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Abstract

Cable tendency is the potential shape or characteristic
that a cable may possess while being manipulated, of which
some are considered erroneous and should be identified as
a part of anomaly detection during an automatic manipu-
lation. This research explores the ability of deep-learning
models in learning the cable tendencies that, contrary to
typical classification tasks of multi-object scenarios, is to
differentiate the multiple states displayable by the same ob-
ject – in this case, cables. By training multiple models with
different combinations of self-collected real-world data and
self-generated simulation data, a comparative study is car-
ried out to compare the performance of each approach. In
conclusion, the effectiveness of detecting three abnormal
states and shapes of cables, and using simulation data is
certificated in experiments.

1. Introduction

The development of robotic automation and its inte-
gration with conventional manufacturing have become un-
precedentedly prevalent in many industries today. One com-
mon application is to utilize computer vision for inspection
and detection, working in conjunction with robotic mecha-
nisms to achieve an automated manufacturing line. For ex-
ample, Khan et al. [10] explored a vision-guided inspection
system for manufacturing parts, and Gregorio et al. [5] inte-
grated a vision system into their wire-insertion manipulator.
These works demonstrated the increasing reach of robot vi-
sion in manufacturing automation. In general, these vision
systems utilize object recognition technology to learn rele-
vant information necessary for the detection of their target
objects.

Most robot vision systems focus on classifying differ-
ent objects, from objects with distinct differences e.g., cars
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against pedestrians, to objects with semantic connotations,
e.g., “tiles in a bathroom” which is more context-rich [12].
Such recognition and classification tasks are already widely
seen in many applications today. However, not all scenar-
ios benefit from this class diversity nor the ability to distin-
guish objects with significant differences. Instead, one may
wish to distinguish a set of apparently identical object that
possesses subtle differences in characteristics. An existing
example is perhaps models that are capable of understand-
ing car types, such as a truck, bus, or sedan [23]. While
these classes can be broadly classified as “cars” or “auto-
mobiles”, further training and appropriately diversified data
have shown the ability of deep-learning models to extract
minute features between them.

In this research, the specific scenario that fits the above
description of context understanding is situated within a ca-
ble assembly production line. Typically, a human operator
is required to install cables onto an assembly board while
ensuring each cable is correctly routed as per design re-
quirements. If this process is to be automated, an anomaly
detection system capable of detecting faulty cable installa-
tion is first and foremost required to allow for subsequent
rectifications. Such faults should be learned by having a
model become tendency-aware and therefore capable of dis-
tinguishing potential anomalies.

A major challenge is the lack of such a dataset where ten-
dencies are emphasized instead of object diversity. While
datasets could be collected through manual recreation of
target objects in the real world, it can be time-consuming.
Recently, with advancements in the technology sector such
as graphical computing unit (GPU) and simulation soft-
ware, a common approach to the lack of data is to con-
struct a simulation environment where data can be gener-
ated synthetically [17] [8]. Once constructed, the anno-
tation is produced automatically at runtime, meaning the
ground truth labeling work is handled instantly while be-
ing accurate down to the pixel-perfect level. The simulation
can also be easily scaled up or run in parallel with multi-
ple computers to generate a large quantity of data quickly,
which is considered much more time efficient. Much suc-
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cess has been observed in the field of self-driving cars [1],
such as the CARLA simulator [6] and the NVIDIA DRIVE
Sim by Omniverse [18]. These platforms provide an effec-
tive source of simulation data for deep-learning models to
learn traffic-related information. Thus, given that the simu-
lation data has drastically improved the recognition perfor-
mance for self-driving cars, a similar effect can be antici-
pated when applied to cable tendency. Caveats exist, how-
ever, due to the domain difference between simulation and
the real world, a ‘reality gap’ [4] exists that may hinder the
learning ability of deep-learning models. This will be in-
vestigated and discussed throughout the paper.

Therefore, this paper aims to explore if deep-learning
models can become tendency-aware through learning the
subtle characteristic differences between numerous states
and shapes of cables, assisted by simulated data. We collect
real-world and synthetic RGB data of cables, where each
image portrays normal and abnormal cases. The real-world
data were collected by physically laying out cables onto an
assembly board, whereas the simulation data were gener-
ated using the Blender 3D software [3]. In an effort to ad-
dress the reality gap, we also applied domain randomization
techniques. Through experimenting with different combi-
nations of real and simulation data, multiple models were
trained. The results show the inclusion of simulation data
is capable of introducing slight improvements over models
trained solely with real-world data, improving from a mean
Intersection-over-Union (mIoU) of 75.54% up to 78.63%
(trained with UPerNet [27] using Swin Transformer Base
backbone [14]), and that by increasing simulation data pro-
portion can improve a mixed-data model up to a point. A
comparative analysis is carried out and the details are ob-
served in this paper, laying a foundation for a generalizable
approach to sim-to-real learning of object tendency that can
be applied to robotic automation.

2. Related Work
In terms of cable detection, prior work has shown that

through appropriate techniques, the detectors are able to re-
alize the positions of thin and difficult-to-see cables [15,29].
Although the work by Li [13] and Pan et al. [19] achieved
a promising 50.79% mean precision and 91.14% precision
rate respectively, these systems do not differentiate cable
characteristics nor define any fault. In the scope of this
work, our models are to detect faulty cables instead of sim-
ply looking for the cable objects. A cable fault may be con-
sidered when it exhibits an overly loose, overly tensioned,
or any other pre-defined erroneous shape, that appears to
lie away from the main cable bundle due to its askew na-
ture. Having to learn such information brings scene un-
derstanding into the equation. The semantic scene under-
standing, in contrast to object recognition, analyzes objects
in context including their layout, spatial, function, and se-

mantic relationship between all objects involved [7]. Stud-
ies have shown scene understanding to be achievable in nu-
merous semantic segmentation tasks, a famous example is
the brain tumor detector proposed by Ranjbarzadeh et al.
[21] using Cascade Convolutional Neural Network. Their
method is capable of distinguishing tumor cells from a se-
ries of MRI scans, despite the similarities in the majority
of images. An improved version of the tumor detector pro-
posed by Hatamizadeh et al. [9] further utilizes Swin Trans-
former which has shown competitive results in the BraTS
2021 challenge as one of the top performers. The Swin
Transformer, published by the Microsoft team [14], intro-
duces the novel Shifted Window (abbreviated as Swin) ap-
proach which has shown strong performance on COCO ob-
ject detection and ADE20K semantic segmentation tasks.
Due to the promising results, there has been an increasing
presence of Swin Transformers in the field of segmentation
tasks [16].

On the other hand, dataset availability remains an equally
important element in any deep-learning task. Most ex-
isting open-source datasets place heavier emphasis on ob-
ject diversity and not tendencies, therefore a new dataset is
needed. While the real-world collection of data can be done
through manual recreation, the process and subsequent la-
beling can take up a significant amount of time. For this,
a common solution is to generate synthetic data. The idea
of utilizing synthetic data often stems from the lack of ex-
isting data, as well as the simulation tool’s ability to au-
tomatically generate annotations during the rendering pro-
cess. Many studies have explored the usefulness of employ-
ing simulation data in deep-learning [17] [8], with most en-
dorsing its ability to 1) cheaply produce a large quantity of
data once the simulation environment is constructed, 2) au-
tomatically create pixel-level accurate labels, and 3) can be
easily modified to better fit training requirements. However,
caveats exist that the sole use of synthetic data introduces
an adaptation gap between simulation and the real world –
often referred to as the “reality gap” [24] [4]. With cer-
tain techniques such as improving photorealism, applying
domain adaptation, or domain randomization, one may fur-
ther improve the usability of generated synthetic data and
help bridge said gap.

3. Materials & Methods
For this research, we begin by collecting a dataset of

RGB cable images. Not only is this particular object class
uncommon in off-the-shelf or open-source datasets, but the
cable data should also be contextually and semantically
meaningful where its tendencies are specifically labeled to
show distinguishable features. These data could be gathered
through capturing images of physically constructed scenes
(hereinafter referred to as ‘real data’) or through the ren-
dering of digitally generated scenes with a 3D simulation
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software (hereinafter referred to as ‘simulation data’).
Once the data are prepared, we set up four major models

where each model is to be trained with a different combina-
tion of real and simulation data, allowing for a comparative
study to be carried out. These include a real-only model
(Model 1), a sim-only model (Model 2), a transfer-learning
model (Model 3), and a mixed model (Model 4). For all
models, Swin Transformer [14] is chosen and employed for
training. While Swin Transformer provided backbones of
several sizes [16] – Swin-Tiny, Swin-Small, Swin-Base, and
Swin-Large – this paper explores Swin-Tiny and Swin-Base
only. Each model is then tested against different sizes of
simulation data and their results are compared and analyzed.

3.1. Cable Dataset

To produce a meaningful cable dataset, the images must
portray tendencies of interest. Certain normal and abnor-
mal cases were defined prior to the construction of cable
layout scenes, and are used as the classes for detection. The
classes, three error cases of which are shown in Fig. 1, are
defined as follows:

• Normal: A bundle of cable consisting of five or more
cables. This bundle follows a certain layout or route,
which can be different for each scene construction.

• Tensioned: A cable that runs a shortcut at the inner-
side of the normal cable bundle.

• Loose: A cable that protrudes unnecessarily at the
outer-side of the normal cable bundle.

• Twisted: Two or more cables that are intertwined and
twisted, showing periodically alternating colors.

Two types of data were produced, and are described be-
low in detail:

3.1.1 Real Data

The real data are collected through physical reconstruction
of the cable assembly scene. Using a decommissioned as-
sembly board, cables are routed onto supporting compo-
nents. Each scene contains at least one normal cable bundle
and one erroneous cable that are laid according to the lay-
out. The Torobo Eye SL40 camera by Tokyo Robotics Inc.
is used to collect real data, as it provides highly accurate
RGB, depth, and 3D point cloud information. An example
of this camera can be seen in Fig. 2 (a). In the scope of this
research, only the RGB information is used, and other data
is saved for potential future work.

Two capturing methods were used in the collection of
real data – mounted and unmounted. For the mounted ap-
proach, the camera is mounted onto a self-made aluminum
frame as shown in Fig. 2 (b). The mount was adjusted
to 50cm and 60cm from the ground. These distances were

In Fig. 1, Fig. 2, Fig. 3, Fig. 4, and Fig. 6, part of the images, except
cables, may appear blurred due to confidentiality.

(a) (b)

(c)

Figure 1. Examples of all three error cases. Each case contains
a normal cable bundle as shown in red, whereas error cases are
in non-red colors. Subfigure (a) shows the tensioned case, (b) =
loose, and (c) = twisted.

(a) (b)

Figure 2. (a) shows the employed SL40 camera, and (b) illustrates
the scene setup used to collect real data.

chosen as the resultant images portray sufficient informa-
tion about the scene, without experiencing any loss in image
quality. The supporting components suspend the cables at
around 3cm from the ground, meaning the cables were pho-
tographed at 47cm and 57cm away from the camera. Since
the mount is attached to the railings of the aluminum frame,
the mounted approach only allows a 90° angle during cap-
ture. For each distance, 10 images were collected. A series
of fixed, patterned, and traceable real-world cable imagery
data was created using these settings.

On the contrary, the unmounted approach intends to in-
troduce diversity and randomness into the dataset. The cam-
era was carried by a person and elevated at a similar distance
above the ground at about 50 ∼ 60cm and tilted at 30° ∼

60° angle. Since the camera was no longer restrained, the
photographer circled the scene and captured 32 images per
error case at varying distances and angles, totaling the real
dataset to 156 real images. Image ground truths were then
manually labeled using an annotation tool, LabelMe [26].
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Figure 3. A rendered example of simulation data.

3.1.2 Simulation Data

The 3D environment was constructed in Blender 3D [3], an
open-source software that handles the majority of compu-
tation involving manipulation, randomization, and render-
ing of the obtained simulation data. To create cables, the
modified version of a community-made package – Cablera-
tor [11] – was employed to simplify the cable creation pro-
cess. An example of the simulated environment can be seen
in Fig. 3.

The environment is built by defining pre-determined lo-
cations where scene components can spawn such as cable
connectors and other static objects e.g., assembly board,
layout visuals, and cable supporting components. A script
is then used to handle all subsequent automation, which
spawns several cables between random pairs of connectors.
Upon execution of the script, the desired error type is to be
passed in as a parameter, which limits the program to only
spawn the given type of error. Of all the cables that spawn,
each will have a chance of being either normal or the desired
error type. The script is written in a way that guarantees at
least one error and one normal cable to co-exist within a
scene. Once the cables are in place, a physics simulation is
processed to allow cables to free fall according to simula-
tion gravity. This step is necessary as each error class be-
haves differently to physics simulation, and it ought to em-
phasize the characteristics of each class. Finally, the script
proceeds to render three images each from a left-, centered-,
or right-angled view. The annotation (ground truth) is au-
tomatically generated using Blender’s compositing feature
which, by assigning each object a ‘pass index’ according to
its class and then converting the render to gray-scale, pro-
duces pixel-perfect annotation nearly instantly.

As mentioned in Section 2, in an effort to reduce the re-
ality gap when crossing the real-world and simulation do-
main, certain aspects of the simulation were set to be ran-
dom to achieve a level of domain randomization. To elabo-
rate, Cable count (number of cables within a cable bundle),
Cable material (color and texture), Cable attributes (tension,
length, physics intensity etc.), Light source, and Camera an-
gle were set to be random.

(a) (b)

(c)

Figure 4. Examples of simulated error cable cases. Each case
contains a normal cable bundle as shown in red, whereas error
cases are in non-red colors. Subfigure (a) shows the tensioned
case, (b) = loose, and (c) = twisted.

Figure 5. The overview of trainable model types.

As a result, more than 33,000 simulation images were
generated, where Tensioned, Loose, and Twisted each make
up about 11,000 images. An example of simulation images
can be seen in Fig. 4.

3.2. Models for Classifying Cable Tendencies

As described at the beginning of this Section, four ma-
jor model types utilizing different combinations of real and
simulation data are to be trained. An overview of these
models can be seen in Fig. 5.

The detail of each model is described as follows:
1. Model 1 (real-only) – for the purpose of comprehen-

siveness, this model is intended as a control group,
which is trained solely using real data to seek the best
performance achievable across types of deep-learning
networks. Common segmentation networks and Swin-
Transformer were selected for the experiment. The
best-performing network will be used for subsequent
training in Model 2, 3, and 4.
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2. Model 2 (sim-only) – utilizes a varying number of
solely simulation data as training input, which is then
evaluated on real data.

3. Model 3 (transfer-learning) – extends on Model 2, but
further feeds the model with available real data at a
lower learning rate to accomplish a level of transfer
learning. More details are described in Section 4.1.

4. Model 4 (mixed) – takes both real and simulated data
as input from the beginning, but the process is repeated
multiple times with various real-to-sim data ratios.

Each model is first trained with the Swin-Tiny back-
bone to observe a general trend between different data in-
clusions. Then, another iteration of training with the Swin-
Base backbone is carried out for each model to affirm im-
provements. For evaluating the effect of different simula-
tion data amounts, the Swin-Base backbone is used. In
terms of complexity and model size, Swin-Tiny is about
0.25× of Swin-Base, whose trainable parameters are about
29 million and 88 million respectively.

4. Experiments
4.1. Training

For all models except Model 3, Swin Transformer hyper-
parameters were kept default according to the source repos-
itory [16], this means employing the Adam optimizer, a
learning rate of 6 × 10−5, a batch size of 2, and using a
fixed iteration of 160K for training. Upon training, image
augmentation was done where images were randomly filled,
scaled, rotated, sheared, and/or Gaussian blurred. The im-
ages are cropped to the size of 512 × 512 at random loca-
tions and will be randomly flipped. The learning rate will
be a polynomial decay during the training. As for Model 3,
due to its transfer-learning nature, a lower learning rate of
6× 10−6 is used instead.

4.2. Dataset

As mentioned before, real and simulation datasets have
been made. There are 156 images in the real dataset and
30k images in the simulation dataset. Different numbers
of images and different ratios of real and simulation data
have been used when training different models. For Model
1, a total of 111 real images are randomly selected as the
training set and 45 real images are selected as the valida-
tion and test sets. For Model 2, 30k simulation images were
used in training, where validation is 3,000 simulation im-
ages. The model is evaluated against real data with 45 real
images. For Model 3, in terms of dataset amount, a sim-
ilar approach to Model 1 is taken. For Model 4, a series
of numbers of simulation data has been chosen to mix with
all of the available 111 real images for training. The series
is set as 75 × 2n(n = 0, 1, 2, ..., 8), up to 19,200 images.
We begin with 75 simulation images as it is divisible by the

Table 1. An overview of used image amount per model.

Model Real Data Sim Data Test Data
Train Val Train Val S1 S2

Model 1 111 45 N/A N/A 45 45
Model 2 N/A N/A 30k 3k 45 45
Model 3 111 45 30k N/A 45 45
Model 4 111 45 75∼30k N/A 45 45

three error classes available in our dataset. Besides the se-
ries, another training using 30,000 simulation images is also
chosen as a point of interest. Model 4 again uses 45 real im-
ages as validation. Table 1 lists the number of images used
for each model.

To verify if these models can be used in different en-
vironments, in addition to the original scenario where the
training set is built, two different scenarios have also been
created. In scenario 1 (S1 in Table 1), a self-made assembly
board was employed. To exaggerate differences, scenario 1
adopted a yellow board instead of white, and utilized self-
made cable-supporting components. The layout was imi-
tated using black tapes, which appear texturally identical to
those wrapped around certain parts of cables. This decision
was to increase the difficulty and to introduce background
diversity. In scenario 2 (S2 in Table 1), a similar board to
that of the original was used. However, the background lay-
out is distinct from the original board, and the cables were
laid in a more crowded and complex nature.

5. Results

Model 1 is trained and evaluated against real data. As
mentioned earlier, several networks were tested for a com-
prehensive comparison. The results can be seen in Table
2, where Swin-Base + UPerNet achieved the highest per-
forming mIoU of 75.54% from the original test scene. The
Swin-Base + UPerNet combination is therefore used for the
training of Model 2, 3, and 4. The reason for its high per-
formance is likely contributed by the shifted window self-
attention technique employed in Swin Transformer. The
self-attention technique attempts to summarize input in-
formation globally to learn to focus on important regions
[25] [20]. Swin Transformer computes the self-attention lo-
cally through window partitioning while applying stitching
at necessary window segments to maintain cross-window
connections without much complexity overheads. Such a
technique is likely the reason for its higher performance as
opposed to other CNN networks.

A series of inference results of Model 1 can be seen in
row 3 of Fig. 6. The results show that Model 1 is capable of
distinguishing classes correctly to an extent, but misclassi-
fication of error cases and false-identification of normal ca-
bles occur quite frequently, especially in scenario 1 where
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Figure 6. The inference results of each model against each class.

Table 2. Comparison of segmentation networks.

Real-data-only comparison
Backbone Method mIoU (%)
VGG-16 U-Net [22] 34.72
VGG-16 PSPNet [28] 27.20
VGG-16 SegNet [2] 43.92
ResNet50 U-Net 58.16
ResNet50 PSPNet 29.45
ResNet50 SegNet 42.08
Swin-Tiny UPerNet [27] 73.62
Swin-Base UPerNet 75.54

the background layout possesses a similar appearance to
cables. Detailed class-wise IoUs can be seen in Table 3.
The table also shows that in different test scenes – scenario
1 and 2 – Model 1 experienced a drop in performance as
compared to the original test scene, where the twisted class
experienced the largest drop from 81.01% to 20.76% IoU.
While this is expected to a certain degree as these scenes
were specifically made with increased difficulty, an IoU dif-
ference of 60% indicates that the model struggled with gen-
eralizing the twisted cables.

Model 2, trained solely with simulation data, was eval-
uated against real data. Employing the Swin-Base back-
bone, Model 2 achieved 21.57% mIoU against the original

test scene, as shown in Table 3. Compared to Model 1’s
75.54% mIoU, this significant drop in performance was ex-
pected due to the reality gap between the simulation and the
real world which, despite efforts taken to mitigate the dif-
ferences, the cross-domain discrepancy remains a substan-
tial obstacle. Further evaluation against scenario 1 and 2,
Model 2 obtained 25.35% and 18.17% mIoU respectively.
Table 3 also details class-wise IoUs that, while every class
suffered a similarly low performance, the loose class was
observed as the most degraded with no correct identifica-
tion at 0% IoU. The inference results of Model 2 can be
seen in row 4 of Fig. 6. The results show that while most of
the normal cables can be identified, Model 2 lacks the abil-
ity to meaningfully distinguish error classes and is prone to
mis-classify background noises.

Model 3 achieved a mIoU of 76.67% when evaluated
against the original test scene. It is observed that Model
3 performs superiorly to Model 1, which is likely due to the
additional simulation information learned during the Model
2 phase, and having it rectified with real data allows it to
surpass Model 1 slightly. When evaluated against scenario
1 and 2, Model 3 achieved 56.88% and 58.94% mIoU re-
spectively. As shown in row 5 of Fig. 6, the model was
able to correctly classify more parts of the cables, but some
common errors remain noticeable to that of Model 1’s re-
sults. However, the false-identification of background lay-
outs in scenario 1 has significantly reduced, which helped
improve the general mIoU. The detailed class-wise IoU is

8435



Table 3. Performance evaluation results of Model 1 to 4 trained with Swin Transformer + UPerNet.

Model Backbone mIoU background normal loose tensioned twisted Test Scene Real Sim
Model 1 Swin-Base 75.54 99.51 84.93 47.73 64.54 81.01 original 111 N/A
Model 2 Swin-Base 21.57 85.56 17.22 0 2.91 2.15 original N/A 30k
Model 3 Swin-Base 76.67 99.51 85.13 56 65.49 77.25 original 111 30k
Model 4 Swin-Base 78.63 99.52 85.52 55.63 73.72 78.78 original 111 2.4k

Model 1 Swin-Base 53.42 96.96 47.58 46.55 55.82 20.18 scenario 1 111 N/A
Model 2 Swin-Base 25.35 90.43 21.47 0 11.42 3.41 scenario 1 N/A 30k
Model 3 Swin-Base 56.88 98.51 63.41 45.17 54.67 22.63 scenario 1 111 30k
Model 4 Swin-Base 59.43 98.67 66.12 54.33 58.21 19.84 scenario 1 111 300

Model 1 Swin-Base 59.74 99.25 85.5 45.95 47.26 20.76 scenario 2 111 N/A
Model 2 Swin-Base 18.17 71.59 15.22 0 3.37 0.67 scenario 2 N/A 30k
Model 3 Swin-Base 58.94 99.29 86.2 44.08 51 14.11 scenario 2 111 30k
Model 4 Swin-Base 62.62 99.25 85.71 51.62 49.32 27.19 scenario 2 111 300

Table 4. Expanded Model 4 utilizing partial data from scenario 1 and 2.

Backbone mIoU background normal loose tensioned twisted Test Scene Real Sim
Swin-Base 77.55 99.54 85.89 54.44 68.16 79.72 original 141 300
Swin-Base 74.05 99.50 83.87 63.87 75.52 50.48 scenario 1 141 300
Swin-Base 68.66 99.51 90.29 47.68 59.79 46.04 scenario 2 141 300

Figure 7. Performance trend of Model 4 compared against Model
1. The maximum of each series is labeled on the graph.

again shown in Table 3, which shows that Model 3 is also
unable to generalize the twisted class very well. Model
4 was trained with various real and simulation data pro-
portions and was tested against real data. With the Swin-
Base backbone, the optimal performance is found achieved
at 78.63% mIoU using 2,400 simulation images when eval-
uated on the original scene. When repeated for evaluation
against scenario 1 and scenario 2, the optimal results were
obtained by using 300 simulation images, at 59.43% and
62.62% mIoUs respectively.

Figure 7 shows the plotted mIoU results of Model 4 at
different simulation data inclusion. In this plot, solid lines

indicate the Model 4 mIoUs at different ratios. The dashed
lines of relevant colors indicate the mIoU of the real-only
model under the same scenario setting. These together show
the comparison between the real-only model and Model 4’s
fluctuation at different simulation data inclusion.

While the experiment mainly focused on employing the
Swin-Base backbone, a Swin-Tiny Model 4 was also trained
and illustrated in red in Fig. 7. The idea is to show that, as
demonstrated in Table 2, the superior performance of Swin-
Base over Swin-Tiny backbone is also maintained in Model
4. The inference example is shown in row 6 of Fig. 6.
The images show Model 4’s improved capability in identi-
fying cables and correctly classifying most classes. Simi-
larly, the class-wise IoU is detailed in Table 3. When eval-
uated against the original scene, most classes were able to
obtain above 70% IoU except for the loose class at only
55.63%. In cases of scenario 1 and 2, Model 4 experienced
performance degradation where the twisted class again sus-
tained the most noticeable reduction, in which the model
acquired 19.84% and 27.19% IoU respectively.

From the results, it appears that models using simula-
tion data as an additive input (e.g., Model 3 and 4) in-
troduced leveraging improvement over those trained solely
with one type of data (e.g., Model 1 and 2). It is observed
that the twisted class appears not well-generalized, which
resulted in a noticeable degradation in mIoU, especially in
non-original test scenes. To allow better generalizability, an
approach is to partition a small amount of scenario 1 and 2
images into the training set. An Expanded Model 4 was cre-
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ated where 5 images of each error class (loose, tensioned,
and twisted) of both scenario 1 and 2 were added into the
training pool, totaling to an additional 30 images. The simu-
lation image inclusion is maintained at 300 images as Model
4 with this amount produced the best result when evaluated
against scenario 1 and 2. The result of Expanded Model 4
can be seen in Table 4. The expanded version shows the
model mIoU significantly better maintained when tested on
scenario 1 and 2. The class-wise IoU also shows the twisted
class experiences a much less performance drop, situating at
about 50% for both non-original scenes.

6. Discussion
The primary goal of this research is to gain an under-

standing of what type or combinations of data can better
assist the learning of cable tendency. The task focuses not
on object diversity nor the ability to detect object presence
but instead aims to extract subtle characteristics between the
possible states of an apparently identical object – in this
case, cables. By constructing a new dataset that empha-
sizes these tendencies, we have observed that deep-learning
models are capable of learning such subtlety. The use of
simulation data was hypothesized as an additive factor that
should introduce improvement into deep-learning models.

We observed that using solely simulation data (Model 2),
the impact of the reality gap drastically reduces the perfor-
mance despite applying domain randomization. In an at-
tempt to amend this gap, Model 3 and 4 were trained to ob-
serve the differences. By feeding real data into the system
afterward, Model 3 showed its ability to rectify its sim-only
model effectively. The results of Model 4 showed that the
use of simulation images is capable of providing improve-
ments up to an extent. From Table 3, Model 4 appears to
arrive at a peak at 78% from 300 to 2,400 simulation im-
ages. Treating 300 as the beginning of this peaked learning,
as illustrated by Fig. 7, we observe the simulation data in-
clusion to be beneficial at about 1:3 real-to-sim data ratio
(111:300). Using more simulation data may slightly im-
prove the mIoU, but the improvement is limited and negli-
gible. Going beyond this ratio, the performance started to
drop as the model again gravitated toward the simulation
domain and fails to effectively extract useful information.
At this point of our experiment, we have demonstrated the
appropriate proportion of real and simulation data can in
fact positively affect cable tendency learning.

On the other hand, evaluations on non-ordinary test
scenes showed a rather impactful performance degradation.
Using Model 4 as the main comparator, the original, sce-
nario 1, and scenario 2 test scenes each obtained 78.63%,
59.43%, and 62.62% respectively. The class-wise IoUs sug-
gest some classes, such as the twisted class, were not well-
generalized and performed inferiorly on un-trained scenes.
An expanded Model 4 was therefore constructed and tested

which, by merely including 5 images of each class from the
new scenes, the model was able to significantly improve the
IoU of nearly all classes. Again using the twisted class as
an example, Table 4 shows that while the original Model
4 only obtained a class IoU of 19.84% and 27.19% in sce-
nario 1 and 2 respectively, the expanded Model 4 obtained
50.48% and 46.04% IoU respectively. The overall mIoU
performance of expanded Model 4 also greatly improved,
going from 59.43% → 74.05% mIoU in scenario 1 and
62.62% → 68.66% mIoU in scenario 2. It is therefore rec-
ommended that when testing on a new scenario, due to dif-
ferences in layouts and scene objects, a very small amount
of annotated data from this new scenario should be fed into
the model as a part of the training set to further broaden the
generalizability of the model.

7. Conclusion

This work aimed to explore the ability of deep-learning
models in understanding cable tendencies, and by employ-
ing what type and combination of data can best assist such
learning. Our work has shown the effectiveness of sim-
ulation data in assisting deep-learning models in becom-
ing tendency-aware. Using real-only data, Model 1 shows
promising capability in learning tendencies but remains im-
provable. Conversely, Model 2 using simulation-only data
has limited performance when evaluated against real data
due to the domain difference or ‘reality gap’. By practicing
transfer learning in Model 3, the model is capable of rec-
tifying its predecessor (Model 2) into one that understands
real data, obtaining a much-improved result from that of
Model 2. With Model 4, we demonstrated simulation data
effectively improves the performance at the appropriate ra-
tio (1:3) as shown in Fig. 7. Testing on new scenarios also
shows a drop in performance, but is rectifiable by introduc-
ing a very slight partition of their data into training. In terms
of simulation data, the success is attributed to the complete-
ness of the simulation environment design – by introducing
more randomness into the simulation environment, the gen-
erated output should have a further domain reach and may
help with bridging the reality gap. In conclusion, our exper-
iment suggests tendency learning is possible and it is recom-
mended to employ the mixed-data approach similar to that
of Model 4 as it can effectively realize tendency detection
without needing an overly large amount of simulation im-
ages. Model 4 also performed the most optimally compared
to others, despite the improvement is slight. In this work,
there are several extensions that we wish we had more time
to explore:

1. Implementing an alternative evaluation method utiliz-
ing weight function in additional to pixel-wise mIoU.

2. Expanding the dataset both in the real world and sim-
ulation environment.
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