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Abstract

The current golden standard of semi-supervised se-
mantic segmentation is to generate and exploit pseudo-
supervision on unlabeled images. This approach is however
susceptible to the quality of pseudo-supervision—training
often becomes unstable particularly at early stages and
biased to incorrect supervision. To address these issues,
we propose a new semi-supervised learning framework,
dubbed Guided Pseudo Supervision (GPS). GPS comprises
three networks, i.e., a teacher and two separate students.
The teacher is first trained with a small set of labeled data
and provides stable initial pseudo-supervision on the unla-
beled data to the students. The students interactively train
each other under the supervision of the teacher, and once
they are sufficiently trained, they offer feedback supervision
to the teacher so that the teacher improves in subsequent
iterations. This strategy enables more stable and faster
convergence than previous works, and consequently, GPS
achieved state-of-the-art performance on Pascal VOC 2012
and Cityscapes datasets in various experiment settings.

1. Introduction
Semantic segmentation [32, 33] aims to identify seman-

tically meaningful regions (e.g., objects) in a given image.
This is often done by performing pixel-wise classification,
where the objective is to determine to which class each
pixel belongs to over the entire image. Training such a
model requires a dataset of densely annotated images, as
precise pixel-wise supervisions over multiple objects (in-
cluding background) of each image are needed [1,4,9]. Ex-
haustive human labor is sacrificed to embed human percep-
tion of the objects into the annotation, and the problem be-
comes even worse when a large-scale dataset is curated to
train deep and complex models.

The issue of exhaustive labeling is well-addressed in
various label-efficient strategies for semantic segmenta-
tion, where the segmentation approaches use less expensive
annotations to learn class-specific patterns at each pixel.

While weakly supervised segmentation uses image-level or
coarsely annotated labels as a weak supervision to guide
segmentation [11, 28] and domain adaptation methods use
supervision from synthetic data [23, 39], semi-supervised
segmentation still uses pixel-wise labels on the real images
but only from a small fraction of the entire dataset. It uses
a small set of labeled images (i.e., expensive data) together
with a large set of unlabeled images (i.e., cheap data) to
train a segmentation model, such that the knowledge from
the labeled set are propagated to the unlabeled set to gener-
ate pseudo-labels and secure sufficient sample-size [22,26].

Recent studies on semi-supervised semantic segmenta-
tion heavily rely on perturbation-based (i.e., consistency
regularization) approaches [7, 17, 25, 43]. The cornerstone
of consistency regularization is the smoothness assump-
tion: the model predictions should be consistent even if
realistic perturbations are applied on data points [14, 43]
or network parameters [7, 17, 31]. To ensure the effect of
consistency regularization, existing schemes require much
more data than its given unlabeled images. Works done
in [2, 3, 7, 13, 17, 30] take out labels of labeled images to
extend the size of unlabeled dataset, and a prerequisite data
augmentation is often used for generating a diverse pertur-
bation [3, 25, 30, 43], resulting in an extra cost to secure a
sufficient number of samples.

Specifically, the Cross Pseudo Supervision (CPS) [7]
and its extended version n-CPS [13] representatively lever-
age the network perturbation mechanism. CPS consists of
two differently initialized networks of the same architec-
ture, and the pair of networks supervise each other by ex-
changing their output to evaluate their prediction. The n-
CPS extended the CPS to multiple networks demonstrat-
ing that providing more pseudo-supervisions can poten-
tially improve segmentation performance. Recently, Per-
turbed and Strict Mean Teachers (PS-MT) [25] also pro-
posed a perturbation-based method with three networks by
replacing the loss of the Mean Teacher [31] with a more
strict confidence-weighted loss. Although these approaches
have brought substantial improvements, notice that adopt-
ing multiple networks causes an exhaustive number of su-
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pervision exchanges which may be computationally in-
tractable. Also, to train a diverse set of models, they often
use a variety of weak and strong image augmentations and
feature perturbations at the cost of additional computation.

Therefore, it is critical to efficiently utilize multiple net-
works with a strategical training approach. In this paper,
we propose a novel perturbation-based training strategy for
semi-supervised semantic segmentation. Using a network
perturbation, our method co-trains one teacher and two stu-
dent networks in a data-efficient manner by clearly separat-
ing the roles of labeled and unlabeled data. Unlike other
works [7, 13, 25, 27] where the labeled images are identi-
cally used to train all models within their frameworks with
a supervised loss, we propose to use the labeled data (small
but expensive) 1) to first train the teacher network such that
it gains feasible knowledge to teach student networks and
2) as a validation benchmark to assess the current perfor-
mance of the networks to selectively regulate the interaction
between the teacher and student networks. With unlabeled
data (large and inexpensive), consistency regularization is
imposed to propagate knowledge from better networks to
under-trained networks iteratively, either from the teacher
to students or from the students to teacher, according to the
validation from the labeled data.

Notice that, the student networks are very immature at
the initial training stages. However, we expect that they
will eventually become smarter than the initial teacher net-
work as they supervise each other. Assessing the loss of
the student and teacher networks via the labeled data com-
puted during training, we gradually increase the influence of
feedback from the student networks to the teacher network
as the students become better. Once the students are trained
as much as the teacher, they return a full feedback pseudo-
supervision on the unlabeled data to perturb the teacher net-
work on its unseen samples. The loss comparison between
the differently trained networks enables adaptive adjust-
ment of the effect of pseudo-supervision from the student
networks to the teacher network. Also, the teacher network
can avoid being overfitted on the precedent knowledge on
the labeled set and be further improved with reliable feed-
back from students to consistently provide better guidance.

In this way, our training scheme strengthens both the
teacher and student networks by interactively exchanging
informative pseudo-labels. As our model does not re-
quire specialized augmentation, it is computationally effi-
cient compared to [31] which must use various augmenta-
tion schemes to train multiple networks. In addition, exist-
ing methods [7, 13] train multiple networks in an identical
way during the entire training, whereas our phased training
scheme adaptively trains multiple networks by establishing
different strategies depending on characteristics of the data.

Our proposed idea makes the following contributions:

• We propose a novel network perturbation method for

semi-supervised semantic segmentation by clearly sep-
arating the “roles” of Teacher/Student networks and
the roles of labeled/unlabeled data,

• Our method accelerates model convergence and stabi-
lizes training in the early stages using much fewer data
compared to existing state-of-the-art methods,

• Our method flexibly controls the influence of student
networks on a teacher network, so that the teacher net-
work also gets sufficiently perturbed and improved to
provide better pseudo-supervision.

As a result, our method achieves state-of-the-art perfor-
mance on Pascal VOC 2012 and Cityscapes, which are two
representative datasets for semantic segmentation.

2. Related Works
Semi-supervised Semantic Segmentation. Recent semi-
supervised learning methods for semantic segmentation
are categorized into two classes: 1) self-training and 2)
perturbation-based methods. Self-training [41, 42] con-
sists of iterative two-step procedures: ‘pseudo-labeling’ and
‘training’. First, a model is trained with the small labeled
set. In the pseudo-labeling step, the supervised model pre-
dicts pseudo-labels of unlabeled images. Then the unla-
beled data with pseudo-labels and the labeled data are typi-
cally combined and used to train the classifier as a whole.

Apart from self-training, perturbation-based methods
rely on the assumption that the model prediction should be
consistent even if inputs, features, or model parameters are
perturbed. Owing to this property to maintain consistency,
perturbation-based learning is known to impose a consis-
tency regularization. A body of research in this direction in-
cludes Mean Teacher (MT) [31], Cross-Consistency Train-
ing (CCT) [27], CutMix-Seg [14], and Guided Collabora-
tive Training (GCT) [17]. Also, PseudoSeg [43] inspired
by FixMatch [30] performs the pseudo-segmentation using
differently augmented images, and Cross Pseudo Supervi-
sion (CPS) [7] and n-CPS [13] perturb network parameters.
Recently, Perturbed and Strict MT (PS-MT) [25] extended
MT with one student and two teacher networks by unifying
input, feature, and network perturbations to generalize the
consistency regularization leveraging heavy augmentation.
Teacher-Student Framework. Teacher-student models [6,
25, 31] have been adopted for label-efficient learning of se-
mantic segmentation. They are trained via a knowledge
distillation strategy [10, 24, 35] that improves student mod-
els under the guidance of teacher models. Shen et al. [29]
employed an ensemble of large-scale teacher networks to
provide accurate pseudo-supervision to a student. On the
other hand, networks of the same architecture but with dif-
ferent initialization have been used for teacher and student
in [36,40], or even a single network has played both teacher
and student roles in [30]. Another recent approach is to
build the teacher as an exponential moving average (EMA)
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Figure 1. An overview of training architecture. Two student networks (θs1 and θs2 ) and one teacher network (θt) are iteratively updated
using the counterpart’s pseudo label from the unlabeled image Xu ∈ Du. For each network, P is a class probability map as a network
output, and Y is a one-hot encoded pseudo-supervision. To perturb the teacher with reliable feedback, the magnitude of feedback from
students is controlled with Adaptive Ramp-Up. To do so, the teacher and student networks are quantitatively compared via supervised
losses on the labeled image Xl ∈ Dl. Once the average loss of students is smaller than the teacher’s (i.e., Ls

sup/2 < Lt
sup), the feedback

weight is maximized and the teacher can be further improved with informative perturbations on the unseen dataset Du.

of the student [19,21,25,31], which has been known to pro-
vide stable pseudo-supervision.

3. Method
Let Dl = {X l

i}ni=1 be a labeled image set of n sam-
ples with an individual ground truth label Y l

i which repre-
sents pixel-wise object classes, and let Du = {Xu

j }mj=1 be
a set of m unlabeled images. Our method aims to solve
semi-supervised semantic segmentation by jointly training
three separate networks using the two independent image
sets. The segmentation model consists of a Teacher Net-
work (TN) and two Student Networks (SNs) which share
the same structure with different parameter initialization.

The training strategy is comprised of three phases: a)
training a TN using Dl with human annotation, b) co-
training SNs, and c) updating the TN, and b) and c) are iter-
ated until all models converge as shown in Fig. 1. The TN
is first trained with ground truth supervision Y l from Dl

(expensive data), in order to learn reasonable knowledge
to teach SNs with pseudo-supervision. The SNs receive
a pseudo-supervision Y t from the teacher on Du (cheap
data) and offer their pseudo-supervisions Y s1 and Y s2 to
each other. Using the powerful guide Y t from the TN, the
SNs grow rapidly to follow up the TN. While existing works
with Teacher-Student architecture [25, 31, 34] perform uni-
lateral supervision from a teacher to a student, our SNs pro-
vide their averaged feedback Y s̄ to the TN on Du so that
the TN improves to provide reliable supervision to SNs.

Notice that the feedback from SNs Y s̄ is not reliable at
the beginning of the training as they are learning the seg-
mentation from scratch. Therefore, we designed an Adap-
tive Ramp-Up scheme that leverages the Dl as a “valida-
tion set” to fairly evaluate and compare the performance of

SNs and TN via their supervised losses. With the Adaptive
Ramp-Up, the influence of feedback from SNs is flexibly
controlled. We expect that the students eventually become
better than the teacher, and the teacher also improves to fur-
ther guide the students by effectively perturbing each other
with improved pseudo-supervision.

3.1. Establishing Teacher Network
Given a labeled image X l

i ∈ Dl, the TN fθt(·) produces
a segmentation confidence map P l,t

i which contains class
probability as

P l,t
i = f(Xl

i ; θt). (1)

Suppose an input image has a resolution (W , H). The su-
pervision loss Lt

sup of the TN is computed with a standard
pixel-wise cross-entropy loss lce using a confidence vector
pt
ip at p-th pixel of P l,t

i for the whole images in Dl as

Lt
sup(X

l, Y l) =
1

n×W×H

∑
Xl

i∈Dl

W×H∑
p=1

lce(p
t
ip,y

l
ip) (2)

where yl
ip is a one-hot encoded ground truth vector from Y l

i .
With this loss, TN is trained on the accurately labeled image
set and attains the ability to generate pseudo-supervision to
guide SNs in an indirect manner.

3.2. Guiding Student Networks
Using both Dl and Du, our method jointly trains a pair of

SNs fθs1 (·) and fθs2 (·). Both SNs have the same structure
as the TN’s, but their parameters θs1 and θs2 are differently
initialized. The segmentation confidence maps of the two
SNs (k ∈ {1, 2}) on Dl and Du are produced as

P
l,sk
i = f(Xl

i ; θsk ) and P
u,sk
j = f(Xu

j ; θsk ). (3)
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Figure 2. Example of interactions between TN and SNs via the confidence maps (for slices of ‘person’ and ‘sofa’ classes) and pseudo-label
maps at the first and last epoch. The networks iteratively exchange their pseudo-labels through guiding (with GPS) and feedback (with
FPS) phases. The GPS allows SNs to effectively learn the supervised knowledge of the TN from the beginning, and FPS with Adaptive
Ramp-Up allows the TN to improve its guiding quality. At the last epoch, the pseudo-label qualities of SNs are substantially improved
compared to the blurred prediction at the first epoch (in red circle).

where i and j denote indices in Dl and Du respectively. In
this step, the objective function consists of three losses for
the SNs: 1) a supervision loss from the students Ls

sup with
the ground truth Y l, 2) Lgps from the TN with Y t and 3)
Lcps from SNs with Y sk . Note that the ground truth Y l is
from Dl, and the pseudo-labels Y t and Y sk are from Du.

First, as in Eq. 2, a classical pixel-wise cross-entropy is
calculated for the supervision loss Ls

sup over the confidence
maps (i.e., P l,s1

i and P l,s2
i ) of two SNs as

Ls
sup(X

l, Y l) =
1

n×W×H

∑
Xl

i∈Dl

W×H∑
p=1

(
lce(p

s1
ip ,y

l
ip)

+lce(p
s2
ip ,y

l
ip)

) (4)

where psk
ip is a class probability vector at p-th pixel of P l,sk

i

and yl
ip is a corresponding one-hot encoded ground truth.

Second, the loss to train SNs with the TN’s pseudo-labels
Y t from unlabeled data Du via cross-entropy is defined as,

Lgps(X
u, Y t) =

1

m×W×H

∑
Xu

j ∈Du

W×H∑
p=1

(
lce(p

s1
jp,y

t
jp)

+lce(p
s2
jp,y

t
jp)

) (5)

where psk
jp is a class probability vector at p-th pixel of Pu,sk

j

and yt
jp is a corresponding one-hot encoded pseudo-label

vector from Guided Pseudo Supervision (GPS) Y t
j . Mini-

mizing the Lgps enforces the consistency between the TN
and SNs, and let the predictions of SNs be similar to the
TN’s for the same input. Also, we expect that the guide
from the TN will help SNs train faster (especially at the
early stages of training) as the TN already has some knowl-
edge on the segmentation although it may not be optimal.

Unlike the GPS, the CPS [7] operates only between SNs
without intervention from the TN. It is a bilateral operation

to exchange pseudo-labels ys1
jp and ys2

jp (i.e., trained knowl-
edge) between the SNs as

Lcps(X
u, Y s) =

1

m×W×H

∑
Xu

j ∈Du

W×H∑
p=1

(
lce(p

s1
jp,y

s2
jp)

+lce(p
s2
jp,y

s1
jp)

)
.

(6)

Finally, the overall loss function for SNs is given as:

Lguide = Ls
sup + αLgps + βLcps (7)

where α and β are hyperparameters to balance the losses.
In this way, the Lgps and Lcps simultaneously evaluate the
predictions of SNs for Xu

j (i.e., Pu,s1
j and Pu,s2

j ). Each SN
is trained to improve their predictions by approximating the
GPS from the TN, and the consistency from each other is
enforced providing different pseudo-labels. This perturba-
tion from different pseudo-labels on the same input acts as a
regularizer to prevent overfitting that may be caused by the
TN which is already trained with partial labeled dataset.

3.3. Perturbing Teacher with Adaptive Ramp-Up
After the SNs learn sufficient knowledge from the

trained TN with Lgps, they pass what they have learned to
the TN by providing their averaged pseudo-supervision. At
the same iterative step of the guiding phase, the updated
SNs take the identical unlabeled image Xu

j once again and
produce a one-hot encoded pseudo-label map Y s̄

j , i.e., Feed-
back Pseudo Supervision (FPS), which is computed from
averaged segmentation confidence map (Pu,s1

j +Pu,s2
j )/2.

The TN learns from Du by leveraging a per-pixel
pseudo-label vector ys

jp from FPS Y s̄
j . The loss to train

the TN with FPS is written as

Lfps(X
u, Y s̄) =

1

m×W×H

∑
Xu

j ∈Du

W×H∑
p=1

lce(p
t
jp,y

s
jp). (8)
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Adaptive Gaussian Ramp-up. Since the supervision from
SNs is hardly reliable at the beginning of the training, we
apply adaptive Gaussian ramp-up w(·) to Eq. (8). Given a
number for maximum training epochs E, the w(·) is defined
with a current training epoch e and a maximum ramp-up
epoch r (1 ≤ e, r ≤ E) as

w(e) =

{
exp(−(1− e

r
)2), if e ≤ r

1, otherwise
(9)

where r is initialized as E. The point to maximize the ramp-
up is automatically determined by evaluating the SNs’ per-
formance on Dl: if Ls

sup/2 ≤ Lt
sup, the r is set to e (i.e.,

w(e) = 1). From Ls
sup/2 = Lt

sup when the performance of
SNs is as good as the TN for Dl, they are expected to pro-
vide sensible feedback to the TN. With a hyperparameter γ,
the feedback loss function can be written as

Lfb = Lt
sup + w(e) · γLfps. (10)

Without this Adaptive Ramp-Up, the TN will receive
poor feedback from the SNs in the early training stages, and
its performance becomes even worse. Eventually, it will
provide a poor guide back to the SNs and slow the model
convergence. Also, without this feedback step for the TN,
the TN will not improve and affect the GPS step, limiting
the SNs’ performance as the TN and SNs are tied with con-
sistency regularization. However, with this feedback step,
SNs alleviate the overconfidence of TN acting as regulariz-
ers. The interaction between TN and SNs explained above
is visualized in Fig. 2 with the variation of their pseudo-
label maps across the beginning and the end of training.

4. Experiments
In this section, we quantitatively and qualitatively eval-

uate our method with various recent methods for semi-
supervised segmentation on two independent datasets. Ab-
lation study is also introduced to empirically examine the
roles of individual components within our model.

4.1. Experimental Setup
Datasets. We conducted experiments on two standard-
ized benchmarks for semantic segmentation: Pascal VOC
2012 [12] (Pascal) and Cityscapes [8]. Pascal contains 20
object classes and 1 background class. The original dataset
is comprised of 1464, 1449, and 1456 images for train-
ing, validation, and test sets, respectively. We used an aug-
mented training dataset (10582 images) proposed in [16] for
full training. With 19 classes, Cityscapes consists of 2975,
500, and 1525 images for training, validation, and test sets,
respectively. The images are fine-annotated with a resolu-
tion of 2048 × 1024. To construct a labeled partition, we
follow partition protocols suggested in GCT [17] as setting
1/16, 1/8, 1/4, and 1/2 of the whole dataset for labeled set
and the other for unlabeled set.

Implementation. Pytorch framework and SGD optimizer
with momentum 0.9 were used to implement our work. We
set the learning rate 0.01 and 0.02 for Pascal and Cityscapes,
respectively, and they were multiplied by (1− iter

max iter )
0.9

using a poly-learning rate scheduler. The batch size is set
to 8 for each labeled and unlabeled data and the scale of
image is randomly selected from {0.5, 0.75, 1, 1.5, 1.75, 2}.
CutMix [37] is used in our framework as in other recent
methods for semi-supervised segmentation [7, 13, 25, 34].
After the supervised TN is obtained, we fixed the learning
rate of the TN as (max epoch × max iter)−0.9 multiplied by
the initial learning rate. The trade-off weights were set as
α = 0.5 (1.0), β = 1.5 (5.0), and γ = 0.5 (1.0) for Pascal
(Cityscapes). The number of epochs were set as 32 (128) /
34 (137) / 40 (160) / 60 (240) for 1/16, 1/8, 1/4, and 1/2
partition protocols on Pascal (Cityscapes), respectively. As
a segmentation network, DeepLabv3+ [5] with ResNet-50
or ResNet-101 pretrained on ImageNet is used and its seg-
mentation head is randomly initialized. As only three net-
works could be rested even on NVIDIA RTX A6000 GPUs
with 48GB memory, using three networks was our best.
Evaluation. For all experiments, we performed a single-
scale inference with mean Intersection-over-Union (mIoU)
metric on validation sets of both benchmarks. The results of
our approach are reported using one student network, and
we did not use any ensemble techniques for all evaluations.

4.2. Quantitative Analysis
In this section, our method is compared with state-of-

the-art baselines in segmentation performance (mIoU) and
efficiency (size of required data and convergence speed).

4.2.1 Comparisons with SOTA Baselines
Comparison on Computational Costs. In Table 1, we
compare the number of unlabeled data required by vari-
ous network-perturbation-based methods with our method.
Along with the unlabeled samples from Du, the CPS and n-
CPS additionally use the labeled set Dl without the ground
truth as if it were an unlabeled set. On the other hand, our
method does not adopt such a scheme by default and thus

Table 1. Comparison on the number of unlabeled data to train
all networks of network perturbation-based methods. Under the
same supervised partitions, different amounts of data and epochs
are required for each method to converge the networks.

Method
# Net-
work

Pascal VOC 2012 Cityscapes
1/16 1/8 1/4 1/2 1/16 1/8 1/4 1/2

# of unlabeled data for 1 epoch

CPS [7] (CVPR ’21) 2 10.5k 10.5k 10.5k 10.5k 2.9k 2.9k 2.9k 2.9k
3-CPS [13] (arXiv) 3 10.5k 10.5k 10.5k 10.5k 2.9k 2.9k 2.9k 2.9k

ELN [19] (CVPR ’22) 2 19.8k 18.5k 15.8k 10.5k 5.5k 5.2k 4.4k 2.9k
PS-MT [25] (CVPR ’22) 3 19.8k 18.5k 15.8k 10.5k 5.5k 5.2k 4.4k 2.9k
ST++ [36] (CVPR ’22) 4 14.8k 13.8k 11.9k 7.9k 4.1k 3.9k 3.3k 2.2k

GPS (Ours) 3 9.9k 9.2k 7.9k 5.2k 2.7k 2.6k 2.2k 1.4k
# of unlabeled data for the whole epochs

CPS [7] (CVPR ’21) 2 339k 360k 423k 635k 381k 408k 476k 714k
3-CPS [13] (arXiv) 3 339k 360k 423k 635k 381k 408k 476k 714k

PS-MT [25] (CVPR ’22) 3 1587k 1481k 3174k 3174k - 1666k 2008k 1636k
ST++ [36] (CVPR ’22) 4 1184k 1104k 952k 632k 984k 936k 792k 528k

GPS (Ours) 3 317k 315k 317k 317k 357k 357k 357k 357k
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Table 2. Performance comparison on Cityscapes with the state-
of-the-art methods under different supervised partitions.

Method ResNet-50 ResNet-101
1/16 1/8 1/4 1/2 1/16 1/8 1/4 1/2

SupOnly 64.30 66.00 70.70 72.00 65.74 72.53 74.43 77.13
MT [31] (NeurIPS ’17) 66.14 72.03 74.47 77.43 68.08 73.71 76.53 78.59
CCT [27] (CVPR ’20) 66.35 72.46 75.68 76.78 69.64 74.48 76.35 78.29
GCT [17] (ECCV ’20) 65.81 71.33 75.30 77.09 66.90 72.96 76.45 78.58
DCC [20] (CVPR ’21) - 69.70 72.70 - - - - -
CPS [7] (CVPR ’21) 74.47 76.61 77.83 78.77 74.72 77.62 79.21 80.21
ST [36] (CVPR ’22) - 71.60 73.40 - - - - -

ST++ [36] (CVPR ’22) - 72.70 73.80 - - - - -
U2PL [34] (CVPR ’22) - - - - 70.30 74.37 76.47 79.05
ELN [19] (CVPR ’22) - 70.33 73.52 75.33 - - - -

USRN [15] (CVPR ’22) 71.20 75.00 - - - - - -
PS-MT [25] (CVPR ’22) - 77.12 78.38 79.22 - - - -
PGCL [18] (WACV ’23) - 71.20 73.90 76.80 - - - -

GPS (Ours) 74.86 77.32 78.71 79.33 75.64 77.79 79.27 80.40

Table 3. Performance comparison on Pascal VOC 2012 with the
state-of-the-art methods under different supervised partitions.

Method ResNet-50 ResNet-101
1/16 1/8 1/4 1/2 1/16 1/8 1/4 1/2

SupOnly 63.90 68.20 70.40 73.12 65.74 72.53 74.43 77.83
MT [31] (NeurIPS ’17) 66.77 70.78 73.22 75.41 70.59 73.20 76.62 77.61
CCT [27] (CVPR ’20) 65.22 70.87 73.43 74.75 67.94 73.00 76.17 77.56

CutMix-Seg [14] (BMVC ’20) 68.90 70.70 72.46 74.49 72.56 72.69 74.25 75.89
GCT [17] (ECCV ’20) 64.05 70.47 73.45 75.20 69.77 73.30 75.25 77.14
DCC [20] (CVPR ’21) 70.10 72.40 74.00 76.50 72.40 74.60 76.30 78.20
CPS [7] (CVPR ’21) 71.98 73.67 74.90 76.15 74.48 76.44 77.68 78.64
3-CPS [13] (arXiv) 71.11 73.56 74.68 75.86 74.98 76.98 77.95 79.67

USCS [38] (ACCV ’22) 72.30 74.88 76.15 76.45 74.52 76.20 77.09 78.63
ST [36] (CVPR ’22) 71.60 73.30 75.00 - 72.90 75.70 76.40 -

ST++ [36] (CVPR ’22) 72.60 74.40 75.40 - 74.50 76.30 76.60 -
U2PL [34] (CVPR ’22) - - - - 74.43 77.60 78.70 79.94
ELN [19] (CVPR ’22) - 73.20 74.63 - - 75.10 76.58 -

PS-MT [25] (CVPR ’22) 72.83 75.70 76.43 77.88 75.50 78.20 78.72 79.76
PGCL [18] (WACV ’23) - 75.20 76.00 - - 76.80 77.90 -

GPS (Ours) 72.91 75.72 76.33 77.07 75.66 77.56 79.18 79.88
GPS† (Ours) - 76.03 76.56 77.97 - 77.67 79.61 80.61

†: Additional unlabeled data were used by removing labels of the Dl.

uses only half of the unlabeled samples used in CPS and
n-CPS under 1/2 labeled partition protocol.

As in our method, PS-MT and ELN do not take out
the labels of Dl, however, they must double the unlabeled
samples with diverse data augmentations to feed differently
augmented images to the student and teacher networks.
Therefore, these methods require unlabeled data at least
twice more than ours, and the gap becomes even larger con-
sidering the number of epochs as the data augmentation is
performed for every iterative step. Specifically, under the
same setting, while our networks converged fast within 32
to 60, and 137 to 240 epochs for Pascal and Cityscapes,
respectively, PS-MT required 80 to 300, and 320 to 550
epochs to fully train three networks. Similarly, ST++ does
not remove the label of Dl, however, ST++ requires 1.5
times more unlabeled data than ours to perform its 2-step
self-training with four networks. ST++ requires 80 and 240
epochs for Pascal and Cityscapes, respectively, for all parti-
tion protocols for model convergence.

Note that, even including the training steps to establish
a TN, the number of epochs in GPS is still smaller than
that of these baselines. With comparatively much less com-
putational costs, our method uses only 10% of the data
used by PS-MT in 1/4 and 1/2 partition protocols on Pas-
cal. Also, our method uses only 26% and 36% of the data
used by ST++ in the 1/16 partition protocol on Pascal and
Cityscapes, respectively. Substantially reducing overhead
costs with fewer data and faster convergence speed, GPS

Figure 3. Comparison of mIoU at the initial epochs on valida-
tion set of Cityscapes. Our method and CPS are trained without
CutMix augmentation and PS-MT is trained with multiple input
augmentation along with the CutMix. ResNet-50 is used under
1/16 supervised partition protocol.

outperformed these state-of-the-art methods in many parti-
tion protocols for both datasets as described below.
Comparison on Segmentation Performance. In Table
2 and 3, our approach outperforms all baselines in both
benchmarks. Notably, using much fewer data and epochs
for network convergence, our method surpassed SOTA
baselines such as PS-MT, 3-CPS, ST, and ST++ which
adopt 3-4 networks. Our method surpasses the supervised
baseline by 3∼12%p and 2∼10%p for diverse settings on
Cityscapes and Pascal, respectively. On Pascal, we addi-
tionally tested our method with more unlabeled data by re-
moving the label of the labeled set. This setting lets us uti-
lize more data and epochs as in CPS and 3-CPS as shown
in Table 1, which are still smaller than other SOTA meth-
ods [19,25,36] in most settings. We observed that the use of
more data brings a 0.1∼0.9%p improvement in our method,
which intensifies the gap over baselines. Therefore, it is
worth noting that our method has the potential to be fur-
ther boosted on Cityscapes if we adopt these larger-scale or
heavily augmented datasets as in other baselines.

4.2.2 Comparison of Training Flows
Fig. 3 compares the performance of our method with cur-
rent SOTA network-perturbation-based methods (i.e., PS-
MT and CPS) at the initial training steps. The result of

(a) Pascal VOC 2012 (b) Cityscapes

Figure 4. Comparison of fully-supervised methods with our ap-
proach under 1/2 labeled partition protocol w/o CutMix. With
half of the supervision, our method (red) outperforms the fully-
supervised DeepLabv3+ network (grey) in all settings except the
result with ResNet-101 on Cityscapes.
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(a) Input (b) Ground Truth (c) Supervised only (d) Ours w/o CutMix (e) Ours w/ CutMix

Figure 5. Resultant Samples from Pascal (top 1-3 rows) and Cityscapes (bottom 4-5 rows). (a) Input, (b) Ground Truth, (c) Supervised
only, (d) Ours w/o CutMix, (e) Ours w/ CutMix. DeepLabv3+ with ResNet-50 under 1/8 partition protocol is used to produce the results.

our method at the first epoch (37.82%) outperforms both of
the CPS’s (0.06%) and PS-MT’s (0.02%) by 37.76%p and
37.80%p respectively and this trend continues until epoch
12, where the network in CPS starts to train towards its con-
vergence. Although the PS-MT leverages more data with
various augmentations (including CutMix), GPS (without
CutMix) consistently shows much better mIoU even with
faster convergence across all 20 epochs. This fast and sta-
ble convergence demonstrates the effect of our initial guid-
ing phase, which eventually makes smart SNs in the early
training process via consistency regularization. As the SNs
rapidly grow with GPS, the TN can quickly receive useful
feedback on the previously unknown knowledge (i.e., un-
labeled samples) from the SNs. Ultimately, this positive
guiding-feedback loop strengthens both TN and SNs even
in the later training process. Without the guide from TN,
the CPS learns the whole data from scratch, and one can
easily see that it requires more epochs to converge.

4.2.3 Comparison with Fully-Supervised Models
In this section, we compare GPS with a fully supervised
model to demonstrate that GPS performs as good as or even
better than the fully supervised model using significantly
less labeled data. In Fig 4, DeepLabv3+ [5] (grey), GPS
under 1/2 partition (red) and GPS with full supervision (yel-
low) — unlabeled data are curated by removing labels from
the original data — are compared. Notably, although the

number of labeled images has been reduced by half, our
method under 1/2 labeled partition protocol (red) outper-
formed the fully-supervised networks in almost all settings.

4.3. Qualitative Results
In Fig. 5, we visualize partial results of prediction from

our method on Pascal and Cityscapes. The results of a
supervised-only network show poor performance compared
to our methods. For example, in the second row, the
supervised-only method barely predicts background pixels
as a sofa, while our method recognizes most of them as the
true label. In the third row, although there exists an occlu-
sion in front of the bottles, our method detects the bottom
half of the bottles while it was tricky in the supervised-only
method. Moreover, in the fourth row, our method correctly
predicts the wall (blue) at the right side, and notably, the
difference can be found in the bus (pink) of the fifth row.

Table 4. Ablation study over various loss configurations using
ResNet-50 under 1/8 supervised partition protocol without Cut-
Mix. Notably, the comparison of the last row (w/ Lgps) and the
4-th row (w/o Lgps) shows the improvement from GPS.

Lt
sup Ls

sup Lgps Lcps Lfps Pascal VOC Cityscapes

✓ ✓ ✓ - - 72.25 72.36
✓ ✓ - - ✓ 70.89 71.25
✓ ✓ ✓ - ✓ 72.82 72.39
✓ ✓ - ✓ ✓ 72.99 73.51
✓ ✓ ✓ ✓ - 72.72 72.92
✓ ✓ ✓ ✓ ✓ 73.95 74.62
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(a) (b)

Figure 6. Comparison of the united loss update structure and
our method on loss flows of Lfps at the first epoch. (a) A united
loss update structure. (b) Loss flows of Lfps on Cityscapes under
1/2 labeled partition protocol with ResNet-50. The loss curves are
smoothed for visualization.

4.4. Ablation Study
4.4.1 Analysis on Perturbing the Teacher Network
In our training scheme, we added the perturbing step to im-
prove the generalization of the TN. Intuitively, this step is
essential since the initial TN can solely observe a small frac-
tion of the whole dataset for supervision which may result in
overfitting. Furthermore, if the FPS is excluded, the training
becomes a one-way pseudo-supervision in terms of unilater-
ally delivering pseudo-labels from the TN to SNs only. This
single-network pseudo-supervision is known to be inferior
to the CPS, mainly because the training highly depends on
the training quality of the TN [7]. In other words, if the TN
is weakly trained, the training of the SNs also fails as they
consistently approximate the TN’s pseudo-labels.

To verify the necessity of this step, we perform the abla-
tion study over different loss combinations in Table 4. Com-
pared to the case of only adopting Lgps (72.25%) among the
three losses for pseudo-labeling (i.e., Lgps, Lcps and Lfps),
one can observe that adding Lfps directly improves the per-
formance of SN by 0.57%p on Pascal VOC 2012. Also,
the last two rows of Table 4 indicate that the application of
Lfps with the rest of the losses improves the result with-
out Lfps (72.72% and 72.92%) by 1.23%p and 1.70%p on
Pascal and Cityscapes, respectively.
4.4.2 Merging vs. Separating GPS, CPS, and FPS
We illustrate why the networks are iteratively trained (i.e.,
the loss updates are performed twice in a single iterative
step) with the Eq. (7) (with Lgps and Lcps) and Eq. (10)
(with Lfps). As shown in Fig. 6a, the entire pseudo-
supervision losses suggested in our method can be com-
bined as L = Lguide + Lfb = Lt

sup + Ls
sup + αLgps +

βLcps+γLfps with the ground truth supervision losses and
trained at the same time.

The significance of our iterative loss update scheme is
compared to the L with the following assumption. For
each iteration i, the TN’s parameter θit in the unified loss
is updated as: θit = argminθL(X; θi−1

s1 , θi−1
s2 , θi−1

t ), where
the parameters of the three networks at the previous step
are used for loss calculation. On the contrary, our method

uses the revised SNs’ parameters at the current step as:
θit = argminθL(X; θis1 , θ

i
s2 , θ

i−1
t ). The SNs of our method

send feedback to the TN soon after they are trained with
GPS, while the SNs of the unified loss need to wait until the
next iteration to provide FPS. We assumed that θis1 and θis2
contain richer knowledge on the data compared to θi−1

s1 and
θi−1
s2 , and thus they serve as better parameters to minimize
Lfps to enforce the consistency between TN and SNs.

We experimentally proved the assumption above by
comparing the loss flow of our approach with that of the
single loss update structure on the Cityscapes benchmark.
According to the resultant loss flows shown in Fig. 6b, we
can see that our method with two-step loss update (pink) has
a stronger convergence rate compared to the merged loss
update structure (blue), demonstrating our approach can in-
tensify the consistency for the three networks.

4.4.3 Does TN Help SN in Later Epochs?
Here, we analyze the necessity of a TN at latter epochs
where its mIoU is lower than that of SNs. Using the
same condition (i.e., Ls

sup/2 ≤ Lt
sup) as in Eq. 9, we ap-

plied adaptive ramp-down to Lgps to reduce the amount of
pseudo-supervision from a TN at latter epochs. We ob-
served mIoU of 70.73% and 73.57% in the 1/16 and 1/8
supervised partition protocols, respectively, using ResNet-
50 on the Pascal dataset. At the same settings, our method
without ramp-down showed 72.91% and 75.72% mIoU.
These results demonstrate that the knowledge of the TN is
not totally subsumed to the SNs and the TN still provides
useful guidance to some samples although its overall per-
formance is worse than that of the SNs. Also, unlike EMA
teachers [25,31] whose parameters are extracted from SNs,
our TN is independently initialized from SNs such that it is
expected to provide much more diverse and robust supervi-
sion during the entire training.

5. Conclusion
We present GPS, a novel data-efficient approach based

on the teacher-student framework for semi-supervised se-
mantic segmentation. Unlike prior studies, GPS assigns
different roles to the teacher and students during train-
ing, strategically utilizing labeled and unlabeled data. The
method enables fast and stable learning for the students
at the early training stages and regulates feedback from
students with adaptive ramp-up scheme. Consequently,
the teacher can consistently provide informative knowl-
edge back to the students and models trained by GPS
achieved the state of the art on both PASCAL VOC 2012
and Cityscapes benchmarks.
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