, the model
can handle complex examples like Can you make the food
with fewer calories? and replace milk with almond milk. We
refer the reader to the Appendix for further details about the
design, the data, and the results of the pilot experiment.

(2) Generating Machine Code for Image-based Recipes
Converting recipes to machine code enables automation,
scalability, and integration with various systems, reducing
manual intervention, resulting in savings in labor costs and
reducing human errors while preparing the food. To fa-
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def main():
#instruction
#Preheat oven to 350 degrees Fahrenheit.
#Spray pan with non stick cooking spray.
                                   ......
def Preheat_oven_to_350_degrees_Fahrenheit( ):
    h1 = Preheat(tool=oven, temp=350 degrees F)
def Spray_pan_with_non_stick_cooking_spray( ):
    h2 = Spray(pan, how=non_stick_cooking_spray)
                                   ......

  ([], Preheat, h1)
  ([pan], Spray, h2)
  ([milk, water, butter], Heat, h3)
  ([potato,h3], Stir, h4)
  ([h4], Cool, h5)
  ([corn, h5], Sitr, h6)
  ([h6], Place, h7)
  ([cheese, onions, h7], Sprinkle, h8)
  ([potato, h8], Add, h9)
  ([cheese, onions, h9], Sprinkle, h10)
  ([h1, h10], Bake, h11)
  ([h11], Serve, Out)

Preheat
Spraypan

milk

water

butter

potato

corn

cheese

onions

Heat

Stir

Cool

Place

Sprinkle

Sprinkle

Add

Stir

Bake Serve

- Preheat oven to 350 degrees Fahrenheit.
- Spray pan with non stick cooking spray.
- Heat milk, water and butter to boiling.
- Stir in contents for a while.
- Let stand one minute. Stir in corn.
- Spoon half the potato mixture in pan.
- Sprinkle half each of cheedar cheese and onions.
- Top with remaining potatoes.
- Sprinkle with remaining cheese and onions.
- Bake 10 to 15 minutes until cheese is melted. Enjoy !

LLM

- Preheat oven to 350 degrees Fahrenheit.
- Spray pan with non stick cooking spray.
- Heat milk, water and butter to boiling.
- Stir in contents of both pouches of potatoes.
- Let stand one minute. Stir in corn.
- Spoon half the potato mixture in pan.
- Sprinkle half each of cheese and onions.
- Top with remaining potatoes.
- Sprinkle with remaining cheese and onions.
- Bake 10 to 15 minutes until cheese is melted. Enjoy !Customization prompt: 

I don't like potatoes, can you remove that?
Also I only have cheedar cheese.

Customized Recipe

FIRE

Recipe Code Recipe Prompting

Symbolic Triple Refinement
Graph Visualization

Recipe to Code Generation

Recipe Customization LLM

Figure 5. Applications of FIRE: Recipe Customization and Recipe to Code Generation.

cilitate this task, we combine FIRE’s recipe generation
strength with the ability of large LMs to manipulate code-
style prompts for structural tasks [25]. We show an example
approach for generating Python-style code representations
of recipes generated by FIRE, by prompting GPT-3 (orange
part in Figure 5). This envisioned approach has two phases:
code recipe prompting and symbolic triple refinement.
Code Recipe Prompting We convert the output of FIRE
into a Python-style prompt and leverage GPT-3 to gener-
ate code representations as shown in Figure 5. Further, we
refine these representations into symbolic triple representa-
tions within a predefined space. For all input recipes r ∈ R,
we constructed corresponding Python-style prompting rp

and code representation c. For any new recipes r′, the input
to the prompting pipeline was rp1 ⊕ c1⊕ · · · ⊕ rpk ⊕ ck ⊕ r′,
where k = 4 was the number of demonstrations and the
output code representation c′ is completion result of GPT-3.
Symbolic Triple Refinement For further use in industrial
applications, we refine code generation into symbolic triples
(i, r, o), where i and o represent the input list and output of
operations, and r represented the cooking instruction and
parameter details. This allows for a more structured and
standardized representation of the generated code, facilitat-
ing easier integration with various applications.
Analysis We conduct a similar human evaluation process
focusing on how well ingredients, cooking instructions, and
their descriptions are translated to code format on a scale of
0 (extremely poor) to 5 (excellent). Each property is rated
on average between 4.27 and 4.47, with an inter-annotator
agreement between 0.75 and 0.83. Despite the promising
experiment results, few-shot prompting can produce hal-
lucinations when tracking ingredients, especially in long
contexts or when similar cooking tools are involved (e.g.,
saucepan, frying pan), which can be further explored by fu-
ture work. We refer the reader to the Appendix for details
about the design, the data, and the results of the pilot study.

7. Conclusion & Future Work
This paper introduced FIRE, a methodology tailored for

food computing, focusing on generating food title, extract-
ing ingredients, and generating cooking instructions solely
from image inputs. We leveraged recent advancements in
CV and language modeling to achieve superior performance
against strong baselines. Furthermore, we demonstrated
practical applications of FIRE for recipe customization and
recipe-to-code generation, showcasing adaptability and au-
tomation potential of our approach. Experimental results
validated the efficacy of FIRE, highlighting its promising
prospects for future advancements and wide-ranging adop-
tion in food computing. Inspired by our experiments, we list
three challenges that should be addressed in future research:

1. A major limitation of both the proposed work and
existing approaches lies in the absence of a reliable
grounding mechanism [16] to ascertain the correctness
of generated recipes. Conventional metrics are insuffi-
cient to capture this challenge. We propose to address
this limitation by developing a metric that effectively
captures the coherence and plausibility of generated
recipes, providing a more comprehensive evaluation
framework for recipe generation systems.

2. The diversity and availability of recipes are heav-
ily dependent on the locations, climates, and reli-
gions [30, 44, 62], which prevent users from preparing
food based on predefined recipes. One solution can be
the injection of knowledge graphs [12, 43], which re-
flect the connection between the ingredients based on
symbolic relations and contextual factors, thus inform-
ing the models about alternative ingredients.

3. Hallucination remains a critical challenge in recipe
generation by natural language and vision models. We
will investigate the possibility of incorporating meth-
ods for state tracking of participants [14,24] to enhance
the production of reasonable and accurate results.
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